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Abstract. Second-order topological expansions in electrical impedance tomography problems with piecewise
constant conductivities are considered. First-order expansions usually consist of local terms typically involving
the state and the adjoint solutions and their gradients estimated at the point where the topological perturbation is
performed. In the case of second-order topological expansions, non-local terms which have a higher computational
cost appear. Interactions between several simultaneous perturbations are also considered. The study is aimed at
determining the relevance of these non-local and interaction terms from a numerical point of view. A level set based
shape algorithm is proposed and initialized by using topological sensitivity analysis.
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1. Introduction. Electrical Impedance Tomography (EIT) is a non-destructive imaging
technique which has various applications in medical imaging, geophysics and other fields;
see [5] and the references therein. Its purpose is to reconstruct the electric conductivity and
permittivity of hidden objects inside a medium with the help of boundary field measurements.
If we denote by Ω the background medium with Σ its smooth boundary where the currents
are applied, then the commonly used continuum model is

−div(qω∇u) = 0 in Ω, qω∂nu = fω on Σ. (1.1)

Here, u = uω is the electric potential or voltage, and the admittivity qω is given by qω(x) =
σω(x) + iωεω(x), where σω is the electric conductivity, εω is the electric permittivity, ω is
the angular frequency of the applied current, and x ∈ Ω. We also need the conservation-
of-charge-condition

∫
Σ
fω = 0 and the condition

∫
Σ
uω = 0, which amounts to choosing a

"ground" or reference voltage. For further extensions of this continuum model in case of real
experiments, we refer to the survey papers [5, 8] and the references therein.

A widely used solution approach to the inverse problem of identifying q from given
measurement data is to minimize the L2-distance between the potentials uk pertinent to a
certain given number M of applied currents fk and corresponding boundary measurements
mk. Since the problem is known to be severely ill-posed, it is necessary to add a regularization
term to the least-squares term in the objective functional. The resulting minimization problem
then becomes

min
q

M∑
k=1

∫
Σ

(uk(q)−mk)2 + β

∫
Ω

|∇q|, (1.2)

where the first term takes care of matching the given measurements and the second term
implements the regularization with a positive parameter β. Here, uk(q) denotes the solution
of (1.1) with f = fk. The nondifferentiable nature of the regularization term is well-known
to preserve discontinuities, i.e., the interfaces between the background and the inclusions [9].

Several algorithms have been proposed for solving particular situations containing ad-
ditional information on the data or the underlying configuration. For instance, in [2, 6, 7]
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the background medium is assumed smooth (with known conductivity) and containing a cer-
tain number of small inclusions with a higher or lower conductivity. The hypothesis of small
inhomogeneities allows to perform an asymptotic analysis which can be used to design differ-
ent specialized reconstruction algorithms. In the present paper, a similar asymptotic analysis
yields the topological derivative, which helps to detect the location of the inclusions. Another
possible hypothesis requires the conductivity q to be piecewise constant. In this case, the ob-
jects are assumed to have sharp interfaces, thus, enabling a shape optimization approach; see
[9] for a related concept using level set functions for representing the inclusions. Therefore
we may use the tools of shape and topology optimization [22, 23] to determine the number
and positions as well as the shape of potential inclusions. Algorithmically one first uses the
topological derivative for the EIT-objective providing topological information on the regions
with different conductivities. Then, this information is utilized to initialize a shape-sensitivity
based procedure for minimizing the least-squares functional in (1.2).

Most algorithms relying on the topological derivative are based on first-order expansions.
This usually provides a good initial guess for the subsequent shape-based minimization, and
may also be used in an iterative process. However, we have shown in [15] that standard first-
order topological expansions might lead to a wrong initial guess in the case of EIT due to the
non-uniform estimates for the remainder. In fact, in the asymptotic expansion of the least-
squares objective, the remainder becomes singular as the trial inclusion comes close to the
boundary of Ω. This results in a poor approximation of the objective functional. To overcome
this problem, in [15] we considered additional terms in the topological expansion which were
concentrated on the boundary of the domain.

