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AsstrAcT. The topological derivative measures the sensitivity ofvery shape functional with respect to
an infinitesimal singular domain perturbation. Accordioghe literature, the topological derivative has
been fully developed for a wide range of physical phenomanodeled by partial dierential equations,
considering homogeneous and isotropic constitutive iehain fact, only a few works dealing with het-
erogeneous and anisotropic material behavior can be foutiki literature, and, in general, the derived
formulas are given in an abstract form. In this work, we detive topological derivative in its closed
form for the total potential energy associated to an aropitrand heterogeneous heaffasion problem,
when a small circular inclusion of the same nature of the pphi&se is introduced at an arbitrary point of
the domain. In addition, we provide a full mathematical ificsition for the derived formula and develop
precise estimates for the remainders of the topologicainpsytic expansion. Finally, the influence of
the heterogeneity and anisotropy are shown through somernzahexamples of heat conductor topology
optimization.

1. INTRODUCTION

The topological derivative measures the sensitivity of\aegishape functional with respect to an
infinitesimal singular domain perturbation, such as theritien of holes, inclusions, source-terms or
even cracks [8]. The topological derivative was rigorouslyoduced by [18]. Since then, this concept
has proved to be extremely useful in the treatment of a widgeaf problems, for instance, topology
optimization [6, 16], inverse analysis [5, 13] and imagecgssing [12, 14], and has became a subject
of intensive research. See, for instance, applicationdh@ftopological derivative in the multi-scale
constitutive modeling context [4, 9] and fracture mecharsensitivity analysis [11]. Concerning the
theoretical development of the topological asymptotidysis, the reader may refer to the papers by [2]
and [15], for instance.

In order to introduce these concepts, let us consider a leslddmain® c R2, which is subject to a
nonsmooth perturbation confined in a small B(X) of sizee and center ak,”as shown in Fig. 1. We
introduce a characteristic function— yq(x), x € R?, associated to the unperturbed domain, given by

w={g i Yo @

Then, we define a characteristic function associated toape@dgically perturbed domain of the form
X = Xo.®), X € R2. In the case of a perforation, for instange, ) = x«(X) = xo “XBE® and the

perforated domain is obtained 85(X) = Q \ B.(X). Then, we assume that a given shape functional
U(y<(X)), associated to the topologically perturbed domain, &lthe following topological asymptotic
expansion

Y(xe(X) = ¥xa) + f(e)Dry(X) + o(f(e)) , 2)
wherey(yq) is the shape functional associated to the original (unpeetd) domain and(e) is a positive
function such thaf (¢) — 0, whene — 0. The functionx> D1y(X) is called the topological derivative
of ¢ at X. Therefore, this derivative can be seen as a first order a@reof y(yq) to approximate
U(x=(X)). In fact, after rearranging (2) we have

Ue(¥) - vlxa) o(f(e)
f(e) fie) -

Key words and phrasedopological derivative, topological asymptotic analysisterogeneous and anisotropic he#iueli
sion, heat conductor topology optimization.

= Dry(X) + 3)

1



2

The limit passage — 0 in the above expression leads to

Yxe(X) - ¥xa)
f(e) '

Since we are dealing with singular domain perturbations,stiape functionalg(y.(X)) andy(yq) are

associated to topologically fikerent domains. Therefore, the above limit is not trivial &calate. In

particular, we need to perform an asymptotic analysis ofstiepe functional(y.(X)) with respect to
the small parameter.

(4)

Dry(®) = lim

n

o0

Ficure 1. Topological derivative concept.

According to the literature, the topological derivativesh@een fully developed for a wide range of
physical phenomenon modeled by partidfetiential equations, considering homogeneous and isotropi
constitutive behavior. In fact, only a few works dealing lwiteterogeneous and anisotropic material
behavior can be found in the literature, and, in generaldéreed formulas are given in an abstract form
(see, for instance, [7]). In particular, the topologicahstvity associated to the nucleation of a hole
in a domain characterized by an orthotropic and homogenkeas difusion problem was calculated
by [18]. In order to simplify the analysis, the domain wastpdyed by introducing an elliptical hole
oriented in the directions of the orthotropy and with sexisgroportional to the material properties
codficients in each orthogonal direction. More recently in [11Bf previous result was extended by
considering as topological perturbation a small circutaiusion of the same nature as the bulk material,
instead of an elliptical hole. In this work, we derive the dfmpical derivative in its closed form for
the total potential energy associated to an anisotropichatelogeneous heatfidision problem, when
a small circular inclusion of the same nature of the bulk pHasntroduced at an arbitrary point of the
domain. In addition, we provide a full mathematical justfion for the derived formula and develop
precise estimates for the remainders of the topologicahasytic expansion. Finally, the influence of the
heterogeneity and anisotropy are shown through some ncahesiamples of heat conductor topology
optimization. We note that this result can be applied in netbgical research areas such as topology
design of piezoresistive membranes. In fact, under a deftbom process, the constitutive properties of
such membranes change according to the stress state. Heeicanaterial properties become highly
anisotropic and heterogeneous.

