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Abstract. The topological derivative measures the sensitivity of a given shape functional with respect to
an infinitesimal singular domain perturbation. According to the literature, the topological derivative has
been fully developed for a wide range of physical phenomenonmodeled by partial differential equations,
considering homogeneous and isotropic constitutive behavior. In fact, only a few works dealing with het-
erogeneous and anisotropic material behavior can be found in the literature, and, in general, the derived
formulas are given in an abstract form. In this work, we derive the topological derivative in its closed
form for the total potential energy associated to an anisotropic and heterogeneous heat diffusion problem,
when a small circular inclusion of the same nature of the bulkphase is introduced at an arbitrary point of
the domain. In addition, we provide a full mathematical justification for the derived formula and develop
precise estimates for the remainders of the topological asymptotic expansion. Finally, the influence of
the heterogeneity and anisotropy are shown through some numerical examples of heat conductor topology
optimization.

1. Introduction

The topological derivative measures the sensitivity of a given shape functional with respect to an
infinitesimal singular domain perturbation, such as the insertion of holes, inclusions, source-terms or
even cracks [8]. The topological derivative was rigorouslyintroduced by [18]. Since then, this concept
has proved to be extremely useful in the treatment of a wide range of problems, for instance, topology
optimization [6, 16], inverse analysis [5, 13] and image processing [12, 14], and has became a subject
of intensive research. See, for instance, applications of the topological derivative in the multi-scale
constitutive modeling context [4, 9] and fracture mechanics sensitivity analysis [11]. Concerning the
theoretical development of the topological asymptotic analysis, the reader may refer to the papers by [2]
and [15], for instance.

In order to introduce these concepts, let us consider a bounded domainΩ ⊂ R2, which is subject to a
nonsmooth perturbation confined in a small ballBε(x̂) of sizeε and center at ˆx, as shown in Fig. 1. We
introduce a characteristic functionx 7→ χΩ(x), x ∈ R2, associated to the unperturbed domain, given by

χΩ(x) :=

{
1 if x ∈ Ω
0 if x < Ω

. (1)

Then, we define a characteristic function associated to the topologically perturbed domain of the form
x 7→ χΩε(x̂), x ∈ R2. In the case of a perforation, for instance,χΩε(x̂) := χε(x̂) = χΩ − χBε(x̂) and the

perforated domain is obtained asΩε(x̂) = Ω \ Bε(x̂). Then, we assume that a given shape functional
ψ(χε(x̂)), associated to the topologically perturbed domain, admits the following topological asymptotic
expansion

ψ(χε(x̂)) = ψ(χΩ) + f (ε)DTψ(x̂) + o( f (ε)) , (2)

whereψ(χΩ) is the shape functional associated to the original (unperturbed) domain andf (ε) is a positive
function such thatf (ε)→ 0, whenε→ 0. The function ˆx 7→ DTψ(x̂) is called the topological derivative
of ψ at x̂. Therefore, this derivative can be seen as a first order correction of ψ(χΩ) to approximate
ψ(χε(x̂)). In fact, after rearranging (2) we have

ψ(χε(x̂)) − ψ(χΩ)
f (ε)

= DTψ(x̂) +
o( f (ε))

f (ε)
. (3)
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The limit passageε→ 0 in the above expression leads to

DTψ(x̂) = lim
ε→0

ψ(χε(x̂)) − ψ(χΩ)
f (ε)

. (4)

Since we are dealing with singular domain perturbations, the shape functionalsψ(χε(x̂)) andψ(χΩ) are
associated to topologically different domains. Therefore, the above limit is not trivial to calculate. In
particular, we need to perform an asymptotic analysis of theshape functionalψ(χε(x̂)) with respect to
the small parameterε.

Figure 1. Topological derivative concept.