In this paper, we extend this perspective by considering applications of higher-order ex-
pansions. It has been shown already [4, 10] that higher-order topological expansions may
enhance the quality of the reconstruction in inverse problems. Higher-order terms in the
asymptotic expansion of the steady-state voltage potential were studied in [1]. In case of one
inclusion, a higher-order expansion yields a more accurate guess on location and size of the
inclusion. In this paper, the case of the simultaneous creation of several inclusions, possibly
close to the boundary, is studied along with the derivation of corresponding shape deriva-
tives and their numerical realization in EIT. The pertinent asymptotic expansion provides
interesting information on interactions of inclusions. These interactions only appear in the
expansion starting from the second-order terms. It is indeed well-known that the first-order
term obtained for a set of several inclusions is merely the sum of the first-order terms coming
from each inclusion considered separately. Interestingly, the obtained formula for the higher-
oder topological derivative raises several questions from the algorithmic and theoretical point
of view, which could be the topic of further research.

The rest of the paper is organized as follows. In section 2 the EIT problem with a piece-
wise constant conductivity is described and the corresponding shape functional is introduced.
In section 3 the notion of topological derivative for the EIT problem is first defined. Then
the asymptotic expansion of the perturbed solution of the EIT problem is performed and used
further to obtain the expansion of the shape functional introduced in section 2. In section 4,
the shape and conductivity derivatives, which will be used later in our algorithm, are derived.
In section 5 a report on numerical tests is given.

2. The EIT problem. In this paper we consider the case where the conductivity q is
real, which corresponds to the static regime ω = 0 in (1.1). Let Ω be a bounded domain in
RN , N ≥ 2, with smooth boundary Σ. We assume that Ω contains material with electrical
conductivity qΩ(x) ≥ q̄ > 0 for all x ∈ Ω. Then the electrical potential u satisfies

−div(qΩ∇u) = 0 in Ω, qΩ∂nu = f on Σ, (2.1)
2



where f ∈ H−1/2(Σ) is an applied current density on Σ satisfying the conservation of charge
〈f, 1〉H−1/2(Σ),H1/2(Σ) = 0. The EIT problem consists in finding the electrical conductivity
qΩ inside Ω using a set of given values of applied current densities fk, k = 1, . . . ,M on Σ,
where M is a positive integer, and the corresponding electrical potentials uk on Σ.

Here we assume that the conductivity is piecewise constant, i.e., there are a background
conductivity q0 > 0 and an unknown number nq of inclusions with conductivities qi, i =
1, .., nq . Then Ω can be split into nq + 1 disjoint domains Ω0 and Ωi, with conductivities
q0 and qi, i = 1, .., nq , respectively. This yields Ω =

⋃nq

i=0 Ωi with Σ ∩ Γi = ∅, where
Γi = ∂Ωi. We then have qΩ =

∑nq

i=0 qi1Ωi
. Due to the particular form of q the regularization

term becomes
∫

Ω
|∇qΩ| =

∑nq

i=1 |q0−qi|P(Γi), where P(Γi) stands for the perimeter of Ωi.
Therefore, the EIT problem is reduced to solving the following minimization problem which
depends only on Ωi and the scalar values qi, i = 1, .., nq:

minimizeJ ({Ωi, qi}
nq

i=0) =
M∑
k=1

∫
Σ

(uk({Ωi, qi}
nq

i=0)−mk)2 +β

nq∑
i=1

|q0− qi|P(Γi), (2.2)

where uk is the solution of (2.1) with fk, a known boundary current density for k ∈ {1, ..,M},
on the right-hand side. Further, mk is the boundary measurement corresponding to fk. In or-
der to fulfill the compatibility conditions required for the Neumann boundary condition in
(2.1), the measurements must satisfy∫

Σ

mk = 0, k = 1, ..,M. (2.3)

Since the solution of the Neumann problem (2.1) is not unique, we impose∫
Σ

uk = 0, k = 1, ..,M, (2.4)

in order to obtain uniqueness. We also introduce the functional

J({Ωi}
nq

i=1) =
M∑
k=1

∫
Σ

(uk({Ωi}
nq

i=1)−mk)2 + β

nq∑
i=1

|q0 − qi|P(Γi), (2.5)

where the conductivities qi are now assumed to be fixed, while as in (2.2), the functional in
(2.5) still contains the unknown quantities Ωi, i = 1, .., nq . Hence, for fixed conductivities
qi, (2.2) represents a shape optimization problem.