This paper is organized as follows. Section 2 describes Wwehassociated to an anisotropic and
heterogeneous heatfidision problem. In Section 3, we present the main result optper: a closed
formula for the topological derivative. In Section 4 is meted a numerical experiment showing the
influence of the conductivity tensor in the optimal desigme&t conductor. The paper ends in Section 5
where concluding remarks are presented.

2. FORMULATION OF THE PROBLEM

As mentioned in the previous section, the topological aggtigpanalysis of the total potential energy
associated to an anisotropic and heterogeneous héagidn problem is calculated. Thus, the unper-
turbed shape functional is defined as:

W) = Ta®) = 5 [ KV-Vo+ [ . ©

I'n
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whereK = K(x) is a symmetric second order conductivity tensor a@nd solution of the following
variational problem: find the field € U, such that

fKVO-Vn+ gn=0 YnevV. (6)
Q I'n
In the variational problem (6) the séf of admissible functions and the spageof admissible variations
are given by
U:={pcHY(Q) 1 ¢lr, =6] and V:={p e H(Q): ¢lr, =0}. 7)
In addition,0Q =I'y UTI'p with 'y N I'p = @, wherel'y andI'p are Neumann and Dirichlet boundaries,

respectively. Thugjis a Dirichlet data ofi’'p andqis a Neumann data dry, both assumed to be smooth
enough, see Fig. 2.

Ficure 2. Formulation of the problem.

In our particular case, we consider a perturbation on theadomiven by the nucleation of a small
circular inclusion with conductivityyK, where the parameter € [0, ) represents the contrast in the
material property. Taking into account the definition of ttferacteristic function associated to the
perturbed domaiw.(X) = ya — (1 - ¥)xs.(%. the perturbed shape functional can be written as:

o 1 _
U0 1= T, (6) = 5 [ 7ekv6-v0.+ [ . ®

I'n
where parametey, is defined as
_[1 in Q\B;
AL ©

In addition, in (8) the functior®, is the solution of the following variational problem: findettiield
6. € U,, such that

[ kvawns [ @m=0 wmev,. (10)

Q I'n

and the sef/, and the spacé/, are defined as

U, ={peU: ¢l =00ndB,} and V,:={p<cV:[¢] =00n0B,}, (12)

where we usd(-)] to denotes thgump of function () across the bounda$B,. Note that the domain
Q is topologically perturbed by the introduction of an indrs B.(X) of the same nature as the bulk
material, but with contrast. Finally, the Euler-Lagrange equation associated to thiat@nal problem
(10) reads: find field,, such that

div(y:KV6;) =0 in Q
6. =6 on Ip
-KV6.-n =q on I'y . (12)
[6:1 =0 on 0B,
[y:KVO.]-n =0 on B,



3. TOPOLOGICAL DERIVATIVE

In this Section we present the main result of this work: aegicrmula for the topological deriva-
tive of the total potential energy associated to an anipatrand heterogeneous heaffdsion problem.
Tacking into account the problems defined over the origindl perturbed domains, we can choose an
admissible test function = 6. — . Then the state equations, given by (6) and (10), can bectsgyg
written as

f KVé -V, - 0)+ q0.-0) = 0, (13)
Q I'n
f v:KVO, - V(0, — 0) + g0, -6) = 0. (14)
Q I'n
After rearranging the above expressions, we obtain
f Kve-ve = f KV, - Vo + q(6, - 0), (15)
Q Q I'n
f v:KVO, - VO, = f v:KVO, - VO — q(0. — ). (16)
Q Q I'n

Introducing the above expressions in the definition of trepshfunctionals/(yq) andy(v.(X)), we
have that the total potential energy associated to bothHgmabcan be written alternatively as

