TOPOLOGICAL DERIVATIVE-BASED TOPOLOGY OPTIMIZATION OF
STRUCTURES SUBJECT TO DRUCKER-PRAGER STRESS CONSTRAINTS

S. AMSTUTZ, A.A. NOVOTNY, AND E.A. DE SOUZA NETO

Abstract. An algorithm for topology optimization of elastic structures under plane stress subject to the
Drucker-Prager stress constraint is presented. The algorithm is based on the use of the topological
derivative of the associated objective functional in conjunction with a level-set representation of the struc-
ture domain. In this context, a penalty functional is proposed to enforce the point-wise stress constraint
and its topological derivative is derived in detail. The resulting algorithm is of simple implementation
and does not require post-processing procedures of any kind. Its effectiveness and efficiency are demon-
strated by means of numerical examples. The examples show, in particular, that the algorithm can
easily handle structural optimization problems with underlying materials featuring strong asymmetry
in their tensile and compressive yield strengths.

1. INTRODUCTION

Over the last two decades or so, the development of algorithms for topology optimization of linear
elastic load-bearing structures has attracted considerable attention in computational mechanics circles.
As a result of the continuous research efforts in this direction a wide body of literature is currently
available on this topic and various computational procedures are well established and can be applied to
a range of practical problems of industrial interest [16, 1, 10]. Many such procedures, almost invariably
used in conjunction with finite element methods of structural analysis, are even available in off-the-shelf
commercial software packages (e.g. Altair® OptiStruct® [27] and Genesis® [19]).

To date, most developments in this field have relied on so-called SIMP methods (solid isotropic material
with penalization), where the physical black-and-white topology of the optimal structure, i.e. a topology
make-up consisting of either material (black) or empty space (white) at each point of the computational
domain, is approximated by means of a fictitious density field displaying a smooth (grey) transition in
the otherwise black-white interface (the boundary of the structure domain). Such methods have been
widely applied with success to problems such as compliance minimization [10] but, despite its fundamental
importance in engineering design, only a relatively small number of publications appear to deal with the
incorporation of local (point-wise) stress constraints [2, 3, 11, 14, 18, 22, 28]. This can be probably
justified by the challenges resulting from the typically very large number of highly non-linear constraints
involved as well as by the need for carefully designed stress relaxation procedures to address a side effect
of the regularization of the original black-and-white problem [22].

More recently, a new class of methodologies for structural topology optimization has emerged based on
the use of the topological derivative of the relevant objective functionals [30, 12, 25, 5, 24, 26]. The notion
of topological derivative itself is a relatively new concept, introduced by Sokolowski & Zochowski [30] just
over a decade ago. Further theoretical developments are reported, among others, in [23, 4, 29]. An early
application of this idea to topology compliance optimization, prior to its precise mathematical definition in
a general context, is described in [17]. The topological derivative concept extends the conventional notion
of derivative to functionals whose variable is a geometrical domain subject to singular topology changes.
In structural topology optimization for instance, it gives the exact sensitivity of the associated objective
functionals to black-and-white-type topological perturbations such as the insertion of infinitesimal holes
or inclusions of different material properties. Crucial here is the fact that the topological derivative of
the objective functional contains fundamental information that accurately indicates descent directions
associated with exact black-and-white-type topology changes, without the need for black-grey-white-
type regularisation procedures. In this context, a topological derivative-based algorithm with a level-set

Key words and phrases. Topological sensitivity, topological derivative, topology optimization, Drucker-Prager criterion,
local stress constraint.
representation of the structure domain has been proposed in [5] and shown to efficiently solve compliance minimization problems. More recently, following the ideas presented in [6] for the Laplace equation, this algorithm has been further developed in [8] to incorporate local stress constraints of the von Mises type by means of a penalty approach in plane stress problems. One striking feature of the algorithm of [8] is its simplicity of implementation. In particular, the treatment of the point-wise stress constraint is straightforward once a suitable penalized objective functional has been defined and a closed formula for its topological derivative obtained. It does not require post-processing (e.g., procedures such as density filtering, ε-relaxation [22]) of any kind and only a minimal number of user-defined algorithmic parameters (e.g., penalty coefficient) are needed. This relative algorithmic simplicity is nothing but a natural consequence of the use of the topological derivative in defining the descent direction, which is based on the exact black-and-white definition of the topology optimization problem. In fairness to other methods of topology optimization, however, we should note that the striking algorithmic simplicity here comes at the expense of the derivation of a closed formula for the topological derivative of the objective functional which may prove to be a laborious mathematical task.

Our main purpose in this paper is to extend the work reported in [8] to incorporate point-wise stress constraints of the Drucker-Prager type [15]. In this context, a penalty functional for the enforcement of the Drucker-Prager constraint is proposed and a closed formula for its topological derivative is obtained. We recall that the Drucker-Prager yield criterion was originally conceived as a smooth approximation to the classical Mohr-Coulomb criterion for soils and geomaterials (refer for instance to [13]). Under plane stress (the case considered here) it may be used as a general model for materials with distinct tensile and compressive yield strengths, such as concrete, masonry and wood. The overall optimization algorithm is described in detail and numerical examples are presented to demonstrate its effectiveness and efficiency in the treatment of structural optimization under the present stress constraints. In particular, unlike stress-unconstrained optimization, the results here show that the obtained optimized structures are free from geometrical singularities that result in (highly undesirable) stress concentration.

The paper is organized as follows. Section 2 states the stress-constrained topology optimization problem and defines the penalized version to be solved by the algorithm. Section 3 presents a closed formula for the topological derivative of the corresponding penalized objective functional. The optimization algorithm is described in Section 4 and its application in numerical examples is presented in Section 5. Concluding remarks are drawn in Section 6. The closed formula presented in Section 3 for the topological derivative of the proposed Drucker-Prager penalty functional is derived in detail in A.

2. Problem statement

Our purpose here is to find optimal topologies for two-dimensional elastic structures under plane stress condition loaded by a given system of mechanical loads with prescribed kinematical boundary conditions and subject to a point-wise constraint on the stress tensor. More specifically, we want to minimize the volume of the structure domain requiring at the same time the stress tensor at each point of the loaded optimized structure to be bound by a Drucker-Prager-type yield criterion. The corresponding optimization problem is mathematically stated in the following.

2.1. The constrained optimization problem. Let $D \subset \mathbb{R}^2$ be a bounded domain with Lipschitz boundary Γ defining the so-called hold-all domain (refer to Fig. 1). The domain of the sought optimal structure will be a subset of the hold-all domain. The boundary Γ is the union of three given non-overlapping subsets, Γ_D, Γ_N and Γ_0. Displacements are prescribed on Γ_D and non-zero and zero boundary tractions are prescribed respectively on Γ_N and Γ_0.

Given a hold-all domain D, the optimisation problem consists in finding a subdomain $\Omega \subset D$ (the optimal structure domain) that solves the following constrained minimization problem:

$$\min_{\Omega \subset D} I_\Omega(u_\Omega),$$

with I_Ω the objective functional

$$I_\Omega(u_\Omega) := |\Omega| + \beta K_\Omega(u_\Omega); \quad K_\Omega(u_\Omega) := \int_{\Gamma_N} g \cdot u_\Omega \, ds,$$

(2.1)
subject to the elastic equilibrium equations,

\[
\begin{align*}
\text{div}\Sigma(u_\Omega) &= 0 \quad \text{in } D \\
u_\Omega &= 0 \quad \text{on } \Gamma_D \\
\Sigma(u_\Omega)n &= g \quad \text{on } \Gamma_N \\
\Sigma(u_\Omega)n &= 0 \quad \text{on } \Gamma_0,
\end{align*}
\]

(2.3)

and a point-wise Drucker-Prager constraint on the stress tensor \(\Sigma \):

\[
\Sigma_M(u_\Omega) + \eta \text{tr}\Sigma(u_\Omega) \leq \sigma^* \quad \text{a.e. in } \Omega \cap \tilde{D},
\]

(2.4)

where \(\tilde{D} \) is a given open subset of \(D \) defining the region where this constraint is enforced and \(\Sigma_M \) is the von Mises effective stress:

\[
\Sigma_M = \sqrt{\frac{3}{2} \Sigma_d \cdot \Sigma_d},
\]

(2.5)

with \(\Sigma_d \) the stress deviator. The given constants \(\eta \) and \(\sigma^* \) in (2.4) are the Drucker-Prager yield criterion parameters [15, 13] associated, respectively, with the Drucker-Prager cone angle and cohesion intersect. In (2.2,2.3), \(g \) is the prescribed boundary traction on the given portion \(\Gamma_N \) of the boundary and is assumed to belong to \(L^2(\Gamma_N)^2 \), \(n \) in (2.3) is the outward unit normal vector field on \(\Gamma \) and \(u_\Omega \) is the displacement field that solves the elastic equilibrium equations. The objective functional defined in (2.2) is well-suited for the minimization of the volume \(|\Omega| \) of the structure subject to a point-wise stress constraint and has been used in [8] in conjunction with a von Mises stress constraint. The parameter \(\beta > 0 \) multiplying the compliance integral on the right hand side of (2.2) regularises the stress-constrained volume minimization problem which is otherwise ill-posed.