3. Topological derivative. Singular perturbations of domains were first considered the-
oretically in [16, 17] and practically in [12]. This idea was further developed by Sokolowski
and Zochowski [22] and Guillaume and Masmoudi [13], by introducing the topological
derivative. The topological derivative measures the variation of a cost functional depend-
ing on a domain, when a small change in the topology of this domain occurs, for instance
through the creation of a small hole of any shape. Let Ω be an open set in RN , B(x, ε) a ball
of radius ε > 0 centered at x ∈ Ω and define Ωε := Ω \ B(x, ε). If the following expansion
of J(Ωε) exists

J(Ωε) = J(Ω) + ρ(ε)T (x) + o(ρ(ε)), (3.1)

with ρ(ε) → 0 and o(ρ(ε))/ρ(ε) → 0 as ε → 0, then T (x) is called the topological deriva-
tive of J at x. We adapt here a notion, which was originally introduced for structural op-
timization, to the EIT problem. In EIT we do not create "holes" as in structural optimiza-
tion, but we consider local perturbations qε of the conductivity q of the type qε = q0 in Ωε,
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qε = q1 in B(x, ε), and then we seek an expansion similar to (3.1).
In what follows, for the sake of simplicity, we consider only one measurement, i.e. M = 1,
and write q instead of q0 for convenience. We point out that the case of several measurements
is readily deduced from the case M = 1. Now we assume that the domain Ω is perturbed by
introducing several simultaneous inclusions, i.e. Ωε = Ω \

(
∪nq

i=1B
ε
i

)
with Bεi ∩Bεj = ∅ for

i 6= j, where Bεi is a ball of radius ε and center xi ∈ Ω which is associated with the conduc-
tivity qi. Therefore, we are in the framework described in section 2, with Ωε and Bεi corre-
sponding to Ω0 and Ωi from section 2, respectively. We consider ball-shaped inclusions for
simplicity but inclusions of general shapes can be considered as well; see [4, 6, 7, 17, 18, 19].

For the topological derivative of J , we first study the asymptotic expansion (with respect
to ε) of the shape functional J({Bεi }i∈{1,..,nq}) of (2.5). In this framework, we are able to
prove that uε, defined as the solution of (2.1) with qΩ = q1Ωε +

∑nq

i=1 qi1Bε
i
, can be written

as uε = uε1Ωε +
∑nq

i=1 u
ε
i1Bε

i
, with (uε, uεi ), i = 1, 2, ..., nq , the solution of the following

coupled system

−∆uε = 0 in Ωε, q∂nu
ε = f on Σ, q∂nu

ε = qi∂nu
ε
i on ∂Bεi , (3.2)

−∆uεi = 0 in Bεi , uεi = uε on ∂Bεi , (3.3)

Here n stands for the outer unit normal vector to ∂Ωε. The normal derivative is denoted
∂n(·) = ∇x(·) · n. The Neumann problem (3.2) is compatible, since we have

∫
Σ
f = 0 by

definition and
∫
∂Bε

i
qi∂nu

ε
i = −

∫
Bε

i
∆uεi = 0. As the solution of (3.2) is defined only up

to a constant, we impose
∫

Σ
uε = 0 to get uniqueness. In order to compute the topological

derivative of J , we need to perform the asymptotic expansion of uε, and thus of uε and uεi ,
as ε→ 0.