Ulya) = 1'fKVH‘g-V9+1' q(o, + 6), a7
2 Jo 2 Jry

W) = = f yekve,-vo+ 1 [ G, +o). (18)
2 Jo 2 Jry

With the above results in hand, theffdrence of the shape functionals associated to the unpedturb
and perturbed problems reads

U0®) - vtxa) = 5 [ ke, vo- 5 [ k90,0 (19

Next, by considering the definition of the contrasin the previous results, we have that thetience
of the total potential energy is given by an integral congetl in the inclusioB,, namely

Ue(R) ~ vlea) = =5 (L) [ K0, . (20

Let us assume that the conductivity tenB@K) is smooth enough such that it admits an expansion in
Taylor series around the poirtof the formK(x) = K(X) + VK(&)(x — X), where/ € (x, X). In order to
analytically solve the above integral, we introduce théofeing ansatz for the solution associated to the
perturbed problem,:

0:(X) = 0(X) + Wx(X) + 0s(X). (21)
where the functionv, is the solution of the following exterior problem
div (y.K(X)Vw,) =0 in R?
w, —0 at o
[w] =0 on 0B, °’ (22)

[y:K(X)Vw.]-n =(1-y)KEXVIKX)-n on IB,

and the remaindet, must satisfy the following equations:

div(y:KVE,) = div(yVK(Z)(X - VW) in Q
0, =-W, on Tp

KVf.-n =KVw,-n on Ty (23)
6.1 =0 on B,

[yeKVO:D-n = —elly: (VK (£) ) (VO(R) + VW) - n

o
>
D)
vy}
o
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which yields the following estimatﬁﬁsllHl(Q) < Cg?, with the constanC independent ot (see A).
Then, by introducing the first order Polya-Szeg6 polditratensorP [1, 17], the solution of the exterior
problem (22) can be written as:

2

We (X255 X X2 PVO(X) - (x-X) , (24)
We(¥lg, = PVO(X)-(x-X). (25)
Taking into account (21), thefilerence between the shape functionals (20) reads
Hee) =) = 51 [ K(T0-+ V) 90 + ), (26)
where the tern&(e) is given by 4
Ee) = —%(1 ~7) fB F KV, - V6, (27)

which has the following estimai(s) = o(e?) as shown in the A. Next, by using the interior elliptic
regularity of the functiorg in B,, the diference of the shape functionals (26) satisfies the following
identity:

We(R) - wla) = ~5(1-) fB K(R) (VO(R) + Tw,) - VO(R) + 0(e?). (28)

where the expansion of the tend6fx) has been used again.
With the results (21), (24) and (25) in hand, the above egwascan be analytically solved, leading
to

Y(xe(R) - ¥xa) = 7e?RTTRVO(R) - VO(R) + o(s?), (29)
whereR is the rotation matrix that diagonalizes the conductivitgdorK at the pointx; the matrixT is

given by
T = — {detK(R)K(R)S(R), (30)

with K(X) the diagonalized conductivity tensor at the pointvith eigenvalues; andk,, and the matrix
S(X) depending on the cdiicientsa = 1/ Vk; andg = 1/ Vko, that is

L1 b
S(X)=§(1—7)a/3( P s ] (31)
B+ya

Finally, using the definition for the topological derivai4) and takingf(s) = |B, = n&?, the
topological derivative for the problem under considemi®given explicitly by

Dry(R) = RTTRVA(R) - VO(R) VK€ Q. (32)

Note that in the topological derivative formula, the cotsive properties and the gradient of the
field 9 are evaluated at an arbitrary poibdfthe original domain. This means that in order to evaluate
the topological derivative (32), we need to solve the unpbed anisotropic and heterogeneous heat
diffusion problem (6) and determine the bases (eigenvectond)iah the conductivity tensor is diagonal.
In others words, the rotation matrixand eigenvaluek; andk, should be determined for each point of
the domain.