The subscript \(\Omega \) is used here to emphasise that the relevant quantities (e.g. \(I_\Omega, \ u_\Omega \)) depend on the domain \(\Omega \) – the design variable of problem (2.1). Throughout the paper, we assume (2.3) to hold in the weak sense and its solution,

\[
u_\Omega \in \mathcal{V} = \{u \in H^1(D)^2, u|_{\Gamma_D} = 0\},
\]

(2.6)

to be unique. The space \(\mathcal{V} \) is the corresponding space of kinematically admissible displacement fields. The notation \(\Sigma(u_\Omega) \) is used to express the stress tensor as a functional of the displacement field \(u_\Omega \) through the linear elastic constitutive equation:

\[
\Sigma(u) = Ce(u),
\]

(2.7)

where \(e \) is the infinitesimal strain tensor,

\[
e(u) = \frac{1}{2}(\nabla u + \nabla u^T),
\]

(2.8)

and

\[
C = 2\mu I + \lambda (I \otimes I),
\]

(2.9)

with \(\mu \) and \(\lambda \) denoting the Lamé coefficients and \(I \) and \(I \) the fourth- and second-order identity tensors respectively. The statement of the minimization problem is completed with the definition of a piece-wise constant Young’s modulus field over \(D \) as follows:

\[
E_\Omega = \begin{cases}
E_{\text{hard}} & \text{in } \Omega \\
E_{\text{soft}} & \text{in } D \setminus \overline{\Omega},
\end{cases}
\]

(2.10)

with

\[
E_{\text{soft}} \ll E_{\text{hard}}.
\]

(2.11)

That is, the original optimization problem, where the structure itself consists of the domain \(\Omega \) of given elastic properties and the remaining part \(D \setminus \overline{\Omega} \) of the hold-all is empty (has no material), is approximated by means of the two-phase material distribution (2.10) over \(D \) where the empty region \(D \setminus \overline{\Omega} \) is occupied by a material (the soft phase) with Young’s modulus, \(E_{\text{soft}} \), much lower than the given Young’s modulus \(E_{\text{hard}} \) of the structure material (the hard phase). Both phases share the same Poisson’s ratio \(\nu \). The corresponding Lamé coefficients under plane stress read

\[
\mu_\Omega = \frac{E_\Omega}{2(1 + \nu)}, \quad \text{and} \quad \lambda_\Omega = \frac{\nu E_\Omega}{1 - \nu^2}.
\]

(2.12)
2.2. The penalized optimization problem. The presence of the point-wise stress constraint (2.4) makes it difficult to treat the above constrained optimization problem directly. This issue has been recently discussed in some detail by Le et al. [22] in the context of SIMP methods for structural optimization [10]. To tackle the problem here we follow a radically different approach proposed in [8]. It relies on a topological derivative-based algorithm in conjunction with an approximation of the original constrained problem by means of a penalty regularization of the point-wise stress constraint. The penalized problem is obtained in the following.

Before defining the corresponding penalty functional it is convenient in the present case to rephrase the stress constraint (2.4) in terms of normalized quantities. To this end we define the normalized stress tensor:

$$
\sigma := \Sigma / E_\Omega,
$$

and the normalized cohesion intersect-related parameter of the Drucker-Prager yield surface:

$$
\overline{\sigma} := \bar{\sigma} / E_\Omega.
$$

Then, by squaring both sides of (2.4) and making use of the above definitions, we obtain after a straightforward manipulation an equivalent statement of the Drucker-Prager stress constraint in terms of normalized stresses:

$$
\Upsilon(\sigma(u)) := \frac{1}{2} \tilde{B} \sigma(u) \cdot \sigma(u) + 2\eta \sigma \text{tr}\sigma(u) \leq \overline{\sigma}^2,
$$

where

$$
\tilde{B} = 3I - (1 + 2\eta^2)I \otimes I.
$$

Alternatively, by taking the elastic law (2.7,2.9) into account, (2.15) can be expressed as

$$
\frac{1}{2} B \sigma(u) \cdot e(u) + \xi \text{tr}e(u) \leq \overline{\sigma}^2,
$$

where

$$
B = 6\mu I + \lambda(1 - 4\eta^2)(I \otimes I) - 2\mu(1 + 2\eta^2)(I \otimes I)
$$

and

$$
\xi = 4(\mu + \lambda)\eta \overline{\sigma}.
$$

With the above at hand, we now proceed to define the penalized objective function. Then, let $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$ be a nondecreasing function of class C^2. To allow a proper justification in the subsequent analysis, we further assume that the derivatives Φ' and Φ'' are bounded. The penalty functional is defined as

$$
J_\Omega(u) = \int_D E_\Omega \Phi(\Upsilon(\sigma(u))) dx.
$$
With the above penalty function, we define a corresponding penalized objective functional as
\[I^\alpha_\Omega(u) = I_\Omega(u) + \alpha J_\Omega(u), \]
where the scalar \(\alpha > 0 \) is a given penalty coefficient. The original constrained optimization problem (2.1)-(2.4) with point-wise constraints can then be approximated by the following penalized optimization problem:
\[\text{Minimize } I^\alpha_\Omega(u_\Omega) \quad \text{subject to (2.3)}. \]
(2.22)

Problem (2.22) provides a good approximation to (2.1)-(2.4) so long as
(a) the penalty coefficient \(\alpha \) is sufficiently large; and
(b) a function \(\Phi \) is chosen such that \(\Phi' \) varies sufficiently sharply around \(\Upsilon(\sigma(u)) = \sigma^2 \).

In particular, in the present paper we shall adopt a function \(\Phi \) of the following functional format:
\[\Phi(t) \equiv \Phi_p(t), \]
(2.23)

where \(p \geq 1 \) is a given real parameter and \(\Phi_p : \mathbb{R}_+ \to \mathbb{R}_+ \) is defined as
\[\Phi_p(t) = \left[1 + \left(\frac{1}{\sigma^2} \right)^p \right]^{1/p} - 1. \]
(2.24)

With this choice, the penalized problem (2.22) to be solved here reads explicitly
\[\text{Minimize } I^\alpha_\Omega(u_\Omega) = |\Omega| + \beta \int_{\Gamma} g \cdot u_\Omega \, ds + \alpha \int_{\tilde{D}} E_\Omega \Phi_p(\Upsilon(\sigma(u_\Omega))) \, dx \quad \text{subject to (2.3)}. \]
(2.25)

Remark 1. Figure 2 shows the graph of function \(\Phi_p \) for different values of \(p \). Note that increasing values of \(p \) make \(\Phi_p \) vary more sharply around \(\Phi_p(\Upsilon(\sigma(u))) = 1 \), i.e. around \(\Upsilon(\sigma(u)) = \sigma^2 \) (the Drucker-Prager cone in stress space) so that the requirement of item (b) above is met by this choice of \(\Phi_p \) if \(p \) is sufficiently large. For increasing values of \(p \) and \(\alpha \), the penalizing term of (2.25) tends to an exact penalty functional, whose value is zero if the stress tensor is bound by the Drucker-Prager cone almost everywhere in \(D \) and \(\infty \) otherwise.

![Figure 2. Function \(\Phi_p \) with \(\sigma = 1 \) for \(p = 2^n, n = 0, \ldots, 6 \).](image-url)
3. Topological derivatives

The unconstrained minimization problem (2.25) will be solved in this paper by the algorithm described in Section 4, which relies fundamentally on the concept of topological derivative. This section provides a closed formula for the topological derivative of the penalized objective functional of (2.25) to be used in the algorithm. Before presenting the closed formula itself, a brief discussion on the relatively recent concept of topological derivative appears to be convenient and should be helpful to those not yet familiar with the idea.

3.1. The topological derivative concept. The notion of topological derivative was introduced by Sokolowski & Zochowski [30]. It extends the conventional definition of derivative to functionals whose variable is a geometrical domain subjected to singular topology changes. The idea can be introduced by considering a generic functional $G(\Omega)$ of a given domain Ω and assuming that Ω is subject to topology changes consisting, say, of the introduction of a circular hole of radius ε centered at an arbitrary point $\hat{x} \in \Omega$. The topologically changed domain, denoted $\Omega_\varepsilon(\hat{x})$, is the set defined as (refer to Fig. 3)

$$\Omega_\varepsilon(\hat{x}) = \Omega \setminus B_\varepsilon(\hat{x}), \quad (3.1)$$

where $B_\varepsilon(\hat{x})$ denotes the closure of the domain of the inserted hole. The topological derivative of the functional G exists if its value $G(\Omega_\varepsilon)$ for the topologically perturbed domain Ω_ε can be expressed as a sum

$$G(\Omega_\varepsilon(\hat{x})) = G(\Omega) + f(\varepsilon) D_T G(\hat{x}) + o(f(\varepsilon)), \quad (3.2)$$

of the functional $G(\Omega)$ evaluated for the original domain Ω, a term $f(\varepsilon) D_T G(\hat{x})$ that varies linearly with a function $f(\varepsilon)$ and a term $o(f(\varepsilon))$ that vanishes faster than $f(\varepsilon)$. The function $f : \mathbb{R}_+ \to \mathbb{R}_+$ must be such that $f(\varepsilon) \to 0$ when $\varepsilon \to 0_+$. The right hand side of (3.2) is named the topological asymptotic expansion of G and the field $D_T G : \Omega \to \mathbb{R}$ is the topological derivative of the functional G evaluated at the original domain Ω for the considered type of topological perturbation (the introduction of a circular hole). The topological derivative $D_T G$ itself can be expressed as

$$D_T G(\Omega) = \lim_{\varepsilon \to 0_+} \frac{G(\Omega_\varepsilon) - G(\Omega)}{f(\varepsilon)}. \quad (3.3)$$

The analogy between (3.2,3.3) and the corresponding expressions for a conventional derivative should be noted.

