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Abstract. An algorithm for topology optimization of elastic structures under plane stress subject to
the Drucker-Prager stress constraint is presented. The algorithm is based on the use of the topological
derivative of the associated objective functional in conjuntion with a level-set representation of the struc-
ture domain. In this context, a penalty functional is proposed to enforce the point-wise stress constraint
and its topological derivative is derived in detail. The resulting algorithm is of simple implementation
and does not require post-processing procedures of any kind. Its effectiveness and efficiency are demon-
strated by means of numerical examples. The examples show, in particular, that the algorithm can
easily handle structural optimization problems with underlying materials featuring strong asymmetry

in their tensile and compressive yield strengths.

1. Introduction

Over the last two decades or so, the development of algorithms for topology optimization of linear
elastic load-bearing structures has attracted considerable attention in computational mechanics circles.
As a result of the continuous research efforts in this direction a wide body of literature is currently
available on this topic and various computational procedures are well established and can be applied to
a range of practical problems of industrial interest [16, 1, 10]. Many such procedures, almost invariably
used in conjunction with finite element methods of structural analysis, are even available in off-the-shelf
commercial software packages (e.g. Altair® OptiStruct® [27] and Genesis® [19])

To date, most developments in this field have relied on so-called SIMP methods (solid isotropic material
with penalization), where the physical black-and-white topology of the optimal structure, i.e. a topology
make-up consisting of either material (black) or empty space (white) at each point of the computational
domain, is approximated by means of a ficticious density field displaying a smooth (grey) transition in
the otherwise black-white interface (the boundary of the structure domain). Such methods have been
widely applied with success to problems such as compliance minimization [10] but, despite its fundamental
importance in engineering design, only a relatively small number of publications appear to deal with the
incorporation of local (point-wise) stress constraints [2, 3, 11, 14, 18, 22, 28]. This can be probably
justified by the challenges resulting from the typically very large number of highly non-linear constraints
involved as well as by the need for carefully designed stress relaxation procedures to address a side effect
of the regularization of the original black-and-white problem [22].

More recently, a new class of methodologies for structural topology optimization has emerged based on
the use of the topological derivative of the relevant objective functionals [30, 12, 25, 5, 24, 26]. The notion
of topological derivative itself is a relatively new concept, introduced by Sokolowski & Zochowski [30] just
over a decade ago. Further theoretical developments are reported, among others, in [23, 4, 29]. An early
application of this idea to topology compliance optimization, prior to its precise mathematical definition in
a general context, is described in [17]. The topological derivative concept extends the conventional notion
of derivative to functionals whose variable is a geometrical domain subject to singular topology changes.
In structural topology optimization for instance, it gives the exact sensitivity of the associated objective
functionals to black-and-white-type topological perturbations such as the insertion of infinitesinal holes
or inclusions of different material properties. Crucial here is the fact that the topological derivative of
the objective functional contains fundamental information that accurately indicates descent directions
associated with exact black-and-white-type topology changes, without the need for black-grey-white-
type regularisation procedures. In this context, a topological derivative-based algorithm with a level-set
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representation of the structure domain has been proposed in [5] and shown to efficiently solve compliance
minimization problems. More recently, following the ideas presented in [6] for the Laplace equation,
this algorithm has been further developed in [8] to incorporate local stress constraints of the von Mises
type by means of a penalty approach in plane stress problems. One striking feature of the algorithm of
[8] is its simplicity of implementation. In particular, the treatment of the point-wise stress constraint
is straightforward once a suitable penalized objective functional has been defined and a closed formula
for its topological derivative obtained. It does not require post-processing (e.g. procedures such as
density filtering, ε-relaxation [22]) of any kind and only a minimal number of user-defined algorithmic
parameters (e.g. penalty coefficient) are needed. This relative algorithmic simplicity is nothing but a
natural consequence of the use of the topological derivative in defining the descent direction, which is
based on the exact black-and-white definition of the topology optimization problem. In fairness to other
methods of topology optimization, however, we should note that the striking algorithmic simplicity here
comes at the expense of the derivation of a closed formula for the topological derivative of the objective
functional which may prove to be a laborious mathematical task.

Our main purpose in this paper is to extend the work reported in [8] to incorporate point-wise stress
constraints of the Drucker-Prager type [15]. In this context, a penalty functional for the enforcement of
the Drucker-Prager constraint is proposed and a closed formula for its topological derivative is obtained.
We recall that the Drucker-Prager yield criterion was originally conceived as a smooth approximation to
the classical Mohr-Coulomb criterion for soils and geomaterials (refer for instance to [13]). Under plane
stress (the case considered here) it may be used as a general model for materials with distinct tensile and
compressive yield strengths, such as concrete, masonry and wood. The overall optimization algorithm is
described in detail and numerical examples are presented to demonstrate its effectiveness and efficiency
in the treatment of structural optimization under the present stress constraints. In particular, unlike
stress-unconstrained optimization, the results here show that the obtained optimized structures are free
from geometrical singularities that result in (highly undesirable) stress concentration.

The paper is organized as follows. Section 2 states the stress-constrained topology optimization prob-
lem and defines the penalized version to be solved by the algorithm. Section 3 presents a closed formula
for the topological derivative of the corresponding penalized objective functional. The optimization al-
gorithm is described in Section 4 and its application in numerical examples is presented in Section 5.
Concluding remarks are drawn in Section 6. The closed formula presented in Section 3 for the topological
derivative of the proposed Drucker-Prager penalty functional is derived in detail in A.

2. Problem statement

Our purpose here is to find optimal topologies for two-dimensional elastic structures under plane stress
condition loaded by a given system of mechanical loads with prescribed kinematical boundary conditions
and subject to a point-wise constraint on the stress tensor. More specifically, we want to minimize
the volume of the structure domain requiring at the same time the stress tensor at each point of the
loaded optimized structure to be bound by a Drucker-Prager-type yield criterion. The corresponding
optimization problem is mathematically stated in the following.

2.1. The constrained optimization problem. Let D ⊂ R
2 be a bounded domain with Lipschitz

boundary Γ defining the so-called hold-all domain (refer to Fig. 1). The domain of the sought optimal
structure will be a subset of the hold-all domain. The boundary Γ is the union of three given non-
overlapping subsets, ΓD, ΓN and Γ0. Displacements are prescribed on ΓD and non-zero and zero boundary
tractions are prescribed respectively on ΓN and Γ0.

Given a hold-all domain D, the optimisation problem consists in finding a subdomain Ω ⊂ D (the
optimal structure domain) that solves the following constrained minimization problem:

Minimize
Ω⊂D

IΩ(uΩ), (2.1)

with IΩ the objective functional

IΩ(uΩ) := |Ω|+ βKΩ(uΩ); KΩ(uΩ) :=

∫

ΓN

g · uΩ ds, (2.2)
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subject to the elastic equilibrium equations,




divΣ(uΩ) = 0 in D

uΩ = 0 on ΓD

Σ(uΩ)n = g on ΓN

Σ(uΩ)n = 0 on Γ0,

(2.3)

and a point-wise Drucker-Prager constraint on the stress tensor Σ:

ΣM (uΩ) + η trΣ(uΩ) ≤ σ⋆ a.e. in Ω ∩ D̃, (2.4)

where D̃ is a given open subset of D defining the region where this constraint is enforced and ΣM is the
von Mises effective stress:

ΣM =
√

3
2Σd · Σd, (2.5)

with Σd the stress deviator. The given constants η and σ⋆ in (2.4) are the Drucker-Prager yield criterion
parameters [15, 13] associated, respectively, with the Drucker-Prager cone angle and cohesion intersect.
In (2.2,2.3), g is the prescribed boundary traction on the given portion ΓN of the boundary and is assumed
to belong to L2(ΓN )2, n in (2.3) is the outward unit normal vector field on Γ and uΩ is the displacement
field that solves the elastic equilibrium equations. The objective functional defined in (2.2) is well-suited
for the minimization of the volume |Ω| of the structure subject to a point-wise stress constraint and has
been used in [8] in conjunction with a von Mises stress constraint. The parameter β > 0 multiplying the
compliance integral on the right hand side of (2.2) regularises the stress-constrained volume minimization
problem which is otherwise ill-posed.