3.1. Preliminary description of the asymptotic procedure. We are looking for an
asymptotic expansion of uε of the type

uε(x) = u0(x)+
nq∑
i=1

Ui(yi) + Vi(yi) +Wi(yi) +
nq∑
j 6=i

Ũ ji (yi)

+g(x)+
nq∑
i=1

Gi(yi)+vε(x),

(3.4)
where x stands for the so-called slow variable in the domain Ω, and yi := ε−1(x − xi) for
the fast variable in the unbounded domain RN \ B1, with B1 the ball of radius 1 and center
O, the origin of a Cartesian coordinate system. The names fast and slow variables refer to
the rapid growth of yi compared to x due to the factor ε−1, which tends to infinity as ε→ 0,
in the definition of yi. Here u0, g and vε are terms of regular type, whereas Ui, Vi,Wi and
Ũ ji are terms of boundary layer type, which depend on the fast variable yi.
The structure of the asymptotic expansion (3.4) comes from general results on asymptotic
expansions originally considered in [16, 17]. In this paper, we use the method of compound
asymptotic expansions introduced in [17]. The first term u0 of expansion (3.4) is the solution
of (3.2)-(3.3) for ε = 0 and corresponds to the unperturbed problem. Inserting u0 into the
singularly perturbed problem (3.2)-(3.3) brings a discrepancy on the inclusions Bεi , which
is compensated at the first, second, and third order by the boundary layers Ui, Vi and Wi,
respectively. When considering only the first-order expansion for the topological derivative,
it is enough to look for the boundary layer Ui, whereas it is necessary to go further in the
expansion of uε for our higher-order asymptotics. When nq > 1, the boundary layer Ui1
leaves a discrepancy on the ball Bεi2 for i2 6= i1, which is compensated by introducing the
boundary layer Ũ i2i1 . Therefore, the term Ũ ji takes into account the interactions between sev-
eral inclusions, and does not appear when nq = 1 or when we stick to first-order expansions.
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This is one of the several interesting features of higher-order expansions.
The boundary layers Ui, Vi,Wi and Ũ ji leave discrepancies on the outer boundary Σ, which
are compensated by the function of regular type g. Then we introduce the boundary layersGi
which correct the discrepancies left by g on the ballsBεi . The last term vε is the remainder for
which estimates can be given. Note that the first terms of the approximation, Ui, Vi,Wi and
Ũ ji , are local terms in the sense that they only depend on the unperturbed solution u0 and of
its derivatives evaluated at xi, whereas the last terms of expansion (3.4), starting from g, are
non-local in the sense that they solve partial differential equations which depend on the posi-
tions xi, i = 1, .., nq . Although this does not raise any problem from the theoretical point of
view, it is apparently an obstacle for numerical realization since the computational cost might
be prohibitive. We will see how we can deal with this issue in the numerical results. In the
corresponding sections, the main observation is that we may determine functions which de-
pend only on the geometry of Ω. Hence, these functions may be computed "off-line", stored
and used later in all subsequent computations.

3.2. Asymptotic expansion of the solution. In what follows, the notationDkφ(xi)(x−
xi)k represents the derivative of order k of a function φ in direction x − xi. Following the
description in section 3.1, the first step of the asymptotic expansion is to approximate uε by
u0, the solution of (3.2) for ε = 0:

−∆u0 = 0 in Ω, q∂nu
0 = f on Σ. (3.5)

The compatibility condition for (3.5) is satisfied, and the uniqueness of the solution follows
from (2.4). Thus, we introduce the restRε = uε − u0 such that

uε = u0 +Rε. (3.6)

Since the solution u0 is harmonic in Ω, it is of class C∞ in the interior of Ω, and we may write
the following expansion of u0 at x ∈ Bεi :

u0(x) = u0(xi)+∇u0(xi)·(x−xi)+
1
2
D2u0(xi)(x−xi)2+

1
3!
D3u0(xi)(x−xi)3+Sui (x),

(3.7)
where the remainder Sui is such that Sui (x) = (4!)−1D4u0(ξi)(x − xi)4 with ξi ∈ [x, xi].
Plugging (3.6) and (3.7) into the Dirichlet conditions in (3.3), and considering that u0 is
harmonic in Ω, we get

uεi (x) = u0(xi) +∇u0(xi) · (x− xi)

+
1
2
D2u0(xi)(x− xi)2 +

1
3!
D3u0(xi)(x− xi)3 + Sui (x) + vεi (x), (3.8)

where the quantity vεi solves

−∆vεi = 0 in Bεi , vεi = Rε in ∂Bεi . (3.9)

At this point we need to investigate the equation satisfied by Rε to continue the asymptotic
expansion. By subtracting (3.2) and (3.5), we obtain:

−∆Rε = 0 in Ωε, q∂nRε = 0 on Σ, q∂nRε = qi∂nu
ε
i − q∂nu0 on ∂Bεi . (3.10)

By using (3.7) and (3.8) in the last equation of (3.10), we have on ∂Bεi

q∂nRε = qi∇u0(xi) · n− εqiD2u0(xi)(n)2 +
ε2

2
qiD

3u0(xi)(n)3

+qi∂nSui − q∂nu0 + qi∂nv
ε
i (3.11)
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where we have used the fact that (x− xi)|∂Bε
i

= −εn. Note that in view of the boundary
condition in (3.9), ∂nvεi in (3.11) actually depends on Rε. The appropriate way to handle
this is to introduce the Steklov-Poincaré operator or Dirichlet-to-Neumann operator Ti. Let
z ∈ H1(Ωε), then Ti : H

1
2 (∂Bεi ) → H−

1
2 (∂Bεi ) is defined as Ti(z|∂Bε

i
) = (∂nẑ)|∂Bε

i
,

where ẑ is the solution of

−∆ẑ = 0 in Bεi , ẑ = z on ∂Bεi . (3.12)

Therefore, ∂nvεi |∂Bε
i

= Ti(Rε), and equation (3.11) becomes

q∂nRε − qiTi(Rε) = (qi − q)
[
∇u0(xi) · n− εD2u0(xi)(n)2 +

ε2

2
D3u0(xi)(n)3 + ∂nSui

]
.

Note that ∂n(·) denotes the operator ∇x(·) · n, which is easily related to the gradient with
respect to yi by ε∇x(·) = ∇yi

(·).
To approximateRε we introduce the boundary layers Ui, Vi,Wi and Ũ ji described in section
3.1. The term Ui is defined as the solution of

−∆yi
Ui = 0 in RN \B1, Ui → 0 at ∞, (3.13)

q∂nUi − qiTi(Ui) = (qi − q)∇u0(xi) · n on ∂B1. (3.14)

Thus, Ui is given by

Ui(ε−1(x− xi)) =
αi

N − 1
εN

‖x− xi‖N
∇u0(xi) · (x− xi), (3.15)

with αi defined as αi = (q− qi)/(q+ qi

N−1 ). The term Vi is defined as the solution of (3.13)
with the boundary condition

q∂nVi − qiTi(Vi) = −ε(qi − q)D2u0(xi)(n)2 on ∂B1. (3.16)

Therefore, Vi is given by

Vi(ε−1(x− xi)) =
βi
N

εN+2

‖x− xi‖N+2
D2u0(xi)(x− xi)2, (3.17)

with βi defined as βi = (q− qi)(q+ 2qi

N )−1. The term Wi is defined as the solution of (3.13)
with the boundary condition

q∂nWi − qiTi(Wi) =
ε2

2
(qi − q)D3u0(xi)(n)3 on ∂B1. (3.18)

Therefore, Wi is given by

Wi(ε−1(x− xi)) = ci
εN+4

‖x− xi‖N+4
D3u0(xi)(x− xi)3, (3.19)

where ci is a constant which does not depend on ε. We do not need to give an explicit
formulation for ci since it will not appear in the formula (3.55)-(3.58) of the topological
derivative. In addition, the term Ũ ji is the solution of (3.13) with the boundary condition

q∂nŨ
j
i − qiTi(Ũ

j
i ) = −(q∂nUj − qiTi(Uj)) on ∂B1. (3.20)
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Note that, according to the definition of Ti and Uj we have Ti(Uj) = ∂nUj |∂Bε
j
, and thus

(3.20) becomes q∂nŨ
j
i − qiTi(Ũ

j
i ) = (qi − q)∂nUj on ∂B1. Let us calculate the gradient of

Uj , namely

∇xUj(ε−1(x−xj)) =
αj

N − 1
εN

‖x− xj‖N

(
I − N

‖x− xj‖2
(x− xj)⊗ (x− xj)

)
∇u0(xj).