To illustrate the application of this concept, let us consider the (very simple) functional

$$G(\Omega) := |\Omega| = \int_\Omega dx, \quad (3.4)$$

with Ω subject to the class of topological perturbations referred to in the above (circular holes). For two-dimensional domains Ω the functional $G(\Omega)$ represents the area of the domain. The expansion (3.2) in this case can be obtained trivially as

$$G(\Omega_\varepsilon) = |\Omega_\varepsilon| = \int_\Omega dx - \int_{B_\varepsilon} dx = G(\Omega) - \pi \varepsilon^2, \quad (3.5)$$

and the topological derivative $D_T G$ and function f promptly identified as

$$D_T G = -\pi; \quad f(\varepsilon) = \varepsilon^2. \quad (3.6)$$

In this particular case, $D_T G$ is independent of \hat{x} and the rightmost term of the topological asymptotic expansion (3.2) is identically zero.

3.2. The topological derivative of the penalized objective functional. In the minimization problem (2.25) the hold-all domain is split as the union of a subset Ω occupied by the hard phase and its complement $D \setminus \Omega$ occupied by the soft phase. In this case, it is appropriate to consider topological perturbations consisting of the introduction a circular inclusion of domain $B_\varepsilon(\hat{x})$ made of hard phase material if the perturbation point \hat{x} lies in the soft phase domain and made of soft phase material if \hat{x}
lies in the hard phase domain. The corresponding perturbed structural domain \(\Omega_\varepsilon(\hat{x}) \), i.e. the domain of the hard phase after the introduction of the inclusion, reads

\[
\Omega_\varepsilon(\hat{x}) = \begin{cases}
\Omega \setminus B_\varepsilon(\hat{x}) & \text{if } \hat{x} \in \Omega, \\
(\Omega \cup B_\varepsilon(\hat{x})) \cap D & \text{if } \hat{x} \in D \setminus \Omega.
\end{cases}
\] (3.7)

The topological derivative of the unconstrained objective functional (2.25) is given by the sum

\[
D_T I_\Omega^I = D_T |\Omega| + \beta D_T K_\Omega + \alpha D_T J_\Omega,
\] (3.8)

of topological derivatives of each term on the right hand side of (2.25) with respect to the class of topological perturbations defined by (3.7). The first term \(D_T |\Omega| \) above is trivial. Its derivation is completely analogous to that of the topological derivative (3.6) of the same functional calculated for topological perturbations in the form of circular holes. Here we have

\[
D_T |\Omega| = \begin{cases}
-\pi & \text{if } \hat{x} \in \Omega, \\
\pi & \text{if } \hat{x} \in D \setminus \Omega.
\end{cases}
\] (3.9)

The topological derivative \(D_T K_\Omega \) of the compliance functional is known. It has been used in the context of structural optimization with topological derivative-based algorithms (refer, for instance, to [4, 20] for a detailed derivation). Its closed formula is

\[
D_T K_\Omega = \pi (E_1 - E_0) (\rho T - I) \sigma(\mathbf{u}_\Omega) \cdot \mathbf{e}(\mathbf{u}_\Omega),
\] (3.10)

where

\[
E_0 = \begin{cases}
E_{\text{hard}} & \text{if } \hat{x} \in \Omega, \\
E_{\text{soft}} & \text{if } \hat{x} \in D \setminus \Omega;
\end{cases} \quad
E_1 = \begin{cases}
E_{\text{soft}} & \text{if } \hat{x} \in \Omega, \\
E_{\text{hard}} & \text{if } \hat{x} \in D \setminus \Omega,
\end{cases}
\] (3.11)

the scalar \(\rho \) is

\[
\rho = \frac{E_1 - E_0}{bE_1 + E_0},
\] (3.12)

the fourth-order tensor \(T \) is the polarization tensor given by

\[
T = b\mathbb{I} + \frac{1}{2} \frac{a - b}{1 + \gamma a} I \otimes I,
\] (3.13)

with \(\gamma \) the elastic modulus contrast

\[
\gamma = \frac{E_1}{E_0},
\] (3.14)

and the constants \(a \) and \(b \) given by

\[
a = \frac{1 + \nu}{1 - \nu}; \quad b = \frac{3 - \nu}{1 + \nu}.
\] (3.15)

The derivation of the topological derivative \(D_T J_\Omega \) of the penalty functional (2.20) for the Drucker-Prager stress constraint is rather involved. For the sake of clarity we limit ourselves to presenting only the final
and its complement as \(\psi \) Mises stress constraint \([8] \) and in the topology optimization of elastic microstructures \([7]\). It was proven very successful in the context of unconstrained structural optimization based on the topological derivative of the objective function and on a level-set representation of the problem \((2.3)\) and the adjoint equation \((3.23)\). The algorithm relies essentially on an optimality criterion Formula \((3.16)\) is valid for all \(\hat{\sigma} \).

\[
D_{T,\Omega} = -\pi(E_1 - E_2)\{pk_1(\Omega) T(B\sigma(\Omega) + \xi I) \cdot c(\nu_1) + (\rho T - I)\sigma(\Omega) \cdot c(\nu_1)\} + \pi E_1 \chi_{\bar{D}}(\Phi(\zeta(\nu_1))) + \pi E_1 \chi_{\bar{D}}(\Phi(\zeta(\nu_1))) + \pi E_0 \chi_{\bar{D}}(\Phi(\zeta(\nu_1))) - \pi E_0 \chi_{\bar{D}}(\Phi(\zeta(\nu_1))) \),
\]

where

\[
k_1(\nu_1) = \chi_{\bar{D}} \Phi'(\Upsilon(\sigma(\nu_1))),
\]

with \(\chi_{\bar{D}} \) the characteristic function of \(\bar{D} \):

\[
\chi_{\bar{D}}(x) = \begin{cases}
1 & \text{if } x \in \bar{D} \\
0 & \text{otherwise.}
\end{cases}
\]

The functions \(\zeta_1, \zeta_2 \) and \(\Psi_\rho \) are given by

\[
\zeta_1(\nu_1) = \Upsilon(\sigma(\nu_1)) - \rho [\hat{B}\sigma(\nu_1) \cdot T\sigma(\nu_1) + 2\eta \sigma \text{tr}(T\sigma(\nu_1))] + \rho^2 \frac{1}{2} \hat{B}T\sigma(\nu_1) \cdot T\sigma(\nu_1),
\]

\[
\zeta_2(\nu_1) = (5 - 8\eta^2)(2\sigma(\nu_1) \cdot \sigma(\nu_1) - \text{tr}^2 \sigma(\nu_1)) + 3\left(\frac{\sigma_1 + \sigma_2}{4}\right)^2 \text{tr}^2 \sigma(\nu_1),
\]

and

\[
\Psi_\rho(\sigma(\nu_1)) = \int_0^1 \int_0^\pi \frac{1}{L^2} \Phi(\Upsilon(\sigma(\nu_1)) + \Delta(t, \theta)) - \Phi(\Upsilon(\sigma(\nu_1))) - \Phi'(\Upsilon(\sigma(\nu_1)) \Delta(t, \theta))d\theta dt, \tag{3.21}
\]

with

\[
\Delta(t, \theta) = \rho^2 \left\{ (\sigma_1 - \sigma \xi) \left[(\sigma_1 + \sigma \xi) \left(2(1 - 4\eta^2) + 3\frac{1 + b_\xi}{1 + a_\xi} \right) + 8\eta \sigma \right] \cos \theta + 3(\sigma_1 - \sigma \xi)^2 (2 - 3t) \cos 2\theta \right] + (\rho \xi)^2 \left[3(\sigma_1 + \sigma \xi)^2 \left(\frac{\sigma_1 + b_\xi}{1 + a_\xi} \right)^2 + (\sigma_1 - \sigma \xi)^2 (3(2 - 3t)^2 + 4(1 - 4\eta^2) \cos^2 \theta) + \frac{6(1 + b_\xi)}{1 + a_\xi}(\sigma_1^2 - \sigma_2^2)(2 - 3t) \cos \theta \right], \tag{3.22}
\]

where \(\sigma_1 \) and \(\sigma_2 \) are the eigenvalues of \(\sigma(\nu_1) \). The field \(\nu_1 \) in \((3.16)\) is the solution of the adjoint equation

\[
\begin{cases}
-\text{div} \Sigma(\nu_1) = +\text{div} (E_0 k_1(\nu_1)(B\sigma(\nu_1) + \xi I)) & \text{in } D, \\
\nu_1 = 0 & \text{on } \Gamma_D, \\
\Sigma(\nu_1)n = -E_0 k_1(\nu_1)(B\sigma(\nu_1) + \xi I)n & \text{on } \Gamma_N \cup \Gamma_0.
\end{cases} \tag{3.23}
\]

Formula \((3.16)\) is valid for all \(\hat{x} \in D \setminus \partial \bar{D} \setminus \partial \Omega \).

4. THE TOPOLOGY DESIGN/OPTIMIZATION ALGORITHM

The numerical solution of the penalized minimization problem \((2.25)\) is undertaken here by the algorithm proposed in \([5]\) in conjunction with a finite element approximation of the elastic boundary value problem \((2.3)\) and the adjoint equation \((3.23)\). The algorithm relies essentially on an optimality criterion based on the topological derivative of the objective function and on a level-set representation of the structure domain. It was proven very successful in the context of unconstrained structural optimization and optimization in problems of flow through porous media \([5]\), in structural optimization under a von Mises stress constraint \([8]\) and in the topology optimization of elastic microstructures \([7]\).