The subscript Ω is used here to emphasise that the relevant quantities (e.g. IΩ, uΩ) depend on the
domain Ω – the design variable of problem (2.1). Throughout the paper, we assume (2.3) to hold in the
weak sense and its solution,

uΩ ∈ V = {u ∈ H1(D)2, u|ΓD
= 0}, (2.6)

to be unique. The space V is the corresponding space of kinematicaly admissible displacement fields. The
notation Σ(uΩ) is used to express the stress tensor as a functional of the displacement field uΩ through
the linear elastic constitutive equation:

Σ(u) = Ce(u), (2.7)

where e is the infinitesimal strain tensor,

e(u) = 1
2 (∇u+∇uT ), (2.8)

and

C = 2µII + λ(I ⊗ I), (2.9)

with µ and λ denoting the Lamé coefficients and II and I the fourth- and second-order identity tensors
respectively. The statement of the minimization problem is completed with the definition of a piece-wise
constant Young’s modulus field over D as follows:

EΩ =

{
Ehard in Ω
Esoft in D \ Ω,

(2.10)

with

Esoft ≪ Ehard. (2.11)

That is, the original optimization problem, where the structure itself consists of the domain Ω of given
elastic properties and the remaining part D\Ω of the hold-all is empty (has no material), is approximated
by means of the two-phase material distribution (2.10) over D where the empty region D \Ω is occupied
by a material (the soft phase) with Young’s modulus, Esoft, much lower than the given Young’s modulus
Ehard of the structure material (the hard phase). Both phases share the same Poisson’s ratio ν. The
corresponding Lamé coefficients under plane stress read

µΩ =
EΩ

2(1 + ν)
, and λΩ =

νEΩ

1− ν2
. (2.12)
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Figure 1. Sketch of the hold-all domain.

2.2. The penalized optimization problem . The presence of the point-wise stress constraint (2.4)
makes it difficult to treat the above constrained optimization problem directly. This issue has been re-
cently discussed in some detail by Le et al. [22] in the context of SIMP methods for structural optimization
[10]. To tackle the problem here we follow a radically different approach proposed in [8]. It relies on a
topological derivative-based algorithm in conjunction with an approximation of the original constrained
problem by means of a penalty regularization of the point-wise stress constraint. The penalized problem
is obtained in the following.

Before defining the corresponding penalty functional it is convenient in the present case to re-phrase
the stress constraint (2.4) in terms of normalized quantities. To this end we define the normalized stress
tensor :

σ := Σ/EΩ, (2.13)

and the normalized cohesion intersect-related parameter of the Drucker-Prager yield surface:

σ := σ⋆/EΩ. (2.14)

Then, by squaring both sides of (2.4) and making use of the above definitions, we obtain after a straightfor-
ward manipulation an equivalent statement of the Drucker-Prager stress constraint in terms of normalized
stresses:

Υ(σ(u)) :=
1

2
B̃σ(u) · σ(u) + 2ησ trσ(u) ≤ σ2, (2.15)

where

B̃ = 3II − (1 + 2η2)I ⊗ I. (2.16)

Alternatively, by taking the elastic law (2.7,2.9) into account, (2.15) can be expressed as

1

2
Bσ(u) · e(u) + ξtre(u) ≤ σ2, (2.17)

where

B = 6µII + λ(1 − 4η2)(I ⊗ I)− 2µ(1 + 2η2)(I ⊗ I) (2.18)

and

ξ = 4(µ+ λ)ησ. (2.19)

With the above at hand, we now proceed to define the penalized objective function. Then, let Φ : R+ →
R+ be a nondecreasing function of class C2. To allow a proper justification in the subsequent analysis,
we further assume that the derivatives Φ′ and Φ′′ are bounded. The penalty functional is defined as

JΩ(u) =

∫

D̃

EΩΦ(Υ(σ(u)))dx. (2.20)
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With the above penalty function, we define a corresponding penalized objective functional as

IαΩ(u) = IΩ(u) + αJΩ(u), (2.21)

where the scalar α > 0 is a given penalty coefficient . The original constrained optimization problem
(2.1)-(2.4) with point-wise constraints can then be approximated by the following penalized optimization
problem:

Minimize
Ω⊂D

IαΩ(uΩ) subject to (2.3). (2.22)

Problem (2.22) provides a good approximation to (2.1)-(2.4) so long as

(a) the penalty coefficient α is sufficiently large; and
(b) a function Φ is chosen such that Φ′ varies sufficiently sharply around Υ(σ(u)) = σ2.

In particular, in the present paper we shall adopt a function Φ of the following functional format:

Φ(t) ≡ Φp(t), (2.23)

where p ≥ 1 is a given real parameter and Φp : R+ → R+ is defined as

Φp(t) =
[
1 +

(
t
σ2

)p]1/p
− 1. (2.24)

With this choice, the penalized problem (2.22) to be solved here reads explicitly

Minimize
Ω⊂D

IαΩ(uΩ) = |Ω|+ β

∫

ΓN

g · uΩ ds+ α

∫

D̃

EΩΦp(Υ(σ(uΩ))) dx subject to (2.3). (2.25)

Remark 1. Figure 2 shows the graph of function Φp for different values of p. Note that increasing values
of p make Φp vary more sharply around Φp(Υ(σ(u))) = 1, i.e. around Υ(σ(u)) = σ2 (the Drucker-Prager
cone in stress space) so that the requirement of item (b) above is met by this choice of Φp if p is sufficiently
large. For increasing values of p and α, the penalizing term of (2.25) tends to an exact penalty functional,

whose value is zero if the stress tensor is bound by the Drucker-Prager cone almost everywhere in D̃ and
∞ otherwise.
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Figure 2. Function Φp with σ = 1 for p = 2n, n = 0, ..., 6.
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3. Topological derivatives

The unconstrained minimization problem (2.25) will be solved in this paper by the algorithm described
in Section 4, which relies fundamentally on the concept of topological derivative. This section provides
a closed formula for the topological derivative of the penalized objective functional of (2.25) to be used
in the algorithm. Before presenting the closed formula itself, a brief discussion on the relatively recent
concept of topological derivative appears to be convenient and should be helpful to those not yet familiar
with the idea.