According to the literature, the topological derivative has been fully developed for a wide range of
physical phenomenon modeled by partial differential equations, considering homogeneous and isotropic
constitutive behavior. In fact, only a few works dealing with heterogeneous and anisotropic material
behavior can be found in the literature, and, in general, thederived formulas are given in an abstract form
(see, for instance, [7]). In particular, the topological sensitivity associated to the nucleation of a hole
in a domain characterized by an orthotropic and homogeneousheat diffusion problem was calculated
by [18]. In order to simplify the analysis, the domain was perturbed by introducing an elliptical hole
oriented in the directions of the orthotropy and with semi-axis proportional to the material properties
coefficients in each orthogonal direction. More recently in [10],the previous result was extended by
considering as topological perturbation a small circular inclusion of the same nature as the bulk material,
instead of an elliptical hole. In this work, we derive the topological derivative in its closed form for
the total potential energy associated to an anisotropic andheterogeneous heat diffusion problem, when
a small circular inclusion of the same nature of the bulk phase is introduced at an arbitrary point of the
domain. In addition, we provide a full mathematical justification for the derived formula and develop
precise estimates for the remainders of the topological asymptotic expansion. Finally, the influence of the
heterogeneity and anisotropy are shown through some numerical examples of heat conductor topology
optimization. We note that this result can be applied in technological research areas such as topology
design of piezoresistive membranes. In fact, under a deformation process, the constitutive properties of
such membranes change according to the stress state. Hence,their material properties become highly
anisotropic and heterogeneous.

This paper is organized as follows. Section 2 describes the model associated to an anisotropic and
heterogeneous heat diffusion problem. In Section 3, we present the main result of thepaper: a closed
formula for the topological derivative. In Section 4 is presented a numerical experiment showing the
influence of the conductivity tensor in the optimal design ofheat conductor. The paper ends in Section 5
where concluding remarks are presented.

2. Formulation of the problem

As mentioned in the previous section, the topological asymptotic analysis of the total potential energy
associated to an anisotropic and heterogeneous heat diffusion problem is calculated. Thus, the unper-
turbed shape functional is defined as:

ψ(χΩ) := JχΩ(θ) =
1
2

∫

Ω

K∇θ · ∇θ +
∫

ΓN

q̄θ , (5)
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whereK = K(x) is a symmetric second order conductivity tensor andθ is solution of the following
variational problem: find the fieldθ ∈ U, such that

∫

Ω

K∇θ · ∇η +
∫

ΓN

q̄η = 0 ∀η ∈ V . (6)

In the variational problem (6) the setU of admissible functions and the spaceV of admissible variations
are given by

U :=
{
φ ∈ H1(Ω) : φ|ΓD = θ̄

}
and V :=

{
φ ∈ H1(Ω) : φ|ΓD = 0

}
. (7)

In addition,∂Ω = ΓN ∪ ΓD with ΓN ∩ ΓD = ∅, whereΓN andΓD are Neumann and Dirichlet boundaries,
respectively. Thus,̄θ is a Dirichlet data onΓD andq̄ is a Neumann data onΓN, both assumed to be smooth
enough, see Fig. 2.

Figure 2. Formulation of the problem.

In our particular case, we consider a perturbation on the domain given by the nucleation of a small
circular inclusion with conductivityγK, where the parameterγ ∈ [0,∞) represents the contrast in the
material property. Taking into account the definition of thecharacteristic function associated to the
perturbed domainχε(x̂) = χΩ − (1− γ)χBε(x̂), the perturbed shape functional can be written as:

ψ(χε(x̂)) := Jχε(θε) =
1
2

∫

Ω

γεK∇θε · ∇θε +
∫

ΓN

q̄θε , (8)

where parameterγε is defined as

γε :=

{
1 in Ω \ Bε
γ in Bε

. (9)

In addition, in (8) the functionθε is the solution of the following variational problem: find the field
θε ∈ Uε, such that ∫

Ω

γεK∇θε · ∇η +
∫

ΓN

q̄η = 0 ∀η ∈ Vε , (10)

and the setUε and the spaceVε are defined as

Uε := {φ ∈ U : ~φ� = 0 on∂Bε} and Vε := {φ ∈ V : ~φ� = 0 on∂Bε} , (11)

where we use~(·)� to denotes thejump of function (·) across the boundary∂Bε. Note that the domain
Ω is topologically perturbed by the introduction of an inclusion Bε(x̂) of the same nature as the bulk
material, but with contrastγ. Finally, the Euler-Lagrange equation associated to the variational problem
(10) reads: find fieldθε, such that



div (γεK∇θε) = 0 in Ω

θε = θ̄ on ΓD

−K∇θε · n = q̄ on ΓN

~θε� = 0 on ∂Bε
~γεK∇θε� · n = 0 on ∂Bε

. (12)
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3. Topological derivative