With the level-set representation, the current structure domain \(\Omega \) is characterized by a level-set function \(\psi \in L^2(D) \) as

\[
\Omega = \{ x \in D : \psi(x) < 0 \}, \tag{4.1}
\]

and its complement as

\[
D \setminus \overline{\Omega} = \{ x \in D : \psi(x) > 0 \}. \tag{4.2}
\]
Crucial in the present context is the definition of the function
\[g(x) := \begin{cases} -D_T I_{\Omega}^n(x) & \text{if } \psi(x) < 0 \\ D_T I_{\Omega}^n(x) & \text{if } \psi(x) > 0. \end{cases} \] (4.3)

Here it should be noted that a negative (positive) value of the topological derivative \(D_T I_{\Omega}^n(x) \) at a point \(x \in D \) indicates that the introduction of an infinitesimal inclusion centered at that point produces a perturbed domain whose objective functional value is smaller (greater) than that of the original domain. Then, a sufficient condition of local optimality in this context is that
\[D_T I_{\Omega}^n(x) > 0 \quad \forall x \in D. \] (4.4)

That is, no infinitesimal inclusion in \(D \) can cause a reduction in the value of the objective functional.

The present algorithm relies on the fact that, in view of definition (4.3), a sufficient condition for (4.4) to hold is
\[\exists \tau > 0 \quad \text{s.t.} \quad g = \tau \psi, \] (4.5)
or, equivalently,
\[\theta := \arccos \left(\frac{\langle \varrho, \psi \rangle}{\| \varrho \|_{L^2(D)} \| \psi \|_{L^2(D)} } \right) = 0, \] (4.6)

where \(\theta \) is the angle between the vectors \(\varrho \) and \(\psi \) in \(L^2(D) \). The algorithm itself aims to generate a sequence \(\{ \psi_i \} \) of level set functions (a sequence of structural domains \(\{ \Omega_i \} \) that will produce for some iteration \(n \) a domain \(\Omega_n \) such that (4.6) is satisfied to within a given small numerical tolerance \(\epsilon_\theta > 0 \):
\[\theta_n := \arccos \left(\frac{\langle \varrho_n, \psi_n \rangle}{\| \varrho_n \|_{L^2(D)} \| \psi_n \|_{L^2(D)} } \right) \leq \epsilon_\theta. \] (4.7)

The algorithm is described in the following.

The procedure starts with the choice of an initial guess for the optimal structure domain, i.e. with the choice of a starting level-set function \(\psi_0 \in L^2(D) \). For simplicity, \(\psi_0 \) is chosen as a unit vector of \(L^2(D) \). With \(S \) denoting the unit sphere in \(L^2(D) \), the algorithm is explicitly given by
\[\psi_0 \in S, \]
\[\psi_i = \frac{1}{\sin \theta_{i-1}} \left[\sin((1 - \kappa_i)\theta_{i-1})\psi_{i-1} + \sin(\kappa_i\theta_{i-1})\frac{\varrho_{i-1}}{\| \varrho_{i-1} \|_{L^2(D)} } \right], \] (4.8)

where \(i \) denotes a generic iteration number and \(\kappa_i \in [0,1] \) is a step size determined by a line-search performed at each iteration in order to decrease the value of the objective functional \(I_{\Omega_n}^n \). Note that the right hand side of (4.8) is a convex combination between \(\psi_{i-1} \) and \(\varrho_{i-1} \) and that by construction of the iteration formula we have
\[\psi_i \in S. \] (4.9)

The iterative process is stopped when for some iteration the step size \(\kappa_i \) is smaller than a given numerical tolerance \(\epsilon_\kappa > 0 \):
\[\kappa_i < \epsilon_\kappa. \] (4.10)

That is, when the topology is effectively no longer changing with the iterations. If, at this stage, the optimality condition (4.7) is not satisfied to the desired degree of accuracy, i.e. if
\[\theta_i > \epsilon_\theta, \] (4.11)

then a uniform mesh refinement of the hold-all domain \(D \) is carried out and the iterative procedure is continued.

In the computation of \(D_T I_{\Omega}^n \) according to expression (3.8) the topological derivatives are first computed within the finite elements (at Gauss points) and then extrapolated to nodes. The final discretized version of the field \(D_T I_{\Omega}^n \) used in the iterations is generated by the finite element shape functions with smoothed nodal values obtained in a standard fashion. The level-set functions \(\psi \) and the discretized field \(D_T I_{\Omega}^n \) are generated by the same shape functions used in the finite element approximation of the direct and adjoint boundary value problems (2.3) and (3.23). The material properties \(E_{\text{hard}} \) or \(E_{\text{soft}} \) are assigned to nodes of the mesh depending on whether they are at points with \(\psi < 0 \) (hard phase) or \(\psi > 0 \) (soft phase). In this way, elements crossed by the hard-soft phase interface (defined by \(\psi = 0 \)) will have Young’s moduli between the values \(E_{\text{hard}} \) and \(E_{\text{soft}} \), obtained by a standard interpolation of the nodal Young’s moduli.
using the element shape functions. Obviously, according to the above procedure, the resolution of the optimal structure domain depends directly on the fineness of the adopted mesh. The overall optimization algorithm is conveniently summarized in Box 1 in pseudo-code format.

Remark 2. The present procedure is not a member of the family known as level-set methods used, for instance, in [3]. The evolution of the level-set function in the so-called level-set method is governed by a Hamilton-Jacobi equation. Here the updated level-set function \(\psi_i \) at iteration \(i \) is obtained according to (4.8) and depends solely on the known level-set \(\psi_{i-1} \), the value \(\kappa_i \), that produces a decrease in the value of the objective functional \(I_{\Omega_i} \), and the corresponding function \(g_{i-1} \), which is constructed from the topological derivative field \(D_T I_{\Omega_{i-1}}^\alpha \) for the known topology of iteration \(i-1 \). The computation of these quantities is straightforward and their computational implementation is simple.

Remark 3. The only algorithmic parameters in addition to the tolerances \(\epsilon_0 \) and \(\epsilon_\kappa \) required by the present optimization algorithm are the penalty coefficient \(\alpha \), the penalty function parameter \(p \) and the compliance functional weighting factor \(\beta \). The parameters \(\alpha \) and \(p \) are chosen as large as possible and this choice is limited solely by numerical instabilities that result from excessively large values. Note, in particular, that no artificial parameters or post-processing strategies are required throughout the iterations. This is in sharp contrast with existing SIMP-based structural optimization strategies and follows as a natural consequence of the use of the concept of topological derivative. This concept provides a rigorous mathematical framework for the treatment of topology changes typical of structural optimization procedures.

Box 1: Topological derivative-based algorithm for structural optimization with stress constraints.

(i) Initialize mesh counter, \(j \leftarrow 1 \); Generate a mesh of a chosen characteristic element size \(h_j \) for the hold-all domain \(D \).

(ii) Initialize iteration counter, \(i \leftarrow 0 \); Choose an initial level-set function \(\psi_0 \in \mathcal{S} \) defining the initial guess \(\Omega_0 \subset D \) for the optimal structure domain.

(iii) Obtain the discretized fields \(u_{\Omega_i}, \) and \(v_{\Omega_i} \), by solving, respectively, the elastic equilibrium problem (2.3) and the adjoint equation (3.23) for the current \(\Omega_i \) with the current mesh \(h_i \).

(iv) Compute the topological derivative field \(D_T I_{\Omega_i}^\alpha \) using expressions (3.8–3.22) and performing a standard nodal averaging procedure.

(v) Obtain the function \(g_i \), according to (4.3) using the nodal values of \(D_T I_{\Omega_i}^\alpha \) and compute

\[
\theta_i = \arccos \left(\frac{\langle g_i, \psi_i \rangle}{\|g_i\|_{L^2(\Omega_i)} \|\psi_i\|_{L^2(\Omega_i)}} \right)
\]

(vi) IF \(\theta_i \leq \epsilon_0 \) THEN

EXIT (local optimum found!)

ELSE IF \((i > 0 \text{ AND } \kappa_i < \kappa_\epsilon \text{ AND } \theta_i > \epsilon_\theta) \) THEN

Increment mesh counter, \(j \leftarrow j + 1 \);

Generate a new (finer) mesh for \(D \) with element size \(h_j < h_{j-1} \);

GOTO (iii)

(vii) Increment iteration counter, \(i \leftarrow i + 1 \); Update level-set function:

\[
\psi_i = \frac{1}{\sin \theta_{i-1}} \left[\sin((1 - \kappa_i)\theta_{i-1})\psi_{i-1} + \sin(\kappa_i\theta_{i-1}) \frac{\theta_i}{\|g_i\|_{L^2(\Omega_i)}} \right]
\]

and compute the corresponding penalized objective functional \(I_{\Omega_i}^\alpha \) according to (2.2).

(vii.a) In the above, perform a line-search to find \(\kappa_i \) such that

\[
I_{\Omega_i}^\alpha < I_{\Omega_{i-1}}^\alpha
\]

(viii) GOTO (iii)

5. Numerical Examples

The effectiveness of the algorithm described above is demonstrated in this section by means of numerical examples. In order to avoid numerical ill-conditioning of the optimization problem we use in all examples,
without loss of generality, a normalized version of the objective functional of (2.25) defined as

\[I^\Omega(u_\Omega) = \frac{\|\Omega\|}{V_0} + \frac{\beta}{K_0} \int_{\Gamma_N} g \cdot u_\Omega \, ds + \alpha \int_D E_{\Omega} \Phi_p(\Gamma(\sigma(u_\Omega))) \, dx, \]

(5.1)

with the normalizing factors \(V_0 \) and \(K_0 \) being respectively the area and the compliance functional of the initial guess \(\Omega_0 \) for the optimum structure domain, here taken as \(\Omega_0 = D \). In all the examples, we adopt the Young’s modulus contrast \(E_{\text{soft}}/E_{\text{hard}} = 10^{-3} \).