3.1. The topological derivative concept. The notion of topological derivative was introduced by
Sokolowski & Zochowski [30]. It extends the conventional definition of derivative to functionals whose
variable is a geometrical domain subjected to singular topology changes. The idea can be introduced by
considering a generic functional G(Ω) of a given domain Ω and assuming that Ω is subject to topology
changes consisting, say, of the introduction of a circular hole of radius ε centered at an arbitrary point
x̂ ∈ Ω. The topologically changed domain, denoted Ωε(x̂), is the set defined as (refer to Fig. 3)

Ωε(x̂) = Ω \Bε(x̂), (3.1)

where Bε(x̂) denotes the closure of the domain of the inserted hole. The topological derivative of the
functional G exists if its value G(Ωε) for the topologically perturbed domain Ωε can be expressed as a
sum

G(Ωε(x̂)) = G(Ω) + f(ε)DTG(x̂) + o(f(ε)), (3.2)

of the functional G(Ω) evaluated for the original domain Ω, a term f(ε)DTG(x̂) that varies linearly with
a function f(ε) and a term o(f(ε)) that vanishes faster than f(ε). The function f : R+ → R+ must
be such that f(ε) → 0 when ε → 0+. The right hand side of (3.2) is named the topological asymptotic
expansion of G and the field DTG : Ω → R is the topological derivative of the functional G evaluated at
the original domain Ω for the considered type of topological perturbation (the introduction of a circular
hole). The topological derivative DTG itself can be expressed as

DTG(Ω) = lim
ε→0+

G(Ωε)−G(Ω)

f(ε)
. (3.3)

The analogy between (3.2,3.3) and the corresponding expressions for a conventional derivative should be
noted.

To illustrate the application of this concept, let us consider the (very simple) functional

G(Ω) := |Ω| =

∫

Ω

dx, (3.4)

with Ω subject to the class of topological perturbations referred to in the above (circular holes). For
two-dimensional domains Ω the functional G(Ω) represents the area of the domain. The expansion (3.2)
in this case can be obtained trivially as

G(Ωε) = |Ωε| =

∫

Ω

dx−

∫

Bε

dx

= G(Ω)− πε2, (3.5)

and the topological derivative DTG and function f promptly identified as

DTG = −π; f(ε) = ε2. (3.6)

In this particular case, DTG is independent of x̂ and the rightmost term of the topological asymptotic
expansion (3.2) is identically zero.

3.2. The topological derivative of the penalized objective functional. In the minimization prob-
lem (2.25) the hold-all domain is split as the union of a subset Ω occupied by the hard phase and its
complement D \ Ω occupied by the soft phase. In this case, it is appropriate to consider topological
perturbations consisting of the introduction a circular inclusion of domain Bε(x̂) made of hard phase
material if the perturbation point x̂ lies in the soft phase domain and made of soft phase material if x̂
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Figure 3. An example of topological domain perturbation.

lies in the hard phase domain. The corresponding perturbed structural domain Ωε(x̂), i.e. the domain
of the hard phase after the introduction of the inclusion, reads

Ωε(x̂) =

{
Ω \Bε(x̂) if x̂ ∈ Ω,

(Ω ∪Bε(x̂)) ∩D if x̂ ∈ D \ Ω.
(3.7)

The topological derivative of the unconstrained objective functional (2.25) is given by the sum

DT I
α
Ω = DT |Ω|+ β DTKΩ + αDTJΩ, (3.8)

of topological derivatives of each term on the right hand side of (2.25) with respect to the class of
topological perturbations defined by (3.7). The first term DT |Ω| above is trivial. Its derivation is
completely analogous to that of the topological derivative (3.6)1 of the same functional calculated for
topological perturbations in the form of circular holes. Here we have

DT |Ω| =

{
−π if x̂ ∈ Ω,

π if x̂ ∈ D \ Ω.
(3.9)

The topological derivative DTKΩ of the compliance functional is known. It has been used in the context
of structural optimization with topological derivative-based algorithms (refer, for instance, to [4, 20] for
a detailed derivation). Its closed formula is

DTKΩ = π(E1 − E0)(ρT − II)σ(uΩ) · e(uΩ), (3.10)

where

E0 =

{
Ehard if x̂ ∈ Ω

Esoft if x̂ ∈ D \ Ω;
E1 =

{
Esoft if x̂ ∈ Ω

Ehard if x̂ ∈ D \ Ω,
(3.11)

the scalar ρ is

ρ =
E1 − E0

bE1 + E0
, (3.12)

the fourth-order tensor T is the polarization tensor given by

T = bII +
1

2

a− b

1 + γa
I ⊗ I, (3.13)

with γ the elastic modulus contrast

γ =
E1

E0
, (3.14)

and the constants a and b given by

a =
1 + ν

1− ν
; b =

3− ν

1 + ν
, (3.15)

The derivation of the topological derivative DTJΩ of the penalty functional (2.20) for the Drucker-Prager
stress constraint is rather involved. For the sake of clarity we limit ourselves to presenting only the final
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formula here and leave its detailed derivation confined to A. The closed formula for DTJΩ reads

DTJΩ = −π(E1 − E0){ρk1(uΩ)T (Bσ(uΩ) + ξI) · e(uΩ) + (ρT − II)σ(uΩ) · e(vΩ)}+

πE1χD̃{Φ(ζ1(uΩ)) + ρk1(uΩ)[B̃σ(uΩ) · Tσ(uΩ) + 2ησ tr(Tσ(uΩ))]}+

E0χD̃{Ψρ(σ(uΩ)) +
1
4πρ

2k1(uΩ)ζ2(uΩ)} − πχD̃E0Φ(Υ(σ(uΩ))), (3.16)

where

k1(uΩ) = χD̃ Φ′(Υ(σ(uΩ))), (3.17)

with χD̃ the characteristic function of D̃:

χD̃(x) =

{
1 if x ∈ D̃
0 otherwise.

(3.18)

The functions ζ1, ζ2 and Ψρ are given by

ζ1(uΩ) = Υ(σ(uΩ))− ρ[B̃σ(uΩ) · Tσ(uΩ) + 2ησ tr(Tσ(uΩ))] + ρ2 1
2 B̃Tσ(uΩ) · Tσ(uΩ), (3.19)

ζ2(uΩ) = (5− 8η2)(2σ(uΩ) · σ(uΩ)− tr2σ(uΩ)) + 3
(

1+bγ
1+aγ

)2
tr2σ(uΩ), (3.20)

and

Ψρ(σ(uΩ)) =

∫ 1

0

∫ π

0

1

t2
[Φ(Υ(σ(uΩ)) + ∆(t, θ))− Φ(Υ(σ(uΩ))) − Φ′(Υ(σ(uΩ)))∆(t, θ)]dθdt, (3.21)

with

∆(t, θ) = ρ t
2

{
(σI − σII)

[
(σI + σII)

(
2(1− 4η2) + 3 1+bγ

1+aγ

)
+ 8ησ

]
cos θ + 3(σI − σII)

2(2− 3t) cos 2θ
}
+

(
ρ t
2

)2
{
3(σI + σII)

2
(

1+bγ
1+aγ

)2
+ (σI − σII)

2
(
3(2− 3t)2 + 4(1− 4η2) cos2 θ

)
+

6 1+bγ
1+aγ (σ

2
I − σ2

II)(2− 3t) cos θ
}
, (3.22)

where σI and σII are the eigenvalues of σ(uΩ). The field vΩ in (3.16) is the solution of the adjoint equation




−div Σ(vΩ) = +div (EΩk1(uΩ)(Bσ(uΩ) + ξI)) in D,

vΩ = 0 on ΓD,

Σ(vΩ)n = −EΩk1(uΩ)(Bσ(uΩ) + ξI)n on ΓN ∪ Γ0.

(3.23)

Formula (3.16) is valid for all x̂ ∈ D \ ∂D̃ \ ∂Ω.

4. The topology design/optimization algorithm

The numerical solution of the penalized minimization problem (2.25) is undertaken here by the algo-
rithm proposed in [5] in conjunction with a finite element approximation of the elastic boundary value
problem (2.3) and the adjoint equation (3.23). The algorithm relies essentially on an optimality criterion
based on the topological derivative of the objective function and on a level-set representation of the
structure domain. It was proven very successful in the context of unconstrained structural optimization
and optimization in problems of flow through porous media [5], in structural optimization under a von
Mises stress constraint [8] and in the topology optimization of elastic microstructures [7].