(3.21)
On ∂Bεi we set x = xi + εzi, and in the above we observe that for all x ∈ ∂Bεi we have

∇xUj(ε−1(x− xj)) = εNAij∇u0(xj) +O(εN+1), (3.22)

where the matrix Aij is given by

Aij =
αj

N − 1
1

‖xi − xj‖N

(
I − N

‖xi − xj‖2
(xi − xj)⊗ (xi − xj)

)
. (3.23)

Thus, Ũ ji is given by

Ũ ji (ε−1(x− xi)) =
αi

N − 1
ε2N

‖x− xi‖N
Aij∇u0(xj) · (x− xi) +O(ε2N+1). (3.24)

The boundary layers Ui, Vi, Wi and Ũ ji do not satisfy the second equation in (3.10). Con-
sequently, they leave a discrepancy on Σ which will be compensated with the help of the
function g in (3.4) defined in the following way:

−∆g = 0 in Ω, q∂ng = −q∂n
nq∑
i=1

Ui + Vi +Wi +
nq∑
j 6=i

Ũ ji

 on Σ, (3.25)

It can be checked for the Neumann problem (3.25) that the compatibility condition is fulfilled.
REMARK 1. The coefficients of Aij given by (3.23) tend to infinity as ‖xi − xj‖ → 0.

Indeed, in the case of several inclusions, i.e. nq > 1, the asymptotic expansion (3.4) is valid
only for inclusions which are not infinitesimally close to each other. Such a situation would
require a different analysis, like the one in [3]. Thus, in numerical applications, situations
where inclusions are close to each other have to be handled carefully in order to prevent
wrong estimates due to the poor quality of the asymptotic expansion in such a situation.

REMARK 2. Although this is not apparent in the notation, (3.25) depends on {xi}
nq

i=1

through Ui, Vi,Wi and Ũ ji . Thus, computationally g is expensive to obtain since (3.25) has
to be solved for every desirable configuration {xi}

nq

i=1. As a remedy, we introduce a function
h which alleviates the computational load. It depends only on the geometry of Ω and {xi}

nq

i=1

and can be pre-computed and stored, for fixed Ω and a set of possible configurations {xi}
nq

i=1.
For the subsequent analysis, we introduce a vector function h(x, ξ), closely related to the

gradient of the Green’s function as the solution of the boundary value problem

−∆xh(x, ξ) = 0 in Ω, q∂nh(x, ξ) = q∂n
x− ξ
‖x− ξ‖N

on Σ. (3.26)

Note that the compatibility condition for the Neumann problem (3.26) is satisfied. We also
impose the normalization condition

∫
Σ
h(x, ξ) dx = 0 to obtain uniqueness. This allows to

decompose g according to

g(x) = −
nq∑
i=1

αi
N − 1

εN∇u0(xi) · h(x, xi) +O(εN+2). (3.27)
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Concerning g, we are now in a similar situation as we were for u0, i.e., g does not satisfy
the boundary conditions on the boundaries of the holes ∂Bεi . Therefore, we repeat the above
procedure for g. Namely, using a Taylor expansion around xi we get

g(x) = g(xi) +∇g(xi) · (x− xi) + Sgi (x), (3.28)

where the remainder Sgi is such that Sgi (x) = 2−1D2g(ζi)(x− xi)2 with ζi ∈ [x, xi]. Thus,
we define the term Gi in (3.4) as the solution of (3.13) and the boundary conditions

q∂nGi − qiTi(Gi) = (qi − q)∇g(xi) · n on ∂B1. (3.29)

Therefore, Gi can be written as

Gi(ε−1(x− xi)) =
αi

N − 1
εN

‖x− xi‖N
∇g(xi) · (x− xi), (3.30)

To obtain (3.29) we have computed Ti(g) using (3.12), which implies Ti(g) = ∇g(xi) · n+
∂nSgi . Finally, the remainder term vε in the expansion (3.4) satisfies

−∆vε = 0 in Ωε, q∂nv
ε = −q∂n

nq∑
i=1

Gk on Σ, (3.31)

q∂nv
ε − qiTi(vε) = (qi − q)

(
ε3

3!
D4u0(ξi)(n)4 − εD2g(ζi)(n)2

)
(3.32)

+ [−q∂n + qiTi]

∑
k 6=i

Vk +Wk +
∑
l 6=k

Ũ lk

+
∑
k 6=i

Gk

 on ∂Bεi .