Remark 3.1. From the final expression for the topological derivativeasated to the anisotropic and
heterogeneous heatfflision problem (32), we can analyze the limits cases of tharpatery, which
are:

e ideal thermal insulatory¥ — 0):

1 CAZS|
S(>‘<)=§aﬁ(8 M) VReQ, (33)
B



¢ ideal thermal conductory — ):

1 (% o
S(ﬁ):—zaﬂ( g M) Ve Q. (34)

a

Remark 3.2. It is interesting to observe that for an homogeneous ortpitr or isotropic material
behavior, we have R |. In addition, in the second case we hayekk, = k. Then, the final expressions
for the topological derivative (32) degenerates to:

¢ orthotropic material behaviof10]:

Dru(R) = — \/detK)KSVI(R) - VOR)  VReQ, (35)

e isotropic material behaviof2]:

Dry(R) = -kE=2veR) - VOR)  VReQ. (36)
1+y

4. NUMERICAL EXAMPLE

To illustrate the applicability of expression (32) in thentext of topology optimization, in this section
we present an example consideringfelient heterogeneous and anisotropic conductivity terks@xs
To this end we use the topology optimization algorithm psmabby [3]. In this example we consider a
square domai = (0, 1.0) x (0, 1.0), subjected to Neumann daja= 1.0 onI'y, andI'y, and homoge-
neous Dirichlet data ohip, andI'p,. The remainder parts of the boundary remain isolated. Theado
and boundary conditions for this example are shown in Figvterea = 0.2. The volume constraint is
chosen to be 80% of the initial volume.

IS

a GJL I'p,

I'p, Ta a

ARAANA —

Dy 11117

1
Ficure 3. Domain of the numerical example.

In this example, we explore the influence of the heterogereitd anisotropy of the conductivity
tensorK(x) in the numerical results. We also present the obtainedtsdfsu the homogeneous case. The
conductivity matrixK(x) is constructed as:

K(X) = Kip;j(X) withi e[a b,c] andje[ab,cd], (37)
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whereK; is a constant matrix angj(x) are smooth functions that depend on the coordinate system

X = (Xg, X2). In particular, four diferent functiong;(x) are introduced, see Fig. 4, which are:

Pali30) = 30+ + 1,

Po(X1, X2) = % (& +5) +1;

Pc(X1, X2) = %cos(qu) cos(26) + g;
pa(X1, X2) = %cos(?kl) Sin(10x) + g

The constant matrixes; used in the numerical experiments are given by

10 05 10 05 10 05
oo Sl ofas 2o wesos s

05 10 05 20|’

and the parameteris fixed as (001.

(b) Po(xa, X2).

(€) Pe(xe, Xo). (d) Pa(xe, X2).
Ficure 4. Non-homogeneity profilg;(x).

(38)
(39)
(40)

(41)

(42)

In Figs. 5to 9 we show the obtained topologies for the homeges and nonhomogeneous anisotropic
material properties previously presented. According th Bi the results for the homogeneous case are
qualitatively similar between them. This seems to indi¢h&# the given anisotropy in the conductivity
tensor does notféect the optimal topology, at least for this benchmark examplowever, in the other
cases the optimal topologies are strongly dependent oretieedgeneity profileg;(x). In fact, in some
of the obtained results, the topologies change drastieahlgn the anisotropy of the tenskirbecomes

stronger, as can be seen in Figs. 6 — 9.



(a) Conductivity tensoK,.  (b) Conductivity tensoK,.  (c) Conductivity tensoK.
Ficure 5. Optimized topologies for anisotropic homogeneous case.

(a) Conductivity tensoK,.  (b) Conductivity tensoK,.  (c) Conductivity tensoK.
Ficure 6. Optimized topologies for anisotropic nonhomogeneoss pa(x1, X2).

(a) Conductivity tensoK,.  (b) Conductivity tensoK,.  (c) Conductivity tensoK.
Ficure 7. Optimized topologies for anisotropic nonhomogeneoss pg(x1, X2).

(a) Conductivity tensoK,.  (b) Conductivity tensoK,.  (c) Conductivity tensoK.
Ficure 8. Optimized topologies for anisotropic nonhomogeneoss pg(X1, X2).




(a) Conductivity tensoK,.  (b) Conductivity tensoK,.  (c) Conductivity tensoK.
Ficure 9. Optimized topologies for anisotropic nonhomogeneoss pa(xa, X2).