With the level-set representation, the current structure domain Ω is characterized by a level-set function
ψ ∈ L2(D) as

Ω = {x ∈ D : ψ(x) < 0}, (4.1)

and its complement as

D \ Ω = {x ∈ D : ψ(x) > 0}. (4.2)

Crucial in the present context is the definition of the function

g(x) :=

{
−DT I

α
Ω(x) if ψ(x) < 0

DT I
α
Ω(x) if ψ(x) > 0.

(4.3)
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Here it should be noted that a negative (positive) value of the topological derivative DT I
α
Ω(x) at a point

x ∈ D indicates that the introduction of an infinitesimal inclusion centered at that point produces a
perturbed domain whose objective functional value is smaller (greater) than that of the original domain.
Then, a sufficient condition of local optimality in this context is that

DT I
α
Ω(x) > 0 ∀x ∈ D. (4.4)

That is, no infinitesimal inclusion in D can cause a reduction in the value of the objective functional.
The present algorithm relies on the fact that, in view of definition (4.3), a sufficient condition for (4.4)

to hold is

∃ τ > 0 s.t. g = τ ψ, (4.5)

or, equivalently,

θ := arccos

[
〈g, ψ〉

‖g‖L2(D) ‖ψ‖L2(D)

]
= 0, (4.6)

where θ is the angle between the vectors g and ψ in L2(D). The algorithm itself aims to generate a
sequence {ψi} of level set functions (a sequence of structural domains {Ωi}) that will produce for some
iteration n a domain Ωn such that (4.6) is satisfied to within a given small numerical tolerance ǫθ > 0:

θn := arccos

[
〈gn, ψn〉

‖gn‖L2(D) ‖ψn‖L2(D)

]
≤ ǫθ. (4.7)

The algorithm is described in the following.
The procedure starts with the choice of an initial guess for the optimal structure domain, i.e. with the

choice of a starting level-set function ψ0∈L2(D). For simplicity, ψ0 is chosen as a unit vector of L2(D).
With S denoting the unit sphere in L2(D), the algorithm is explicitly given by

ψ0 ∈ S,

ψi =
1

sin θi−1

[
sin((1− κi)θi−1)ψi−1 + sin(κiθi−1)

gi−1

‖gi−1‖L2(D)

]
,

(4.8)

where i denotes a generic iteration number and κi ∈ [0, 1] is a step size determined by a line-search
performed at each iteration in order to decrease the value of the objective functional IαΩi

. Note that the
right hand side of (4.8)2 is a convex combination between ψi−1 and gi−1 and that by construction of the
iteration formula we have

ψi ∈ S. (4.9)

The iterative process is stopped when for some iteration the step size κi is smaller than a given numerical
tolerance ǫκ > 0:

κi < ǫκ. (4.10)

That is, when the topology is effectively no longer changing with the iterations. If, at this stage, the
optimality condition (4.7) is not satisfied to the desired degree of accuracy, i.e. if

θi > ǫθ, (4.11)

then a uniform mesh refinement of the hold-all domain D is carried out and the iterative procedure is
continued.

In the computation ofDT I
α
Ω according to expression (3.8) the topological derivatives are first computed

within the finite elements (at Gauss points) and then extrapolated to nodes. The final discretized version
of the field DT I

α
Ω used in the iterations is generated by the finite element shape functions with smoothed

nodal values obtained in a standard fashion. The level-set functions ψ and the discretized field DT I
α
Ω are

generated by the same shape functions used in the finite element approximation of the direct and adjoint
boundary value problems (2.3) and (3.23). The material properties Ehard or Esoft are assigned to nodes
of the mesh depending on whether they are at points with ψ < 0 (hard phase) or ψ > 0 (soft phase). In
this way, elements crossed by the hard-soft phase interface (defined by ψ = 0) will have Young’s moduli
between the values Ehard and Esoft, obtained by a standard interpolation of the nodal Young’s moduli
using the element shape functions. Obviously, according to the above procedure, the resolution of the
optimal structure domain depends directly on the fineness of the adopted mesh. The overall optimization
algorithm is conveniently summarized in Box 1 in pseudo-code format.
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Remark 2. The present procedure is not a member of the family known as level-set methods used, for
instance, in [3]. The evolution of the level-set function in the so-called level-set method is governed by
a Hamilton-Jacobi equation. Here the updated level-set function ψi at iteration i is obtained according
to (4.8) and depends solely on the known level-set ψi−1, the value κi, that produces a decrease in the
value of the objective functional IαΩi

, and the corresponding function gi−1, which is constructed from the
topological derivative field DT I

α
Ωi−1

for the known topology of iteration i − 1. The computation of these

quantities is straightforward and their computational implementation is simple.

Remark 3. The only algorithmic parameters in addition to the tolerances ǫθ and ǫκ required by the
present optimization algorithm are the penalty coefficient α, the penalty function parameter p and the
compliance functional weighting factor β. The parameters α and p are chosen as large as possible and
this choice is limited solely by numerical instabilities that result from excessively large values. Note, in
particular, that no artificial parameters or post-processing strategies are required throughout the itera-
tions. This is in sharp contrast with existing SIMP-based structural optimization strategies and follows
as a natural consequence of the use of the concept of topological derivative. This concept provides a
rigorous mathematical framework for the treatment of topology changes typical of structural optimization
procedures.

Box 1: Topological derivative-based algorithm for structural optimization with stress constraints.

(i) Initialize mesh counter, j ← 1; Generate a mesh of a chosen characteristic element size
hj for the hold-all domain D.

(ii) Initialize iteration counter, i ← 0; Choose an initial level-set function ψ0 ∈ S defining
the initial guess Ω0 ⊂ D for the optimal structure domain.

(iii) Obtain the discretized fields uΩi
and vΩi

by solving, respectively, the elastic equilibrium
problem (2.3) and the adjoint equation (3.23) for the current Ωi with the current mesh
hj .

(iv) Compute the topological derivative field DT I
α
Ωi

using expressions (3.8–3.22) and per-
forming a standard nodal averaging procedure.

(v) Obtain the function gi according to (4.3) using the nodal values of DT I
α
Ωi

and compute

θi = arccos

[

〈gn,ψn〉
‖gn‖

L2(D)
‖ψn‖

L2(D)

]

(vi) IF θi ≤ ǫθ THEN

EXIT (local optimum found!)

ELSE IF (i > 0 AND κi < ǫκ AND θi > ǫθ) THEN

Increment mesh counter, j ← j + 1;
Generate a new (finer) mesh for D with element size hj < hj−1;
GOTO (iii)

(vii) Increment iteration counter, i← i+ 1; Update level-set function:

ψi =
1

sin θi−1

[

sin((1− κi)θi−1)ψi−1 + sin(κiθi−1)
gi−1

‖gi−1‖L2(D)

]

and compute the corresponding penalized objective functional IαΩi
according to (2.2).

(vii.a) In the above, perform a line-search to find κi such that

I
α
Ωi
< I

α
Ωi−1

(viii) GOTO (iii)

5. Numerical Examples

The effectiveness of the algorithm described above is demonstrated in this section by means of numerical
examples. In order to avoid numerical ill-conditioning of the optimization problem we use in all examples,
without loss of generality, a normalized version of the objective functional of (2.25) defined as

IαΩ(uΩ) =
|Ω|

V0
+

β

K0

∫

ΓN

g · uΩ ds+ α

∫

D̃

EΩΦp(Υ(σ(uΩ))) dx, (5.1)
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with the normalizing factors V0 and K0 being respectively the area and the compliance functional of the
initial guess Ω0 for the optimum structure domain, here taken as Ω0 = D. In all the examples, we adopt
the Young’s modulus contrast Esoft/Ehard = 10−3.