5.1. Wall under shear load. The first example consists of wall under shear load (see Fig. 4).

The hold-all domain is a rectangle of size \(2 \times 1 \) clamped at its bottom edge. The loading consists of a unit uniformly distributed horizontal force \(g = (1, 0) \) applied along a central portion of length 0.2 of the top edge of the hold-all domain. The material parameters \(E_{\text{hard}} = 1.0 \), \(\nu = 0.3 \) and \(\overline{\sigma} = 1 \) are used. For the penalty coefficient and compliance weighting factor we choose \(\alpha = 25 \) with \(p = 32 \) and \(\beta = 1/4 \). The optimization procedure is carried out for three different values of \(\eta \). Firstly we use \(\eta = 0 \), corresponding to a von Mises stress constraint and then adopt \(\eta = 0.4 \) and \(\eta = -0.4 \). The positive \(\eta \) corresponds to a standard Drucker-Prager material with yield strength greater in compression than in tension. The negative value \(\eta = -0.4 \) models a material with yield strength greater in tension than in compression.

An initial uniform mesh containing 6400 linear triangles and 3321 nodes was adopted to discretize the hold-all domain. During the optimization procedure, one step of uniform mesh refinement of the hold-all domain (refer to item (vi) of Box 1) was required in all cases to achieve convergence with a tolerance \(\epsilon_\theta = 1^\circ \). Convergence was attained in 26 iterations for the von Mises constraint case (\(\eta = 0 \)) and 39 iterations in the other two cases (\(\eta = 0.4 \) and \(\eta = -0.4 \)). The final mesh contains contains 25600 elements and 13041 nodes. The optimal topologies obtained are shown in Fig. 5.
As one would expect, a symmetric structure is obtained under the von Mises constraint. The optimal domains for the other two cases are flipped images of each other and, as expected, under the conventional Drucker-Prager constraint ($\eta = 0.4$) the member under compression (on the right) is bulkier than the member under tensile stresses (on the left).

5.2. **L-bracket**. Now we turn our attention to a classical structural optimization problem containing a geometrical singularity – the L-bracket problem subject to stress constraints. The hold-all domain and loading are illustrated in Fig. 6.
This problem has been studied by a number of authors and various strategies have been proposed for the treatment of the von Mises stress constraint, exclusively in the context of SIMP-based methods of structural optimization (refer to [22] and references therein). The solution of this optimization problem (with a slightly different loading condition to that of Fig. 6) under a von Mises constraint by a topological derivative-based approach has been recently proposed in [8]. Here we show the application of the topological-derivative approach to the case of Drucker-Prager-type constraints. The lengths of the horizontal and vertical branches of the L-bracket are respectively 2 m and 2.5 m measured along their centre lines. Both have identical width of 1 m. The structure is clamped at the top edge and a point load $g = -(0, 40) \text{KN/m}$ is applied to the corner of the right tip. The elastic properties of the structure material are $E_{\text{hard}} = 12500 \text{MPa}$ and $\nu = 0.2$. The Drucker-Prager yield criterion parameters are set as $\eta = -0.3703$ and $\sigma^\star = 63.85 \text{MPa}$. These are chosen so that the Drucker-Prager yield surface matches the compressive and tensile uniaxial yield strengths [13] of a natural wood, given respectively by $f_c = 46.6 \text{MPa}$ and $f_t = 101.4 \text{MPa}$. The stress constraint is not enforced in the white region of radius 0.15 m directly under the point of load application (shown in Fig. 6). The initial (non-uniform) mesh discretizing the hold-all domain has 14236 three-noded triangular elements and 7323 nodes with a higher density of elements around the reentrant corner that gives rise to the stress singularity. Figure 7 shows the optimum structures obtained without and with the enforcement of the Drucker-Prager stress constraint.

![Figure 7. L-bracket. Obtained design for the unconstrained (volume fraction 42.96%) and constrained (volume fraction 46.76%) cases.](image)

In the stress-constrained case, the penalty coefficient adopted in the penalized objective functional was $\alpha = 10^4$ with $p = 32$. In both cases we set $\beta = 1/3$. As in the previous example, one step of uniform mesh refinement (see item (vi) of Box 1) is performed in both cases to achieve convergence. The final mesh here has a total of 58240 elements and 29532 nodes. The convergence tolerance adopted for both unconstrained and stress-constrained problems is $\epsilon_\theta = 1^\circ$ with a total number of iterations required for convergence being 39 and 62, respectively. The evolution of the objective functional, volume fraction and angle θ throughout the iterations of the optimization algorithm is shown in Fig. 8(a–c).
We remark here that the adopted tolerances are quite stringent and a converged design for practical purposes is in fact obtained for the constrained case with the (quite satisfactory) initial mesh at iteration 39. This is the where a sharp variation in θ and I_0^2 is depicted in Figs. 8(a) and 8(c), corresponding to the mesh refinement step. Figure 8(d) shows the history of the worst stress ratio in the structure:

$$\max_{\Omega} \sqrt{\frac{T(\sigma(\Omega))}{\sigma}},$$

whose maximum admissible value is 1. It should be observed that in the stress constrained case shown in Fig. 7(b) the reentrant corner has been rounded by the algorithm. The corresponding worst stress ratio in this case (shown in Fig. 8(d)) is 1.0184 for the converged structural domain – very close to its saturation value of 1. In the unconstrained case, on the other hand, the worst stress ratio blows up when minimizing the compliance due to the geometrical singularity of the reentrant corner.

It is worth noting here that the rounding off of the reentrant corner in the stress-constrained problem has been achieved by the present algorithm in a most natural manner without any added post-processing techniques. This is a mere consequence of the use of the exact formula (3.8) for the topological derivative of the objective functional. This formula gives the exact sensitivity of the penalized objective functional with respect to the considered black-and-white-type topological changes. The only approximation here is the use of a penalty term to enforce the required stress constraint. In SIMP-based methodologies on the other hand, some of the exact information on the sensitivity to black-and-white-type topological changes (i.e. first order terms of the topological asymptotic expansion of the objective functional) is inevitably lost with the introduction of the regularized density field that approximates the sharp black-white transition. The enforcement of stress constraints with such methods poses a more significant challenge and requires, for

\[\]
instance, the use of post-processing techniques to retrieve stresses. In this context, many such procedures have been proposed and used with success in a number of stress-constrained problems (a recent overview is provided in [22]).

5.3. Bridge design. This last example considers the design of a bridge. The hold-all domain is a rectangle 180 m long and 60 m high illustrated in Fig. 9.

The bridge is assumed clamped at the two bottom supports of equal length \(a = 9 \) m. A uniformly distributed traffic load \(g = -(0, 400) \) KN/m\(^2\) is applied to the edge of the dark strip of height \(h = 3 \) m indicated in Fig. 9 that represents the road and will remain unchanged throughout the optimization process. The strip is positioned at a distance \(c = 27 \) m from the top of the hold-all domain. The material properties are \(E_{\text{hard}} = 27500 \) MPa and \(\nu = 0.2 \). For the purpose of comparison, the optimization procedure is carried for two cases: (a) No stress constraints \((\alpha = 0) \), and (b) The Drucker-Prager stress constraint with yield strength parameters \(\eta = 0.417 \) and \(\tau^* = 5.05 \) MPa. These parameters are obtained from the Drucker-Prager biaxial fit model [13] to match a tensile and compressive yield strength of \(f_c = 30.5 \) MPa and \(f_t = 2.75 \) MPa respectively. For the stress-constrained case we adopt the penalty coefficient \(\alpha = 10^3 \) and in both cases we choose \(\beta = 1/10 \) and the convergence tolerance \(\epsilon_\theta = 1^\circ \). The stress constraint is not enforced within the white region of size \(15 \times 15 \) m adjacent to the bottom supports. Due to symmetry, only half of the hold-all domain is discretized. The initial (uniform) mesh has 4800 elements and 2501 nodes. In both cases, two steps of uniform mesh refinement are performed leading to a final mesh of 76800 and 38801 nodes. Figure 10 shows the optimized topologies obtained for the two cases.

The total number of iteration required for convergence was 16 and 13, respectively, for the unconstrained and constrained cases. Note that the unconstrained optimization results in the well-known
tie-arch bridge design. In this design some structural members are under tensile and others under compressive dominant stresses. The stress-constrained optimization with the Drucker-Prager criterion, on the other hand, results in a radically different design where all members are subject to compressive dominant stresses. Such designs are typical in practice for materials whose compressive strength is much higher than their tensile strength (such as concrete). Its automatic generation here clearly demonstrates the success of the proposed topology optimization procedure.

6. Conclusion

This paper has extended the result derived in [8] to incorporate the Drucker-Prager stress constraint within a topological derivative-based algorithm for topology optimization of elastic structures. To the authors’ knowledge this is the first paper to report the use of the Drucker-Prager yield criterion as a constraint in topology optimization problems. In this context a penalty functional has been proposed to enforce the point-wise stress constraint and its corresponding topological derivative has been derived in detail. The overall algorithm, which uses the topological derivative to indicate the descent direction in conjunction with a level-set representation of the structure domain, is of simple computational implementation. In particular, it does not feature post-processing procedures of any kind and only a minimal number of user-defined algorithmic parameters are needed. Numerical examples have demonstrated the effectiveness and efficiency of the algorithm in the solution of topology optimization problems under the considered class of constraints. The algorithm was shown, for instance, to efficiently handle topology optimization with materials displaying strong asymmetry in their tensile and compressive uniaxial yield strengths. From a practical standpoint, we believe this fact to be particularly relevant in that it opens the possibility for the automatic design/optimization of structures made of a much wider range of materials than that for which stress-constrained topology optimization has been possible so far.