5. HNAL REMARKS

An analytical expression for the topological derivativetio¢ total potential energy associated to an
anisotropic and heterogeneous he&udion problem, when a circular inclusion of the same natsitea
bulk material is introduced at an arbitrary point of the doméaas been derived. From the asymptotic
analysis, it was proved that the heterogeneous behavidreoimiaterial properties does not contribute
to the first order topological derivative. The final formuaa general simple analytical expression in
terms of the solution of the state equation and the consgtgarameters evaluated at each point of the
unperturbed domain. In fact, from the obtained result, taesical expression for the topological deriv-
ative for orthotropic and isotropic constitutive propestihas been derived as particular cases. Finally,
we remark that this information can be potentially used,hasve in the numerical example, in a num-
ber of applications of practical interest such as, for imsta inverse problem, image restoration, design
and optimization of mechanical, thermal or electronic desidesigned to achieve a specified behavior.
In particular, the constitutive behavior of piezoresisttmembranes, under a deformation process, be-
comes highly anisotropic and heterogeneous. Therefoeeplitained result can be directly applied in
the topology design of such membranes.
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APPENDIX A. ESTIMATION OF THE REMAINDERS

In this section we proceed with the estimation of the remaindn the topological asymptotic ex-
pansion used in the derivation of the topological deriatxpression (32) presented in Section 3. In
particular, we study the asymptotic behavior of the remaifdin (23) and the residué(s) defined in
(27). Let us start introducing the following auxiliary furans:

Definition 1. Let w, and @ be solutions to (22) and (6), respectively. Then, we intoedine following
functions independent of the small parameter

g = (L-=y)(VK@NVI(X)-n on IB,, Y € (X X), (43)
g = —&2K(®VW.(X)-n on Iy, (44)
g5 = —&2w, on Ip, (45)
O = 29, VKO(X-R)VwW, in Q, Ve (xX), (46)

05 = & 2VK(@)(X-XVwW,-n on TIp. (47)
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Lemma 1. Let us consider the functions,dor i = 1, ..., 5, given in Definitign 1 zind Iéig be a solution
to (23) or equivalently a solution to the following variatia problem: Findd, € U,, such that

fy.gKV@‘Vn=—82fg4‘Vn+82 9277+8f an VneV,, (48)
Q Q Iy 0B;
where the sef(e and the spacéf/g are defined as
U, = {peHYQ): [¢]=00nB,, ¢ =c’gzonlp}, (49)
Ve = {peHYQ): [¢]=00n3B,, ¢ =00nTp). (50)
Then, for the tensor K smooth enough, we have the followimg&t® for the solution to (48):
[10:ll(qy < C&2, (51)

with constant C independent of

Proof. By takingn = 6, — ¢, in (48), wherey, is the lifting of the Dirichlet boundary datefgs onT'p,
and after performing an integration by parts, we have

fysKv’és-vb; = _ngg4.v'§s+82 9258+8f 010
Q Q I'n 0B

+&2 | (KVO-ngz+&2 | gsbs, (52)
I'o I'p

where we have considered the restriction of the functipmn the boundary’p. From the Cauchy-
Schwarz inequality we obtain

f Y:KVO: - V0, < 2l tullz)IVOallz) + €2102lln-vz(ry) Bl lvzqry)
Q
+ ellgully-128,) 0 ll2em,) + £2108 N2y IKVEs - Nlg-2(ry)
+ 105 ll-v2ro) s lzqry)- (53)

Taking into account the trace theorem, we have

f v:K V8, - VO,
Q

IA

£°Callf:llniay + 2Callbellyq) + ellgill 2 18elli,)

£°Cal0:llr () + £°Callfelln ).

£°C1lisllr () + 8°Callbellaay + £°Coli0:llnys,)

£°Callbsllr () + £°Callbslliy,
&°Cell0l 11, (54)

where we have used the interior elliptic regularity of thadiion # and the regularity of the tenséx.
Next, from coercivity of the bilinear form on the left-hanide of (48), we have

N+

fg ¥eK V6, - VO, > clif, I 0. (55)

Finally, from (54) and (55), we obtain
103y < C&2, (56)
which leads to the result, wit = Cg/c independent of. O

Lemma 2. Letd, andé be solutions to (23) and (6), respectively. Then, we havéoltmving estimate
for the remaindeiE(e) in (27):

%(1 -v) fB E KVO.(x) - V6 = o(£?). (57)
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Proof. From the Cauchy-Schwarz inequality we obtain

1 —
——(l—y)f KVé.(x) - Vo

2 B,

C1lIVOll L2, IVOellL2(s,)

£CallVO,lL 2,

£C3lIV,ll 20

eCallOll e (58)

where we have used the interior elliptic regularity of thediiond. Next, by taking into account Lemma
1, we have

&E(e)

A IN A

IA

&(e) < £5C, (59)
which leads to the result. O
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