5.1. Wall under shear load . The first example consists of wall under shear load (see Fig. 4).

Figure 4. Wall under shear load. Initial guess and boundary conditions.

The hold-all domain is a rectangle of size 2 × 1 clamped at its bottom edge. The loading consists
of a unit uniformly distributed horizontal force g = (1, 0) applied along a central portion of length 0.2
of the top edge of the hold-all domain. The material parameters Ehard = 1.0, ν = 0.3 and σ = 1 are
used. For the penalty coefficient and compliance weighting factor we choose α = 25 with p = 32 and
β = 1/4. The optimization procedure is carried out for three different values of η. Firstly we use η = 0,
corresponding to a von Mises stress constraint and then adopt η = 0.4 and η = −0.4. The positive η
corresponds to a standard Drucker-Prager material with yield strength greater in compression than in
tension. The negative value η = −0.4 models a material with yield strength greater in tension than in
compression. An initial uniform mesh containing 6400 linear triangles and 3321 nodes was adopted to
discretize the hold-all domain. During the optimization procedure, one step of uniform mesh refinement
of the hold-all domain (refer to item (vi) of Box 1) was required in all cases to achieve convergence with
a tolerance ǫθ = 1◦. Convergence was attained in 26 iterations for the von Mises constraint case (η = 0)
and 39 iterations in the other two cases (η = 0.4 and η = −0.4). The final mesh contains contains 25600
elements and 13041 nodes. The optimal topologies obtained are shown in Fig. 5.

(a) η = 0.0, volume fraction 40.34% (b) η = 0.4, volume fraction 41.60% (c) η = −0.4, volume fraction 41.60%

Figure 5. Wall under shear load. Obtained design for different values of η.

As one would expect, a symmetric structure is obtained under the von Mises constraint. The optimal
domains for the other two cases are flipped images of each other and, as expected, under the conventional
Drucker-Prager constraint (η = 0.4) the member under compression (on the right) is bulkier than the
member under tensile stresses (on the left).

5.2. L-bracket . Now we turn our attention to a classical structural optimization problem containing a
geometrical singularity – the L-bracket problem subject to stress constraints. The hold-all domain and
loading are illustrated in Fig. 6.
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Figure 6. L-bracket. Initial guess and boundary condition.

This problem has been studied by a number of authors and various strategies have been proposed for
the treatment of the von Mises stress constraint, exclusively in the context of SIMP-based methods of
structural optimization (refer to [22] and references therein). The solution of this optimization problem
(with a slightly different loading condition to that of Fig. 6) under a von Mises constraint by a topo-
logical derivative-based approach has been recently proposed in [8]. Here we show the application of
the topological-derivative approach to the case of Drucker-Prager-type constraints. The lengths of the
horizontal and vertical branches of the L-bracket are respectively 2m and 2.5m measured along their
centre lines. Both have identical width of 1m. The structure is clamped at the top edge and a point
load g = −(0, 40)KN/m is applied to the corner of the right tip. The elastic properties of the struc-
ture material are Ehard = 12500MPa and ν = 0.2. The Drucker-Prager yield criterion parameters are
set as η = −0.3703 and σ⋆ = 63.85MPa. These are chosen so that the Drucker-Prager yield surface
matches the compressive and tensile uniaxial yield strengths [13] of a natural wood, given respectively
by fc = 46.6MPa and ft = 101.4MPa. The stress constraint is not enforced in the white region of
radius 0.15m directly under the point of load application (shown in Fig. 6). The initial (non-uniform)
mesh discretizing the hold-all domain has 14236 three-noded triangular elements and 7323 nodes with a
higher density of elements around the reentrant corner that gives rise to the stress singularity. Figure 7
shows the optimum structures obtained without and with the enforcement of the Drucker-Prager stress
constraint.

(a) unconstrained case (b) stress-constrained case

Figure 7. L-bracket. Obtained design for the unconstrained (volume fraction 42.96%)
and constrained (volume fraction 46.76%) cases.

In the stress-constrained case, the penalty coefficient adopted in the penalized objective functional was
α = 104 with p = 32. In both cases we set β = 1/3. As in the previous example, one step of uniform
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mesh refinement (see item (vi) of Box 1) is performed in both cases to achieve convergence. The final
mesh here has a total of 58240 elements and 29532 nodes. The convergence tolerance adopted for both
unconstrained and stress-constrained problems is ǫθ = 1◦ with a total number of iterations required for
convergence being 39 and 62, respectively. The evolution of the objective functional, volume fraction and
angle θ throughout the iterations of the optimization algorithm is shown in Fig. 8(a–c).
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Figure 8. L-bracket. Convergence history.

We remark here that the adopted tolerances are quite stringent and a converged design for practical
purposes is in fact obtained for the constrained case with the (quite satisfactory) initial mesh at iteration
39. This is the where a sharp variation in θ and IαΩ is depicted in Figs. 8(a) and 8(c), corresponding to
the mesh refinement step. Figure 8(d) shows the history of the worst stress ratio in the structure:

maxΩ

√
Υ(σ(uΩ))

σ
,

whose maximum admissible value is 1. It should be observed that in the stress constrained case shown
in Fig. 7(b) the reentrant corner has been rounded by the algorithm. The corresponding worst stress
ratio in this case (shown in Fig. 8(d)) is 1.0184 for the converged structural domain – very close to its
saturation value of 1. In the unconstrained case, on the other hand, the worst stress ratio blows up when
minimizing the compliance due to the geometrical singularity of the reentrant corner.

It is worth noting here that the rounding off of the reentrant corner in the stress-constrained problem
has been achieved by the present algorithm in a most natural manner without any added post-processing
techniques . This is a mere consequence of the use of the exact formula (3.8) for the topological derivative of
the objective functional. This formula gives the exact sensitivity of the penalized objective functional with
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respect to the considered black-and-white-type topological changes. The only approximation here is the
use of a penalty term to enforce the required stress constraint. In SIMP-based methodologies on the other
hand, some of the exact information on the sensitivity to black-and-white-type topological changes (i.e.
first order terms of the topological asymptotic expansion of the objective functional) is inevitably lost with
the introduction of the regularized density field that approximates the sharp black-white transition. The
enforcement of stress constraints with such methods poses a more significant challenge and requires, for
instance, the use of post-processing techniques to retrieve stresses. In this context, many such procedures
have been proposed and used with success in a number of stress-constrained problems (a recent overview
is provided in [22]).

5.3. Bridge design . This last example considers the design of a bridge. The hold-all domain is a
rectangle 180m long and 60m high illustrated in Fig. 9.

Figure 9. Bridge design. Initial guess and boundary conditions.