Appendix A. Topological sensitivity analysis of the Drucker-Prager stress penalty functional

The topological derivative of the penalty functional J_Ω defined in (2.20) is derived. We consider topological perturbations of Ω obtained with the introduction of circular inclusions $\omega_\varepsilon(\hat{x}) := B_{\varepsilon}(\hat{x})$ of radius ε and center at $\hat{x} \in D \setminus \partial \Omega$, as defined in (3.7). Refer to Fig. 11. Possibly shifting the origin of the coordinate system, we assume henceforth for simplicity that $\hat{x} = 0$. For all $\varepsilon \geq 0$, the state equations can be rewritten:

$$
\begin{aligned}
-\text{div} \left(\gamma_\varepsilon \sigma (u_\varepsilon) \right) &= 0 & \text{in} & & D, \\
u_\varepsilon &= 0 & \text{on} & & \Gamma_D, \\
\gamma_\varepsilon \sigma (u_\varepsilon)n &= g & \text{on} & & \Gamma_N, \\
\sigma (u_\varepsilon)n &= 0 & \text{on} & & \Gamma_0.
\end{aligned}
$$

(A.1)

where we have introduced the notations $u_\varepsilon := u|_\Omega$, and

$$
\gamma_\varepsilon = \begin{cases}
\gamma_0 & \text{in} & D \setminus \omega_\varepsilon, \\
\gamma_1 & \text{in} & \omega_\varepsilon.
\end{cases}
$$

(A.2)

We assume that $\gamma_0 := E_\Omega$ and $\gamma_1 = \gamma E_\Omega$, with the contrast γ given by (3.14), are two positive functions defined in D and constant in a neighborhood of \hat{x}.

In order to solve (2.22), we are looking for an asymptotic expansion, named as topological asymptotic expansion, of the form

$$
I^{\Omega}_T(u_\varepsilon) - I^{\Omega}_T(u_0) = f(\varepsilon)D_T I^{\Omega}_T + o(f(\varepsilon))
$$

(A.3)

where $u_0 := u|_\Omega$, $f : \mathbb{R}_+ \to \mathbb{R}_+$ is a function that goes to zero with ε, and $D_T I^{\Omega}_T : D \to \mathbb{R}$ is the so-called topological derivative of the functional I^{Ω}_T. Since such an expansion is assumed to be known for the objective functional I_Ω, we subsequently focus on the penalty functional J_Ω. We adopt the simplified notation:

$$
J_\varepsilon(u) := J_{\Omega,\varepsilon}(u) = \int_D \gamma_\varepsilon \Phi(\sigma(u)) dx.
$$

(A.4)

We follow the approach described in [6] for the Laplace problem. Here, the calculations are more technical, but the estimates of the remainders detached from the topological asymptotic expansion are analogous. Hence we do not repeat these estimates. The reader interested in the complete proofs may refer to [6]. We state the following important result:
Proposition 4. Let \mathcal{V} be a Hilbert space and $\varepsilon_0 > 0$. For all $\varepsilon \in [0, \varepsilon_0)$, consider a vector $u_\varepsilon \in \mathcal{V}$ solution of a variational problem of the form
\[
a_\varepsilon(u_\varepsilon, v) = \ell_\varepsilon(v) \quad \forall v \in \mathcal{V},
\]
where a_ε and ℓ_ε are a bilinear form on \mathcal{V} and a linear form on \mathcal{V}, respectively. Consider also, for all $\varepsilon \in [0, \varepsilon_0)$, a functional $J_\varepsilon : \mathcal{V} \rightarrow \mathbb{R}$ and a linear form $L_\varepsilon(u_0) \in \mathcal{V}'$. Suppose that the following hypotheses hold.

1. There exist two numbers δa and $\delta \ell$ and a function $\varepsilon \in \mathbb{R}_+ \mapsto f(\varepsilon) \in \mathbb{R}$ such that, when ε goes to zero,
\[
(a_\varepsilon - a_0)(u_0, v_\varepsilon) = f(\varepsilon)\delta a + o(f(\varepsilon)),
\]
\[
(\ell_\varepsilon - \ell_0)(v_\varepsilon) = f(\varepsilon)\delta \ell + o(f(\varepsilon)),
\]
\[
\lim_{\varepsilon \to 0} f(\varepsilon) = 0,
\]
where $v_\varepsilon \in \mathcal{V}$ is an adjoint state satisfying
\[
a_\varepsilon(\varphi, v_\varepsilon) = -\langle L_\varepsilon(u_0), \varphi \rangle \quad \forall \varphi \in \mathcal{V}.
\]

2. There exist two numbers δJ_1 and δJ_2 such that
\[
J_\varepsilon(u_\varepsilon) = J_\varepsilon(u_0) + \langle L_\varepsilon(u_0), u_\varepsilon - u_0 \rangle + f(\varepsilon)\delta J_1 + o(f(\varepsilon)),
\]
\[
J_\varepsilon(u_0) = J_0(u_0) + f(\varepsilon)\delta J_2 + o(f(\varepsilon)).
\]
Then we have
\[
J_\varepsilon(u_\varepsilon) - J_0(u_0) = f(\varepsilon)(\delta a - \delta \ell + \delta J_1 + \delta J_2) + o(f(\varepsilon)).
\]

Proof. The reader interested in the proof of the proposition below may refer to [4]. \qed

The bilinear and linear forms associated with Problem (A.1) are classically defined in the space \mathcal{V} defined by (2.6) as follows:
\[
a_\varepsilon(u, v) = \int_D \gamma_\varepsilon \sigma(u) \cdot e(v) \, dx \quad \forall u, v \in \mathcal{V},
\]
\[
\ell_\varepsilon(v) = \int_{\partial \Omega} g \cdot v \, ds \quad \forall v \in \mathcal{V}.
\]

At the point u_0 (unperturbed solution), the penalty functional admits the tangent linear approximation $L_\varepsilon(u_0)$ given by:
\[
\langle L_\varepsilon(u_0), \varphi \rangle = \int_D \gamma_\varepsilon k_1(u_0)(B\sigma(u_0) + \xi \mathbb{I}) \cdot e(\varphi) + \xi \mathbb{I} e(\varphi) \rangle dx \quad \forall \varphi \in \mathcal{V},
\]
where k_1 is defined in (3.17). Then the adjoint state is (a weak) solution of the boundary value problem:
\[
\begin{cases}
-\text{div} (\gamma_\varepsilon \sigma(v_\varepsilon)) = \text{div} (\gamma_\varepsilon k_1(u_0)(B\sigma(u_0) + \xi \mathbb{I})) & \text{in } D, \\
\gamma_\varepsilon \sigma(v_\varepsilon) \cdot n = -[\gamma_\varepsilon k_1(u_0)(B\sigma(u_0) + \xi \mathbb{I})]n & \text{on } \Gamma_N \cup \Gamma_0,
\end{cases}
\]
where $[\gamma_\varepsilon \sigma(v_\varepsilon)]n \in H^{-1/2}(\partial \omega_\varepsilon)^2$ denotes the jump of the normal stress through the interface $\partial \omega_\varepsilon$. Before proceed, we make the following assumptions:

1. For any $r_1 > 0$ there exists $r_2 \in (0, r_1)$ such that every function $u \in H^1(D \setminus \overline{B(\hat{x}, r_2)})$ satisfying
\[
\begin{cases}
-\text{div} (\gamma_0 \sigma(u)) = 0 & \text{in } D \setminus \overline{B(\hat{x}, r_2)}, \\
\gamma_0 \sigma(u)n = 0 & \text{on } \Gamma_D, \\
\gamma_0 \sigma(u)n = 0 & \text{on } \Gamma_N \cup \Gamma_0
\end{cases}
\]
belongs to $W^{1,4}(\hat{D} \setminus \overline{B(\hat{x}, r_1)})^2$.

2. The load g is such that $u_0 \in W^{1,4}(\hat{D})^2$.

Note that, by elliptic regularity, u_0 and v_0 are automatically of class $C^{1,\beta}$, $\beta > 0$, in the vicinity of \hat{x} provided that $\hat{x} \in D \setminus \partial \Omega \setminus \partial \hat{D}$.

Remark 5. The above assumption is satisfied in many situations, including nonsmooth domains, like for instance in the following case:

- D is a Lipschitz polygon,
- $\Gamma_N \cap \partial D = \emptyset$ and $\Gamma_D \cap \partial \tilde{D} = \emptyset$,
- the interface $\partial \Omega \setminus \partial D$ is the disjoint union of smooth simple arcs,
- if a junction point between the interface and ∂D belongs to $\partial \tilde{D}$, then the Young modulus distribution around this point is quasi-monotone (see the definition in [21]); in particular, if only one arc touches ∂D at this point, it is sufficient that the angle defined by these curves in $D \setminus \tilde{D}$ is less than π.

We refer to [21] and the references therein for justifications and extensions.