In this Section we present the main result of this work: a closed formula for the topological deriva-
tive of the total potential energy associated to an anisotropic and heterogeneous heat diffusion problem.
Tacking into account the problems defined over the original and perturbed domains, we can choose an
admissible test functionη = θε − θ. Then the state equations, given by (6) and (10), can be respectively
written as ∫

Ω

K∇θ · ∇(θε − θ) +
∫

ΓN

q̄(θε − θ) = 0, (13)

∫

Ω

γεK∇θε · ∇(θε − θ) +
∫

ΓN

q̄(θε − θ) = 0. (14)

After rearranging the above expressions, we obtain
∫

Ω

K∇θ · ∇θ =
∫

Ω

K∇θε · ∇θ +
∫

ΓN

q̄(θε − θ), (15)

∫

Ω

γεK∇θε · ∇θε =
∫

Ω

γεK∇θε · ∇θ −
∫

ΓN

q̄(θε − θ). (16)

Introducing the above expressions in the definition of the shape functionalsψ(χΩ) andψ(χε(x̂)), we
have that the total potential energy associated to both problems can be written alternatively as

ψ(χΩ) =
1
2

∫

Ω

K∇θε · ∇θ +
1
2

∫

ΓN

q̄(θε + θ), (17)

ψ(χε(x̂)) =
1
2

∫

Ω

γεK∇θε · ∇θ +
1
2

∫

ΓN

q̄(θε + θ). (18)

With the above results in hand, the difference of the shape functionals associated to the unperturbed
and perturbed problems reads

ψ(χε(x̂)) − ψ(χΩ) =
1
2

∫

Ω

γεK∇θε · ∇θ −
1
2

∫

Ω

K∇θε · ∇θ. (19)

Next, by considering the definition of the contrastγε in the previous results, we have that the difference
of the total potential energy is given by an integral concentrated in the inclusionBε, namely

ψ(χε(x̂)) − ψ(χΩ) = −1
2

(1− γ)
∫

Bε
K∇θε · ∇θ. (20)

Let us assume that the conductivity tensorK(x) is smooth enough such that it admits an expansion in
Taylor series around the point ˆx of the formK(x) = K(x̂) + ∇K(ζ)(x − x̂), whereζ ∈ (x, x̂). In order to
analytically solve the above integral, we introduce the following ansatz for the solution associated to the
perturbed problemθε:

θε(x) = θ(x) + wε(x) + θ̃ε(x), (21)

where the functionwε is the solution of the following exterior problem


div (γεK(x̂)∇wε) = 0 in R
2

wε → 0 at ∞
~wε� = 0 on ∂Bε

~γεK(x̂)∇wε� · n = (1− γ) K(x̂)∇θ(x̂) · n on ∂Bε

, (22)

and the remainder̃θε must satisfy the following equations:


div(γεK∇θ̃ε) = div(γε∇K(ζ)(x− x̂)∇wε) in Ω

θ̃ε = −wε on ΓD

K∇θ̃ε · n = K∇wε · n on ΓN

~̃θε� = 0 on ∂Bε
~γεK∇θ̃ε� · n = −ε~γε (∇K (ζ) n) (∇θ(x̂) + ∇wε)� · n on ∂Bε

, (23)
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which yields the following estimate‖̃θε‖H1(Ω) ≤ Cε2, with the constantC independent ofε (see A).
Then, by introducing the first order Pólya-Szegö polarization tensorP [1, 17], the solution of the exterior
problem (22) can be written as:

wε(x)|
R2\Bε(x̂) =

ε2

‖x− x̂‖2
P∇θ(x̂) · (x− x̂) , (24)

wε(x)|Bε(x̂) = P∇θ(x̂) · (x− x̂) . (25)

Taking into account (21), the difference between the shape functionals (20) reads

ψ(χε(x̂)) − ψ(χΩ) = −1
2

(1− γ)
∫

Bε
K(∇θ + ∇wε) · ∇θ + E(ε), (26)

where the termE(ε) is given by

E(ε) = −1
2

(1− γ)
∫

Bε
K∇θ̃ε · ∇θ, (27)

which has the following estimateE(ε) = o(ε2) as shown in the A. Next, by using the interior elliptic
regularity of the functionθ in Bε, the difference of the shape functionals (26) satisfies the following
identity:

ψ(χε(x̂)) − ψ(χΩ) = −1
2

(1− γ)
∫

Bε
K(x̂) (∇θ(x̂) + ∇wε) · ∇θ(x̂) + o(ε2), (28)

where the expansion of the tensorK(x) has been used again.
With the results (21), (24) and (25) in hand, the above expression can be analytically solved, leading

to
ψ(χε(x̂)) − ψ(χΩ) = πε2R⊤TR∇θ(x̂) · ∇θ(x̂) + o(ε2), (29)

whereR is the rotation matrix that diagonalizes the conductivity tensorK at the point ˆx, the matrixT is
given by

T = −
√

det(̃K(x̂))K̃(x̂)S(x̂), (30)

with K̃(x̂) the diagonalized conductivity tensor at the point ˆx, with eigenvaluesk1 andk2, and the matrix
S(x̂) depending on the coefficientsα = 1/

√
k1 andβ = 1/

√
k2, that is

S(x̂) =
1
2

(1− γ)αβ


α+β

α+γβ
0

0 α+β

β+γα

 . (31)

Finally, using the definition for the topological derivative (4) and takingf (ε) = |Bε| = πε2, the
topological derivative for the problem under consideration is given explicitly by

DTψ(x̂) = R⊤TR∇θ(x̂) · ∇θ(x̂) ∀x̂ ∈ Ω. (32)

Note that in the topological derivative formula, the constitutive properties and the gradient of the
field θ are evaluated at an arbitrary point ˆx of the original domain. This means that in order to evaluate
the topological derivative (32), we need to solve the unperturbed anisotropic and heterogeneous heat
diffusion problem (6) and determine the bases (eigenvectors) inwhich the conductivity tensor is diagonal.
In others words, the rotation matrixR and eigenvaluesk1 andk2 should be determined for each point of
the domain.

Remark 3.1. From the final expression for the topological derivative associated to the anisotropic and
heterogeneous heat diffusion problem (32), we can analyze the limits cases of the parameterγ, which
are:

• ideal thermal insulator (γ → 0):

S(x̂) =
1
2
αβ


α+β

α
0

0 α+β

β

 ∀x̂ ∈ Ω , (33)
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• ideal thermal conductor (γ → ∞):

S(x̂) = −1
2
αβ


α+β

β
0

0 α+β

α

 ∀x̂ ∈ Ω . (34)

Remark 3.2. It is interesting to observe that for an homogeneous orthotropic or isotropic material
behavior, we have R= I. In addition, in the second case we have k1 = k2 = k. Then, the final expressions
for the topological derivative (32) degenerates to:

• orthotropic material behavior[10]:

DTψ(x̂) = −
√

det(̃K)K̃S∇θ(x̂) · ∇θ(x̂) ∀x̂ ∈ Ω , (35)

• isotropic material behavior[2]:

DTψ(x̂) = −k
1− γ
1+ γ

∇θ(x̂) · ∇θ(x̂) ∀x̂ ∈ Ω . (36)

4. Numerical example

To illustrate the applicability of expression (32) in the context of topology optimization, in this section
we present an example considering different heterogeneous and anisotropic conductivity tensorsK(x).
To this end we use the topology optimization algorithm proposed by [3]. In this example we consider a
square domainΩ = (0, 1.0) × (0, 1.0), subjected to Neumann data ¯q = 1.0 onΓN1 andΓN2 and homoge-
neous Dirichlet data onΓD1 andΓD2. The remainder parts of the boundary remain isolated. The domain
and boundary conditions for this example are shown in Fig. 3,wherea = 0.2. The volume constraint is
chosen to be 80% of the initial volume.

Figure 3. Domain of the numerical example.

In this example, we explore the influence of the heterogeneity and anisotropy of the conductivity
tensorK(x) in the numerical results. We also present the obtained results for the homogeneous case. The
conductivity matrixK(x) is constructed as:

K(x) = Ki p j(x) with i ∈ [a, b, c] and j ∈ [a, b, c, d] , (37)
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whereKi is a constant matrix andpi(x) are smooth functions that depend on the coordinate system
x = (x1, x2). In particular, four different functionspi(x) are introduced, see Fig. 4, which are:

pa(x1, x2) =
1
2

(x1 + x2) + 1; (38)

pb(x1, x2) =
1
2

(
x2

1 + x2
2

)
+ 1; (39)

pc(x1, x2) =
1
2

cos(10x1) cos(20x2) +
3
2

; (40)

pd(x1, x2) =
1
2

cos(2x1) sin(10x2) +
3
2
. (41)

The constant matrixesKi used in the numerical experiments are given by

Ka =

[
1.0 0.5
0.5 1.0

]
; Kb =

[
1.0 0.5
0.5 2.0

]
; Kc =

[
1.0 0.5
0.5 3.0

]
, (42)

and the parameterγ is fixed as 0.001.