The bridge is assumed clamped at the two bottom supports of equal length a = 9m. A uniformly
distributed traffic load g = −(0, 400)KN/m2 is applied to the edge of the dark strip of height h = 3m
indicated in Fig. 9 that represents the road and will remain unchanged throughout the optimization
process. The strip is positioned at a distance c = 27m from the top of the hold-all domain. The
material properties are Ehard = 27500MPa and ν = 0.2. For the purpose of comparison, the optimization
procedure is carried for two cases: (a) No stress constraints (α = 0), and (b) The Drucker-Prager stress
constraint with yield strength parameters η = 0.417 and σ⋆ = 5.05MPa. These parameters are obtained
from the Drucker-Prager biaxial fit model [13] to match a tensile and compressive yield strength of
fc = 30.5MPa and ft = 2.75MPa respectively. For the stress-constrained case we adopt the penalty
coefficient α = 103 and in both cases we choose β = 1/10 and the convergence tolerance ǫθ = 1◦. The
stress constraint is not enforced within the white region of size 15×15m adjacent to the bottom supports.
Due to symmetry, only half of the hold-all domain is discretized. The initial (uniform) mesh has 4800
elements and 2501 nodes. In both cases, two steps of uniform mesh refinement are performed leading to
a final mesh of 76800 and 38801 nodes. Figure 10 shows the optimized topologies obtained for the two
cases.

(a) Unconstrained case

(b) Stress-constrained case

Figure 10. Bridge design. Obtained design for the unconstrained and constrained cases.
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The total number of iteration required for convergence was 16 and 13, respectively, for the uncon-
strained and constrained cases. Note that the unconstrained optimization results in the well-known
tie-arch bridge design. In this design some structural members are under tensile and others under com-
pressive dominant stresses. The stress-constrained optimization with the Drucker-Prager criterion, on the
other hand, results in a radically different design where all members are subject to compressive dominant
stresses. Such designs are typical in practice for materials whose compressive strength is much higher
than their tensile strength (such as concrete). Its automatic generation here clearly demonstrates the
success of the proposed topology optimization procedure.

6. Conclusion

This paper has extended the result derived in [8] to incorporate the Drucker-Prager stress constraint
within a topological derivative-based algorithm for topology optimization of elastic structures. To the
authors’ knowledge this is the first paper to report the use of the Drucker-Prager yield criterion as a
constraint in topology optimization problems. In this context a penalty functional has been proposed
to enforce the point-wise stress constraint and its corresponding topological derivative has been derived
in detail. The overall algorithm, which uses the topological derivative to indicate the descent direction
in conjunction with a level-set representation of the structure domain, is of simple computational imple-
mentation. In particular, it does not feature post-processing procedures of any kind and only a minimal
number of user-defined algorithmic parameters are needed. Numerical examples have demonstrated the
effectiveness and efficiency of the algorithm in the solution of topology optimization problems under the
considered class of constraints. The algorithm was shown, for instance, to efficiently handle topology
optimization with materials displaying strong asymmetry in their tensile and compressive uniaxial yield
strengths. From a practical standpoint, we believe this fact to be particularly relevant in that it opens the
possibility for the automatic design/optimization of structures made of a much wider range of materials
than that for which stress-constrained topology optimization has been possible so far.

Appendix A. Topological sensitivity analysis of the Drucker-Prager stress penalty
functional

The topological derivative of the penalty functional JΩ defined in (2.20) is derived. We consider
topological perturbations of Ω obtained with the introduction of circular inclusions ωε(x̂) := Bε(x̂) of
radius ε and center at x̂ ∈ D \ ∂Ω, as defined in (3.7). Refer to Fig. 11. Possibly shifting the origin of
the coordinate system, we assume henceforth for simplicity that x̂ = 0. For all ε ≥ 0, the state equations
can be rewritten: 




−div (γεσ(uε)) = 0 in D,
uε = 0 on ΓD,

γεσ(uε)n = g on ΓN ,
σ(uε)n = 0 on Γ0.

(A.1)

where we have introduced the notations uε := uΩε
and

γε =

{
γ0 in D \ ωε,
γ1 in ωε.

(A.2)

We assume that γ0 := EΩ and γ1 = γEΩ, with the contrast γ given by (3.14), are two positive functions
defined in D and constant in a neighborhood of x̂.

In order to solve (2.22), we are looking for an asymptotic expansion, named as topological asymptotic
expansion, of the form

IαΩε
(uε)− IαΩ(u0) = f(ε)DT I

α
Ω + o(f(ε)), (A.3)

where u0 := uΩ, f : R+ → R+ is a function that goes to zero with ε, and DT I
α
Ω : D → R is the so-called

topological derivative of the functional IαΩ. Since such an expansion is assumed to be known for the
objective functional IΩ, we subsequently focus on the penalty functional JΩ. We adopt the simplified
notation:

Jε(u) := JΩε
(u) =

∫

D̃

γεΦ(Υ(σ(u)))dx. (A.4)

We follow the approach described in [6] for the Laplace problem. Here, the calculations are more
technical, but the estimates of the remainders detached from the topological asymptotic expansion are
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analogous. Hence we do not repeat these estimates. The reader interested in the complete proofs may
refer to [6]. We state the following important result:

Proposition 4. Let V be a Hilbert space and ε0 > 0. For all ε ∈ [0, ε0), consider a vector uε ∈ V solution
of a variational problem of the form

aε(uε, v) = ℓε(v) ∀v ∈ V , (A.5)

where aε and ℓε are a bilinear form on V and a linear form on V, respectively. Consider also, for all
ε ∈ [0, ε0), a functional Jε : V → R and a linear form Lε(u0) ∈ V ′. Suppose that the following hypotheses
hold.

(1) There exist two numbers δa and δℓ and a function ε ∈ R+ 7→ f(ε) ∈ R such that, when ε goes to
zero,

(aε − a0)(u0, vε) = f(ε)δa+ o(f(ε)), (A.6)

(ℓε − ℓ0)(vε) = f(ε)δℓ+ o(f(ε)), (A.7)

lim
ε→0

f(ε) = 0, (A.8)

where vε ∈ V is an adjoint state satisfying

aε(ϕ, vε) = −〈Lε(u0), ϕ〉 ∀ϕ ∈ V . (A.9)

(2) There exist two numbers δJ1 and δJ2 such that

Jε(uε) = Jε(u0) + 〈Lε(u0), uε − u0〉+ f(ε)δJ1 + o(f(ε)), (A.10)

Jε(u0) = J0(u0) + f(ε)δJ2 + o(f(ε)). (A.11)

Then we have

Jε(uε)− J0(u0) = f(ε)(δa− δℓ+ δJ1 + δJ2) + o(f(ε)). (A.12)

Proof. The reader interested in the proof of the proposition below may refer to [4]. �

The bilinear and linear forms associated with Problem (A.1) are classically defined in the space V
defined by (2.6) as follows:

aε(u, v) =

∫

D

γεσ(u) · e(v) dx ∀u, v ∈ V , (A.13)

ℓε(v) =

∫

ΓN

g · v ds ∀v ∈ V . (A.14)

At the point u0 (unperturbed solution), the penalty functional admits the tangent linear approximation
Lε(u0) given by:

〈Lε(u0), ϕ〉 =

∫

D̃

γεk1(u0)(Bσ(u0) · e(ϕ) + ξtre(ϕ))dx ∀ϕ ∈ V , (A.15)

where k1 is defined in (3.17). Then the adjoint state is (a weak) solution of the boundary value problem:




−div (γεσ(vε)) = div (γεk1(u0)(Bσ(u0) + ξI)) in D,
vε = 0 on ΓD,

γεσ(vε)n = −γεk1(u0)(Bσ(u0) + ξI)n on ΓN ∪ Γ0.
[[γεσ(vε)]]n = −[[γεk1(u0)(Bσ(u0) + ξI)]]n on ∂ωε

(A.16)

where [[γεσ(vε)]]n ∈ H−1/2(∂ωε)
2 denotes the jump of the normal stress through the interface ∂ωε. Before

proceed, we make the following assumptions:

(1) For any r1 > 0 there exists r2 ∈ (0, r1) such that every function u ∈ H1(D \B(x̂, r2))
2 satisfying





−div (γ0σ(u)) = 0 in D \B(x̂, r2),
u = 0 on ΓD,

γ0σ(u)n = 0 on ΓN ∪ Γ0

(A.17)

belongs to W 1,4(D̃ \B(x̂, r1))
2.