![Figure 11. Topologically perturbed domain.](image)

A.1. Variation of the bilinear form. In order to apply Proposition 4, we need to obtain a closed form for the leading term of the quantity:

$$ (a_\varepsilon - a_0)(u_0, v_\varepsilon) = \int_{\omega_\varepsilon} (\gamma_1 - \gamma_0) \sigma(u_0) \cdot e(v_\varepsilon) dx. \quad \text{(A.18)} $$

In the course of the analysis, the remainders detached from this expression will be denoted by $E_i(\varepsilon)$, $i = 1, 2, \ldots$. By setting $\tilde{v}_\varepsilon = v_\varepsilon - v_0$, with $v_0 := v_{\Omega \setminus \omega}$, and assuming that ε is sufficiently small so that γ_ε is constant in ω_ε, we obtain:

$$ (a_\varepsilon - a_0)(u_0, v_\varepsilon) = (\gamma_1 - \gamma_0)(\tilde{x}) \left(\int_{\omega_\varepsilon} \sigma(u_0) \cdot e(v_\varepsilon) dx + \int_{\omega_\varepsilon} \sigma(u_0) \cdot e(\tilde{v}_\varepsilon) dx \right). \quad \text{(A.19)} $$

Since u_0 and v_0 are smooth in the vicinity of \tilde{x}, we approximate $\sigma(u_0)$ and $e(v_0)$ in the first integral by their values at the point \tilde{x}, and write:

$$ (a_\varepsilon - a_0)(u_0, v_\varepsilon) = (\gamma_1 - \gamma_0)(\tilde{x}) \left(\pi \varepsilon^2 \sigma(u_0)(\tilde{x}) \cdot e(v_0)(\tilde{x}) + \int_{\omega_\varepsilon} \sigma(u_0) \cdot e(\tilde{v}_\varepsilon) dx + E_1(\varepsilon) \right). \quad \text{(A.20)} $$

As v_ε is solution of the adjoint equation (A.16), then the function \tilde{v}_ε solves

$$ \begin{cases}
- \text{div}(\gamma_\varepsilon \sigma(\tilde{v}_\varepsilon)) = 0 & \text{in } \omega_\varepsilon \cup (D \setminus \tilde{D}), \\
[\gamma_\varepsilon \sigma(\tilde{v}_\varepsilon) n]_{\tilde{v}_\varepsilon} = -(\gamma_1 - \gamma_0) (k_1(u_0)(B\sigma(u_0) + \xi I) + \sigma(v_0)) n & \text{on } \partial \omega_\varepsilon, \\
\tilde{v}_\varepsilon = 0 & \text{on } \Gamma_D, \\
\sigma(\tilde{v}_\varepsilon) n = 0 & \text{on } \Gamma_N \cup \Gamma_0.
\end{cases} \quad \text{(A.21)} $$
We recall that, as before, the boundary value problem (A.21) is to be understood in the weak sense for \(\tilde{v}_e \in H^1(D)^2 \). We set \(S = S_1 + S_2 \), with
\[
S_1 = k_1(u_0)(\tilde{x})(B\sigma(u_0)(\tilde{x}) + \xi I) \quad \text{and} \quad S_2 = \sigma(v_0)(\tilde{x}). \tag{A.22}
\]
We approximate \(\sigma(\tilde{v}_e) \) by \(\sigma(h^e) \) solution of the auxiliary problem:
\[
\begin{align*}
-\operatorname{div}(\sigma(h^e)) & = 0 \quad \text{in} \quad \omega_e \cup (\mathbb{R}^2 \setminus \overline{\omega_e}), \\
[\gamma_e \sigma(h^e)] & = -\gamma(\gamma_1 - \gamma_0)(\tilde{x}) \quad \text{on} \quad \partial \omega_e, \\
\sigma(h^e) & \to 0 \quad \text{at} \quad \infty,
\end{align*} \tag{A.23}
\]
In the present case of a circular inclusion, the tensor \(\sigma(h^e) \) admits the following expression in a polar coordinate system \(r, \theta \):
- for \(r \geq \varepsilon \)
 \[
\sigma_r(r, \theta) = - (\alpha_1 + \alpha_2) \frac{1 - \gamma}{1 + a\gamma} \frac{\varepsilon^2}{r^2} \left(\frac{4\varepsilon^2}{r^2} - 3 \frac{\varepsilon^4}{r^4} \right) \beta_1 \cos \theta \cos 2(\theta + \phi), \tag{A.24}
\]
 \[
\sigma_\theta(r, \theta) = - (\alpha_1 + \alpha_2) \frac{1 - \gamma}{1 + a\gamma} \frac{\varepsilon^2}{r^2} \left(2 \frac{\varepsilon^2}{r^2} - 3 \frac{\varepsilon^4}{r^4} \right) \beta_1 \sin \theta \sin 2(\theta + \phi), \tag{A.25}
\]
- for \(0 < r < \varepsilon \)
 \[
\sigma_r(r, \theta) = (\alpha_1 + \alpha_2) a \frac{1 - \gamma}{1 + a\gamma} \beta_1 \cos \theta \cos 2(\theta + \phi), \tag{A.27}
\]
 \[
\sigma_\theta(r, \theta) = (\alpha_1 + \alpha_2) a \frac{1 - \gamma}{1 + a\gamma} \beta_1 \sin \theta \sin 2(\theta + \phi), \tag{A.28}
\]
\[
\sigma_{r\theta}(r, \theta) = -b \frac{1 - \gamma}{1 + b\gamma} \beta_1 \sin \theta \sin 2(\theta + \phi), \tag{A.29}
\]
Some terms in the above formulas require explanation. The parameter \(\phi \) denotes the angle between the eigenvectors of tensors \(S_1 \) and \(S_2 \),
\[
\alpha_i = \frac{1}{2}(s_i^1 + s_i^2) \quad \text{and} \quad \beta_i = \frac{1}{2}(s_i^2 - s_i^1), \quad i = 1, 2, \tag{A.30}
\]
where \(s_i^j \) and \(s_i^k \) are the eigenvalues of tensors \(S_i \) for \(i = 1, 2 \). In addition, the constants \(a \) and \(b \) are given by (3.15) and \(\gamma \) is the contrast, defined in (3.14).
From these elements, we obtain successively:
\[
\int_{\omega_e} \sigma(u_0) \cdot e(\tilde{v}_e) dx = \int_{\omega_e} \sigma(\tilde{v}_e) \cdot e(u_0) dx = \int_{\omega_e} \sigma(h^e) \cdot e(u_0) dx + \mathcal{E}_2(\varepsilon). \tag{A.31}
\]
Then approximating \(e(u_0) \) in \(\omega_e \) by its value at \(\tilde{x} \) and calculating the resulting integral with the help of the expressions (A.27)-(A.29) yields:
\[
\int_{\omega_e} \sigma(u_0) \cdot e(\tilde{v}_e) dx = \int_{\omega_e} \sigma(h^e) \cdot e(u_0)(\tilde{x}) dx + \mathcal{E}_2(\varepsilon) + \mathcal{E}_3(\varepsilon)
\]
\[
= -\pi \varepsilon^2 \rho (k_1(u_0)\Gamma(B\sigma(u_0) + \xi I) \cdot e(u_0) + T\sigma(u_0) \cdot e(v_0)) (\tilde{x}) + \mathcal{E}_2(\varepsilon) + \mathcal{E}_3(\varepsilon), \tag{A.32}
\]
with \(\rho \) and \(T \) given by (3.12) and (3.13), respectively.

Finally, the variation of the bilinear form can be written as:

\[
(a_\varepsilon - a_0)(u_0, v_\varepsilon) = -\pi \varepsilon^2 (\gamma_1 - \gamma_0)(\overline{d}) \rho \left(k_1(u_0)B(B \sigma(u_0) + \xi I) \cdot e(u_0) + \frac{1}{2} k_1(u_0) \frac{a - b}{1 + \gamma a} \text{tr}(B \sigma(u_0) + \xi I) \text{tr}(e(u_0)) - \frac{b + 1}{\gamma - 1} \sigma(u_0) \cdot e(v_0) + \frac{1}{2} \frac{a - b}{1 + \gamma a} \text{tr}(\sigma(u_0)) \text{tr}(e(v_0)) \right) \overline{x} + (\gamma_1 - \gamma_0)(\overline{x}) \sum_{i=1}^{3} \mathcal{E}_i(\varepsilon).
\] (A.33)

A.2. Variation of the linear form. Since here \(\ell_\varepsilon \) is independent of \(\varepsilon \), it follows trivially that

\[
(\ell_\varepsilon - \ell_0)(v_0) = 0.
\] (A.34)

A.3. Partial variation of the penalty functional with respect to the state. We now study the variation:

\[
V_{j_1}(\varepsilon) = J_\varepsilon(u_\varepsilon) - J_\varepsilon(u_0) - \langle L_\varepsilon(u_0), u_\varepsilon - u_0 \rangle.
\] (A.35)

Thus, in particular

\[
V_{j_1}(\varepsilon) = \int_D \gamma_\varepsilon \left[\Phi(\Upsilon(\sigma(u_\varepsilon))) - \Phi(\Upsilon(\sigma(u_0))) - \Phi'(\Upsilon(\sigma(u_0)))(B \sigma(u_0) \cdot e(u_\varepsilon - u_0) + \xi \text{tr}(e(u_\varepsilon - u_0))) \right] dx.
\] (A.36)

By setting \(\tilde{u}_\varepsilon = u_\varepsilon - u_0 \), we can write:

\[
V_{j_1}(\varepsilon) = \int_D \gamma_\varepsilon \left[\Phi(\Upsilon(\sigma(u_\varepsilon))) + B \sigma(u_0) \cdot e(\tilde{u}_\varepsilon) + \Upsilon(\sigma(\tilde{u}_\varepsilon))) - \Phi(\Upsilon(\sigma(u_0))) - \Phi'(\Upsilon(\sigma(u_0)))(B \sigma(u_0) \cdot e(\tilde{u}_\varepsilon) + \xi \text{tr}(e(\tilde{u}_\varepsilon))) \right] dx.
\] (A.37)