(a) pa(x1, x2). (b) pb(x1, x2).

(c) pc(x1, x2). (d) pd(x1, x2).

Figure 4. Non-homogeneity profilepi(x).

In Figs. 5 to 9 we show the obtained topologies for the homogeneous and nonhomogeneous anisotropic
material properties previously presented. According to Fig. 5, the results for the homogeneous case are
qualitatively similar between them. This seems to indicatethat the given anisotropy in the conductivity
tensor does not affect the optimal topology, at least for this benchmark example. However, in the other
cases the optimal topologies are strongly dependent on the heterogeneity profilespi(x). In fact, in some
of the obtained results, the topologies change drasticallywhen the anisotropy of the tensorK becomes
stronger, as can be seen in Figs. 6 – 9.
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(a) Conductivity tensorKa. (b) Conductivity tensorKb. (c) Conductivity tensorKc.

Figure 5. Optimized topologies for anisotropic homogeneous case.

(a) Conductivity tensorKa. (b) Conductivity tensorKb. (c) Conductivity tensorKc.

Figure 6. Optimized topologies for anisotropic nonhomogeneous casepa(x1, x2).

(a) Conductivity tensorKa. (b) Conductivity tensorKb. (c) Conductivity tensorKc.

Figure 7. Optimized topologies for anisotropic nonhomogeneous casepb(x1, x2).

(a) Conductivity tensorKa. (b) Conductivity tensorKb. (c) Conductivity tensorKc.

Figure 8. Optimized topologies for anisotropic nonhomogeneous casepc(x1, x2).
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(a) Conductivity tensorKa. (b) Conductivity tensorKb. (c) Conductivity tensorKc.

Figure 9. Optimized topologies for anisotropic nonhomogeneous casepd(x1, x2).

5. Final remarks

An analytical expression for the topological derivative ofthe total potential energy associated to an
anisotropic and heterogeneous heat diffusion problem, when a circular inclusion of the same nature as the
bulk material is introduced at an arbitrary point of the domain, has been derived. From the asymptotic
analysis, it was proved that the heterogeneous behavior of the material properties does not contribute
to the first order topological derivative. The final formula is a general simple analytical expression in
terms of the solution of the state equation and the constitutive parameters evaluated at each point of the
unperturbed domain. In fact, from the obtained result, the classical expression for the topological deriv-
ative for orthotropic and isotropic constitutive properties has been derived as particular cases. Finally,
we remark that this information can be potentially used, as shown in the numerical example, in a num-
ber of applications of practical interest such as, for instance, inverse problem, image restoration, design
and optimization of mechanical, thermal or electronic devices designed to achieve a specified behavior.
In particular, the constitutive behavior of piezoresistive membranes, under a deformation process, be-
comes highly anisotropic and heterogeneous. Therefore, the obtained result can be directly applied in
the topology design of such membranes.
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Appendix A. Estimation of the remainders

In this section we proceed with the estimation of the remainders in the topological asymptotic ex-
pansion used in the derivation of the topological derivative expression (32) presented in Section 3. In
particular, we study the asymptotic behavior of the remainder θ̃ε in (23) and the residueE(ε) defined in
(27). Let us start introducing the following auxiliary functions:

Definition 1. Let wε and θ be solutions to (22) and (6), respectively. Then, we introduce the following
functions independent of the small parameterε:

g1 = (1− γ)(∇K(ζ)n)∇θ(x̂) · n on ∂Bε, ∀ζ ∈ (x, x̂), (43)

g2 = −ε−2K(x̂)∇wε(x) · n on ΓN, (44)

g3 = −ε−2wε on ΓD, (45)

g4 = ε−2γε∇K(ζ)(x− x̂)∇wε in Ω, ∀ζ ∈ (x, x̂), (46)

g5 = ε−2∇K(ζ)(x− x̂)∇wε · n on ΓD. (47)
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Lemma 1. Let us consider the functions gi , for i = 1, ..., 5, given in Definition 1 and let̃θε be a solution
to (23) or equivalently a solution to the following variational problem: Find̃θε ∈ Ũε, such that