(2) The load g is such that u0 ∈W 1,4(D̃)2.
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Note that, by elliptic regularity, u0 and v0 are automatically of class C1,β , β > 0, in the vicinity of x̂

provided that x̂ ∈ D \ ∂Ω \ ∂D̃.

Remark 5. The above assumption is satisfied in many situations, including nonsmooth domains, like
for instance in the following case:

• D is a Lipschitz polygon,

• ΓN ∩ ∂D̃ = ∅ and ΓD ∩ ∂D̃ = ∅,
• the interface ∂Ω \ ∂D is the disjoint union of smooth simple arcs,

• if a junction point between the interface and ∂D belongs to ∂D̃, then the Young modulus distri-
bution around this point is quasi-monotone (see the definition in [21]); in particular, if only one
arc touches ∂D at this point, it is sufficient that the angle defined by these curves in D \Ω is less
than π.

We refer to [21] and the references therein for justifications and extensions.

Figure 11. Topologically perturbed domain.

A.1. Variation of the bilinear form. In order to apply Proposition 4, we need to obtain a closed form
for the leading term of the quantity:

(aε − a0)(u0, vε) =

∫

ωε

(γ1 − γ0)σ(u0) · e(vε)dx. (A.18)

In the course of the analysis, the remainders detached from this expression will be denoted by Ei(ε),
i = 1, 2, ... By setting ṽε = vε − v0, with v0 := vΩ, and assuming that ε is sufficiently small so that γε is
constant in ωε, we obtain:

(aε − a0)(u0, vε) = (γ1 − γ0)(x̂)

(∫

ωε

σ(u0) · e(v0)dx +

∫

ωε

σ(u0) · e(ṽε)dx

)
. (A.19)

Since u0 and v0 are smooth in the vicinity of x̂, we approximate σ(u0) and e(v0) in the first integral by
their values at the point x̂, and write:

(aε − a0)(u0, vε) = (γ1 − γ0)(x̂)

(
πε2σ(u0)(x̂) · e(v0)(x̂) +

∫

ωε

σ(u0) · e(ṽε)dx+ E1(ε)

)
. (A.20)

As vε is solution of the adjoint equation (A.16), then the function ṽε solves




−div(γεσ(ṽε)) = 0 in ωε ∪ (D \ ωε),
[[γεσ(ṽε)n]] = −(γ1 − γ0) (k1(u0)(Bσ(u0) + ξI) + σ(v0))n on ∂ωε,

ṽε = 0 on ΓD,
σ(ṽε)n = 0 on ΓN ∪ Γ0.

(A.21)
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We recall that, as before, the boundary value problem (A.21) is to be understood in the weak sense for
ṽε ∈ H1(D)2. We set S = S1 + S2, with

S1 = k1(u0)(x̂)(Bσ(u0)(x̂) + ξI) and S2 = σ(v0)(x̂). (A.22)

We approximate σ(ṽε) by σ(h
S
ε ) solution of the auxiliary problem:





−div(σ(hSε )) = 0 in ωε ∪ (R2 \ ωε),
[[γεσ(h

S
ε )]]n = −(γ1 − γ0) (x̂)Sn on ∂ωε,
σ(hSε ) → 0 at ∞,

(A.23)

In the present case of a circular inclusion, the tensor σ(hSε ) admits the following expression in a polar
coordinate system (r, θ):

• for r ≥ ε

σr(r, θ) = − (α1 + α2)
1− γ

1 + aγ

ε2

r2
−

1− γ

1 + bγ

(
4
ε2

r2
− 3

ε4

r4

)
(β1 cos 2θ + β2 cos 2(θ + φ)) , (A.24)

σθ(r, θ) = (α1 + α2)
1− γ

1 + aγ

ε2

r2
− 3

1− γ

1 + bγ

ε4

r4
(β1 cos 2θ + β2 cos 2(θ + φ)) , (A.25)

σrθ(r, θ) = −
1− γ

1 + bγ

(
2
ε2

r2
− 3

ε4

r4

)
(β1 sin 2θ + β2 sin 2(θ + φ)) , (A.26)

• for 0 < r < ε

σr(r, θ) = (α1 + α2) a
1− γ

1 + aγ
+ b

1− γ

1 + bγ
(β1 cos 2θ + β2 cos 2(θ + φ)) , (A.27)

σθ(r, θ) = (α1 + α2) a
1− γ

1 + aγ
− b

1− γ

1 + bγ
(β1 cos 2θ + β2 cos 2(θ + φ)) , (A.28)

σrθ(r, θ) = −b
1− γ

1 + bγ
(β1 sin 2θ + β2 sin 2(θ + φ)) , (A.29)

Some terms in the above formulas require explanation. The parameter φ denotes the angle between the
eigenvectors of tensors S1 and S2,

αi =
1

2
(siI + siII) and βi =

1

2
(siI − siII), i = 1, 2, (A.30)

where siI and siII are the eigenvalues of tensors Si for i = 1, 2. In addition, the constants a and b are given
by (3.15) and γ is the contrast, defined in (3.14).

From these elements, we obtain successively:
∫

ωε

σ(u0) · e(ṽε)dx =

∫

ωε

σ(ṽε) · e(u0)dx =

∫

ωε

σ(hSε ) · e(u0)dx + E2(ε). (A.31)

Then approximating e(u0) in ωε by its value at x̂ and calculating the resulting integral with the help of
the expressions (A.27)-(A.29) yields:
∫

ωε

σ(u0) · e(ṽε)dx =

∫

ωε

σ(hSε ) · e(u0)(x̂)dx + E2(ε) + E3(ε)

= −πε2ρ (k1(u0)T (Bσ(u0) + ξI) · e(u0) + Tσ(u0) · e(v0)) (x̂) + E2(ε) + E3(ε),

(A.32)

with ρ and T given by (3.12) and (3.13), respectively.
Finally, the variation of the bilinear form can be written as:

(aε−a0)(u0, vε) = −πε2(γ1−γ0)(x̂)ρ

(
k1(u0)b(Bσ(u0)+ξI)·e(u0)+

1

2
k1(u0)

a− b

1 + γa
tr(Bσ(u0)+ξI)tre(u0)−

b+ 1

γ − 1
σ(u0) · e(v0) +

1

2

a− b

1 + γa
trσ(u0)tre(v0)

)
(x̂) + (γ1 − γ0)(x̂)

3∑

i=1

Ei(ε). (A.33)

A.2. Variation of the linear form. Since here ℓε is independent of ε, it follows trivially that

(ℓε − ℓ0)(vε) = 0. (A.34)
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A.3. Partial variation of the penalty functional with respect to the state. We now study the
variation:

VJ1(ε) = Jε(uε)− Jε(u0)− 〈Lε(u0), uε − u0〉. (A.35)

Thus, in particular

VJ1(ε) =

∫

D̃

γε [Φ(Υ(σ(uε))) − Φ(Υ(σ(u0))) −

Φ′(Υ(σ(u0)))(Bσ(u0) · e(uε − u0) + ξtre(uε − u0))] dx. (A.36)

By setting ũε = uε − u0, we can write:

VJ1(ε) =

∫

D̃

γε

[
Φ(Υ(σ(u0)) +Bσ(u0) · e(ũε) + Υ(σ(ũε))) − Φ(Υ(σ(u0)))−

Φ′(Υ(σ(u0)))(Bσ(u0) · e(ũε) + ξtre(ũε))

]
dx. (A.37)

Since uε is solution of the state equation (A.1), then by difference we find that ũε solves:




−div(γεσ(ũε)) = 0 in ωε ∪ (D \ ωε),
[[γεσ(ũε)]]n = −(γ1 − γ0)σ(u0)n on ∂ωε,

ũε = 0 on ΓD,
σ(ũε)n = 0 on ΓN ∪ Γ0.