Since \(u_\varepsilon \) is solution of the state equation (A.1), then by difference we find that \(\tilde{u}_\varepsilon \) solves:

\[
\begin{align*}
-\text{div}(\gamma_\varepsilon \sigma(\tilde{u}_\varepsilon)) & = 0 & \text{in} & \omega_\varepsilon \setminus (D \setminus \overline{\omega}), \\
[\gamma_\varepsilon \sigma(\tilde{u}_\varepsilon)]_n & = -(\gamma_1 - \gamma_0) \sigma(u_0)_n & \text{on} & \partial \omega_\varepsilon, \\
\sigma(\tilde{u}_\varepsilon)_n & = 0 & \text{on} & \Gamma_D, \\
[\gamma_\varepsilon \sigma(\tilde{u}_\varepsilon)]_n & = 0 & \text{on} & \Gamma_N \cup \Gamma_0.
\end{align*}
\] (A.38)

By setting now \(S = \sigma(u_0(\overline{x})) \), we approximate \(\tilde{u}_\varepsilon \) by \(h_\varepsilon^S \) solution of the auxiliary problem (A.23). It comes:

\[
V_{j_1}(\varepsilon) = \int_D \gamma_\varepsilon \left[\Phi(\Upsilon(\sigma(u_0))) + B \sigma(u_0) \cdot e(h_\varepsilon^S) + \Upsilon(\sigma(h_\varepsilon^S))) - \Phi(\Upsilon(\sigma(u_0))) - \Phi'(\Upsilon(\sigma(u_0)))(B \sigma(u_0) \cdot e(h_\varepsilon^S) + \xi \text{tr}(e(h_\varepsilon^S))) \right] dx + \mathcal{E}_4(\varepsilon).
\] (A.39)

If \(\overline{x} \in D \setminus \overline{D} \), we obtain easily, using a Taylor expansion of \(\Phi \) and the estimate \(|\sigma(h_\varepsilon^S)\overline{x}| = O(\varepsilon^2) \) which holds uniformly with respect to \(\overline{x} \) a fixed distance away from \(\overline{x} \), that \(V_{j_1}(\varepsilon) = o(\varepsilon^2) \). Thus we assume that \(\overline{x} \in \overline{D} \) (the special case where \(\overline{x} \in \partial \overline{D} \) is not treated). In view of the decay of \(\sigma(h_\varepsilon^S) \) at infinity and the regularity of \(u_0 \) near \(\overline{x} \), we write

\[
V_{j_1}(\varepsilon) = \int_{\mathbb{R}^2} \gamma_\varepsilon \left[\Phi(\Upsilon(\sigma(u_0)))(\overline{x}) + B \sigma(u_0)(\overline{x}) \cdot e(h_\varepsilon^S) + \Upsilon(\sigma(h_\varepsilon^S))) - \Phi(\Upsilon(\sigma(u_0)))(\overline{x})) - \Phi'(\Upsilon(\sigma(u_0)))(\overline{x}) \right] dx + \mathcal{E}_4(\varepsilon) + \mathcal{E}_5(\varepsilon),
\] (A.40)
with \(\gamma^*_\varepsilon(x) = \gamma_1(\tilde{x}) \) if \(x \in \omega_\varepsilon \), \(\gamma^*_\varepsilon(x) = \gamma_0(\tilde{x}) \) otherwise. The above expression can be rewritten as

\[
V_{J1}(\varepsilon) = \int_{\mathbb{R}^2} \gamma^*_\varepsilon \left[\Phi\left(\frac{1}{2} \tilde{B} \cdot S + \frac{2}{2} \eta \sigma(\sigma(h^S_\varepsilon) + \frac{1}{2} \tilde{B} \sigma(\sigma(h^S_\varepsilon) - \frac{1}{2} B \sigma(\sigma(h^S_\varepsilon))\right) dx + E_1(\varepsilon) + E_5(\varepsilon).
\]

(A.41)

We denote by \(V_{J11}(\varepsilon) \) and \(V_{J12}(\varepsilon) \) the parts of the above integral computed over \(\omega_\varepsilon \) and \(\mathbb{R}^2 \setminus \omega_\varepsilon \), respectively. Using the expressions (A.27)-(A.29), we find

\[
V_{J11}(\varepsilon) = \pi \varepsilon^2 \gamma_1(\tilde{x}) \left[\Phi\left(\frac{1}{2} \tilde{B} \cdot S + \frac{2}{2} \eta \sigma(\sigma(h^S_\varepsilon) + \frac{1}{2} \tilde{B} \sigma(\sigma(h^S_\varepsilon) - \frac{1}{2} B \sigma(\sigma(h^S_\varepsilon))\right) dx + E_1(\varepsilon) + E_5(\varepsilon).
\]

(A.42)

Next, we define the function independent of \(\varepsilon \)

\[
S^S_\varepsilon(x) = \sigma(h^S_\varepsilon)(\varepsilon x).
\]

(A.43)

A change of variable yields

\[
V_{J12}(\varepsilon) = \varepsilon^2 \int_{\mathbb{R}^2 \setminus \omega} \gamma_0(\tilde{x}) \left[\Phi\left(\frac{1}{2} \tilde{B} \cdot S + \frac{2}{2} \eta \sigma(\sigma(h^S_\varepsilon) + \frac{1}{2} \tilde{B} \sigma(\sigma(h^S_\varepsilon) - \frac{1}{2} B \sigma(\sigma(h^S_\varepsilon))\right) dx.
\]

(A.44)

We set

\[
\Psi_\rho(S) = \int_{\mathbb{R}^2 \setminus \omega} \left[\Phi\left(\frac{1}{2} \tilde{B} \cdot S + \frac{2}{2} \eta \sigma(\sigma(h^S_\varepsilon) + \frac{1}{2} \tilde{B} \sigma(\sigma(h^S_\varepsilon) - \frac{1}{2} B \sigma(\sigma(h^S_\varepsilon))\right) dx.
\]

(A.45)

The extra term \(\frac{1}{2} \tilde{B} S^S_\rho \cdot S^S_\rho \) has been added so that \(\Psi_\rho(S) \) vanishes whenever \(\Phi \) is linear. Thus we have

\[
V_{J12}(\varepsilon) = \varepsilon^2 \gamma_0(\tilde{x}) \left[\Psi_\rho(S) + \frac{1}{2} \tilde{B} S^S_\rho \cdot S^S_\rho \right] dx.
\]

(A.46)

Using the expressions (A.24)-(A.26), a symbolic calculation of the above integral provides

\[
V_{J12}(\varepsilon) = \varepsilon^2 \gamma_0(\tilde{x}) \left[\Psi_\rho(S) + \frac{1}{4} \pi \rho^2 k_1(u_0)(\tilde{x}) \left((5 - 8 \rho^2)(2 S \cdot S - tr^2 S) + 3 \left(\frac{1 + b_\gamma}{1 + a_\gamma} \right)^2 tr^2 S \right) \right].
\]

(A.47)

Besides, after a change of variable and rearrangements, \(\Psi_\rho(S) \) reduces to (3.21). Finally we obtain:

\[
V_{J1}(\varepsilon) = \pi \gamma_1(\tilde{x}) \left[\Phi\left(\frac{1}{2} \tilde{B} \cdot S + \frac{2}{2} \eta \sigma(\sigma(h^S_\varepsilon) + \frac{1}{2} \tilde{B} \sigma(\sigma(h^S_\varepsilon) - \frac{1}{2} B \sigma(\sigma(h^S_\varepsilon))\right) dx + E_1(\varepsilon) + E_5(\varepsilon).
\]

(A.48)
A.4. Partial variation of the penalty functional with respect to the domain. The last term is treated as follows:

\[
V J_2(\varepsilon) := J_2(u_0) - J_0(u_0) \\
= \int_{\omega_\varepsilon \cap D} (\gamma_1 - \gamma_0)\Phi(T(\sigma(u_0)))dx \\
= \pi \varepsilon^2 \chi_D(\varepsilon)(\gamma_1 - \gamma_0)(\bar{x})\Phi(T(\sigma(u_0))(\bar{x})) + \mathcal{E}_6(\varepsilon) \\
= \pi \varepsilon^2 \chi_D(\varepsilon)(\gamma_1 - \gamma_0)(\bar{x})\Phi\left(\frac{1}{2}BS \cdot S + 2\eta\sigma trS\right) + \mathcal{E}_6(\varepsilon).
\] (A.49)

A.5. Topological derivative. Like in [6] for the Laplace equation, we can prove that the reminders \(\mathcal{E}_i(\varepsilon), i = 1,\ldots, 6\) behave like \(o(\varepsilon^2)\). Therefore, after summation of the different terms according to Proposition 4 and a few simplifications, we arrive at the final formula for the topological asymptotic expansion of the penalty functional, namely

\[
J_2(u_\varepsilon) - J_0(u_0) = \varepsilon^2 D_T J_\Omega + o(\varepsilon^2),
\] (A.50)

with the topological derivative \(D_T J_\Omega\) given by (3.16).

REFERENCES

(S. Amstutz) Laboratoire d'analyse non linéaire et géométrie, Faculté des Sciences, 33 rue Louis Pasteur, 84000 Avignon, France.

E-mail address: samuel.amstutz@univ-avignon.fr

(A.A. Novotny) Laboratório Nacional de Computação Científica LNCC/MCT, Coordenação de Matemática Aplicada e Computacional, Av. Getúlio Vargas 333, 25651-075 Petrópolis - RJ, Brasil.

E-mail address: novotny@lncc.br

(E.A. de Souza Neto) Civil and Computational Engineering Centre, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK

E-mail address: E.deSouzaNeto@swansea.ac.uk