∫

Ω

γεK∇θ̃ε · ∇η = −ε2
∫

Ω

g4 · ∇η + ε2
∫

ΓN

g2η + ε

∫

∂Bε
g1η ∀η ∈ Ṽε , (48)

where the set̃Uε and the spacẽVε are defined as

Ũε :=
{
φ ∈ H1(Ω) : ~φ� = 0 on∂Bε, φ = ε

2g3 onΓD

}
, (49)

Ṽε :=
{
φ ∈ H1(Ω) : ~φ� = 0 on∂Bε, φ = 0 onΓD

}
. (50)

Then, for the tensor K smooth enough, we have the following estimate for the solution to (48):

‖̃θε‖H1(Ω) ≤ Cε2, (51)

with constant C independent ofε.

Proof. By takingη = θ̃ε − ϕε in (48), whereϕε is the lifting of the Dirichlet boundary dataε2g3 onΓD,
and after performing an integration by parts, we have

∫

Ω

γεK∇θ̃ε · ∇θ̃ε = −ε2
∫

Ω

g4 · ∇θ̃ε + ε2
∫

ΓN

g2̃θε + ε

∫

∂Bε
g1̃θε

+ε2
∫

ΓD

(K∇θ̃ε · n)g3 + ε
2
∫

ΓD

g5̃θε, (52)

where we have considered the restriction of the functionθ̃ε on the boundaryΓD. From the Cauchy-
Schwarz inequality we obtain

∫

Ω

γεK∇θ̃ε · ∇θ̃ε ≤ ε2‖g4‖L2(Ω)‖∇θ̃ε‖L2(Ω) + ε
2‖g2‖H−1/2(ΓN)‖̃θε‖H1/2(ΓN)

+ ε‖g1‖H−1/2(∂Bε)‖̃θε‖H1/2(∂Bε) + ε
2‖g3‖H1/2(ΓD)‖K∇θ̃ε · n‖H−1/2(ΓD)

+ ε2‖g5‖H−1/2(ΓD)‖̃θε‖H1/2(ΓD). (53)

Taking into account the trace theorem, we have
∫

Ω

γεK∇θ̃ε · ∇θ̃ε ≤ ε2C1‖̃θε‖H1(Ω) + ε
2C2‖̃θε‖H1(Ω) + ε‖g1‖L2(Bε)‖̃θε‖H1(Bε)

+ ε2C3‖̃θε‖H1(Ω) + ε
2C4‖̃θε‖H1(Ω),

≤ ε2C1‖̃θε‖H1(Ω) + ε
2C2‖̃θε‖H1(Ω) + ε

2C5‖̃θε‖H1(Bε)

+ ε2C3‖̃θε‖H1(Ω) + ε
2C4‖̃θε‖H1(Ω),

≤ ε2C6‖̃θε‖H1(Ω), (54)

where we have used the interior elliptic regularity of the function θ and the regularity of the tensorK.
Next, from coercivity of the bilinear form on the left-hand side of (48), we have

∫

Ω

γεK∇θ̃ε · ∇θ̃ε ≥ c‖̃θε‖2H1(Ω). (55)

Finally, from (54) and (55), we obtain

‖̃θε‖H1(Ω) ≤ Cε2, (56)

which leads to the result, withC = C6/c independent ofε. �

Lemma 2. Let θ̃ε andθ be solutions to (23) and (6), respectively. Then, we have thefollowing estimate
for the remainderE(ε) in (27):

1
2

(1− γ)
∫

Bε
K∇θ̃ε(x) · ∇θ = o(ε2). (57)



11

Proof. From the Cauchy-Schwarz inequality we obtain

E(ε) = −1
2

(1− γ)
∫

Bε
K∇θ̃ε(x) · ∇θ

≤ C1‖∇θ‖L2(Bε)‖∇θ̃ε‖L2(Bε)

≤ εC2‖∇θ̃ε‖L2(Bε)

≤ εC3‖∇θ̃ε‖L2(Ω)

≤ εC4‖̃θε‖H1(Ω) (58)

where we have used the interior elliptic regularity of the functionθ. Next, by taking into account Lemma
1, we have

E(ε) ≤ ε3C , (59)
which leads to the result. �
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