(A.38)

By setting now S = σ(u0(x̂)), we approximate ũε by hSε solution of the auxiliary problem (A.23). It
comes:

VJ1(ε) =

∫

D̃

γε

[
Φ(Υ(σ(u0)) +Bσ(u0) · e(h

S
ε ) + Υ(σ(hSε )))− Φ(Υ(σ(u0)))−

Φ′(Υ(σ(u0)))(Bσ(u0) · e(h
S
ε ) + ξtre(hSε ))

]
dx+ E4(ε). (A.39)

If x̂ ∈ D \ D̃, we obtain easily, using a Taylor expansion of Φ and the estimate |σ(hSε )(x)| = O(ε2) which
holds uniformly with respect to x a fixed distance away from x̂, that VJ1(ε) = o(ε2). Thus we assume

that x̂ ∈ D̃ (the special case where x̂ ∈ ∂D̃ is not treated). In view of the decay of σ(hSε ) at infinity and
the regularity of u0 near x̂, we write

VJ1(ε) =

∫

R2

γ∗ε

[
Φ(Υ(σ(u0))(x̂) +Bσ(u0)(x̂) · e(h

S
ε ) + Υ(σ(hSε )))− Φ(Υ(σ(u0))(x̂))−

Φ′(Υ(σ(u0))(x̂))(Bσ(u0)(x̂) · e(h
S
ε ) + ξtre(hSε ))

]
dx+ E4(ε) + E5(ε), (A.40)

with γ∗ε (x) = γ1(x̂) if x ∈ ωε, γ
∗
ε (x) = γ0(x̂) otherwise. The above expression can be rewritten as

VJ1(ε) =

∫

R2

γ∗ε

[
Φ(

1

2
B̃S · S + 2ησtrS + B̃S · σ(hSε ) + 2ησtrσ(hSε ) +

1

2
B̃σ(hSε ) · σ(h

S
ε ))−

Φ(
1

2
B̃S · S + 2ησtrS)− Φ′(

1

2
B̃S · S + 2ησtrS)(B̃S · σ(hSε ) + 2ησtrσ(hSε ))

]
dx+ E4(ε) + E5(ε). (A.41)

We denote by VJ11(ε) and VJ12(ε) the parts of the above integral computed over ωε and R
2 \ωε, respec-

tively. Using the expressions (A.27)-(A.29), we find

VJ11(ε) = πε2γ1(x̂)

[
Φ(

1

2
B̃S · S + 2ησtrS − ρ(B̃S · TS + 2ησtr(TS)) + ρ2

1

2
B̃TS · TS)−

Φ(
1

2
B̃S · S + 2ησtrS) + ρΦ′(

1

2
B̃S · S + 2ησtrS)(B̃S · TS + 2ησtr(TS))

]
. (A.42)

Next, we define the function independent of ε

SS
ρ (x) = σ(hSε )(εx). (A.43)
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A change of variable yields

VJ12(ε) = ε2
∫

R2\ω

γ0(x̂)

[
Φ(

1

2
B̃S · S + 2ησtrS + B̃S · SS

ρ + 2ησtrSS
ρ +

1

2
B̃SS

ρ · SS
ρ )−

Φ(
1

2
B̃S · S + 2ησtrS)− Φ′(

1

2
B̃S · S + 2ησtrS)(B̃S · SS

ρ + 2ησtrSS
ρ )

]
dx. (A.44)

We set

Ψρ(S) =

∫

R2\ω

[
Φ(

1

2
B̃S · S + 2ησtrS + B̃S · SS

ρ +
1

2
B̃SS

ρ · SS
ρ + 2ησtrSS

ρ )−

Φ(
1

2
B̃S · S + 2ησtrS))− Φ′(

1

2
B̃S · S + 2ησtrS)(B̃S · SS

ρ +
1

2
B̃SS

ρ · SS
ρ + 2ησtrSS

ρ )

]
dx. (A.45)

The extra term 1
2 B̃S

S
ρ · SS

ρ has been added so that Ψρ(S) vanishes whenever Φ is linear. Thus we have

VJ12(ε) = ε2γ0(x̂)

[
Ψρ(S) +

1

2
Φ′(

1

2
B̃S · S + 2ησtrS)

∫

R2\ω

B̃SS
ρ · SS

ρ dx

]
. (A.46)

Using the expressions (A.24)-(A.26), a symbolic calculation of the above integral provides

VJ12(ε) = ε2γ0(x̂)

[
Ψρ(S) +

1

4
πρ2k1(u0)(x̂)

(
(5− 8η2)(2S · S − tr2S) + 3

(
1 + bγ

1 + aγ

)2

tr2S

)]
. (A.47)

Besides, after a change of variable and rearrangements, Ψρ(S) reduces to (3.21). Finally we obtain:

V J1(ε) = πγ1(x̂)

[
Φ(

1

2
B̃S · S + 2ησtrS − ρ(B̃S · TS + 2ησtr(TS)) + ρ2

1

2
B̃TS · TS)−

Φ(
1

2
B̃S · S + 2ησtrS) + ρΦ′(

1

2
B̃S · S + 2ησtrS)(B̃S · TS + 2ησtr(TS))

]
+

γ0(x̂)

[
Ψρ(S) +

1

4
πρ2k1(u0)(x̂)

(
(5− 8η2)(2S · S − tr2S) + 3

(
1 + bγ

1 + aγ

)2

tr2S

)]
+

E4(ε) + E5(ε). (A.48)

A.4. Partial variation of the penalty functional with respect to the domain. The last term is
treated as follows:

V J2(ε) := Jε(u0)− J0(u0)

=

∫

ωε∩D̃

(γ1 − γ0)Φ(Υ(σ(u0)))dx

= πε2χD̃(x̂)(γ1 − γ0)(x̂)Φ(Υ(σ(u0))(x̂)) + E6(ε)

= πε2χD̃(x̂)(γ1 − γ0)(x̂)Φ(
1

2
B̃S · S + 2ησtrS) + E6(ε). (A.49)

A.5. Topological derivative. Like in [6] for the Laplace equation, we can prove that the reminders
Ei(ε), i = 1, ..., 6 behave like o(ε2). Therefore, after summation of the different terms according to
Proposition 4 and a few simplifications, we arrive at the final formula for the topological asymptotic
expansion of the penalty functional, namely

Jε(uε)− J0(u0) = ε2DTJΩ + o(ε2), (A.50)

with the topological derivative DTJΩ given by (3.16).
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2007.

[2] G. Allaire, F. Jouve, & H. Maillot. Topology optimization for minimum stress design with the homogenization method.
Struct. Multidiscip. Optim. 28(2-3):87-98, 2004.

[3] G. Allaire & F. Jouve. Minimum stress optimal design with the level-set method. Eng. Anal. Bound. Elem. special

issue, 32(11):909–918, 2008.
[4] S. Amstutz. Sensitivity analysis with respect to a local perturbation of the material property. Asymptotic Analysis,

49(1-2):87—108, 2006.
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