3.3. Uniqueness of uε. The solution of (3.31)-(3.32) is not unique, but vε is actually
uniquely defined by the normalization conditions on u0 and uε. Therefore, we decompose
vε in two parts vε = v̂ε + λε, where λε is a constant that has to be determined and v̂ε is the
unique solution of (3.31)-(3.32) which satisfies the normalisation condition (2.4). Taking the
integral over Σ on both sides of (3.4) and using the decomposition of vε we get

λε = −|Σ|−1

∫
Σ

nq∑
i=1

Ui + Vi +Wi +
nq∑
j 6=i

Ũ ji

+ g +
nq∑
i=1

Gi.

For our forthcoming expansion of the functional, we are only interested in the terms of order
O(εN ) in λε. Hence, we define λε =: λε1 + λε2

λε1 = −|Σ|−1

∫
Σ

nq∑
i=1

Ui + g, (3.33)

λε2 = −|Σ|−1

∫
Σ

nq∑
i=1

Vi +Wi +
nq∑
j 6=i

Ũ ji

+
nq∑
i=1

Gi. (3.34)

3.4. Expansion of the tracking-type functional. As noted before, without the loss of
generality we consider here the case of a single measurement, i.e. M = 1. In addition, we
assume that β = 0 in order to neglect the perimeter term which is problematic for topological
sensitivity for the obvious reasons. Rather we capture the latter term by shape sensitivity
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later. Invoking this assumption yields an expansion of the functional of order ε2. Hence, the
shape functional J evaluated at Ωε is equal to

J(Ωε) =
∫

Σ

(uε −m)2. (3.35)

Plugging (3.4) in (3.35) we get

J(Ωε) = J(Ω) +
nq∑
i=1

KUi
+KVi

+KWi
+

nq∑
j 6=i

KeUj
i


+Kg +

nq∑
i=1

KGi
+Kvε +Kλε + L, (3.36)

where Kφ denotes the integral Kφ =
∫

Σ
2φ(x)(u0(x)−m(x)) dx for any function φ and

L =
∫

Σ

 nq∑
i=1

Ui + Vi +Wi +
nq∑
j 6=i

Ũ ji

+ g +
nq∑
i=1

Gi + vε

2

.

Now we analyse each term in (3.36) separately. We start by noting that in view of (2.3)-(2.4)
we have Kλε = 0. Next we introduce the adjoint state p as the solution of

−∆p = 0 in Ω, ∂np = 2(u0 −m) on Σ. (3.37)

Note that the compatibility condition for p is obviously satisfied. Before proceeding to the
calculation of the topological asymptotic expansion, it is convenient to observe the order in ε
of each term of the expansion for uε, which are summarized in Table 3.1 below.

TABLE 3.1
Orders of ε for the terms of expansion (3.4). The orders between parenthesis correspond to the behaviour on

∂Bε
i , while the orders without parenthesis correspond to the behaviour "far" from the inclusions Bε

i .

Ui Vi Wi
eU j

i g Gi λε

N εN (ε1) εN+2(ε2) εN+4(ε3) ε2N (εN+1) εN ε2N (εN+1) εN

N = 2 ε2(ε1) ε4(ε2) ε6(ε3) ε4(ε3) ε2 ε4(ε3) ε2

N = 3 ε3(ε1) ε5(ε2) ε7(ε3) ε6(ε4) ε3 ε6(ε4) ε3

3.4.1. Calculation of KUi . The main tool to proceed the terms Kφ is Green’s formula
and the use of the adjoint state p. We transform the integrals on Σ to integrals on Γεi := ∂Bεi
and in Ωε. The integrals on Ωε always vanish due to the harmonic nature of the functions
under consideration. The boundary integrals on Γεi can be computed explicitely using Taylor
expansions. For the sake of compactness, we do not provide too many details on the calcu-
lation here. Rather we defer complete calculations to the appendix. We start with a general
computation of Kφ for some harmonic function. Using Green’s formula, we find∫

Ωε

−∆p(x)φ(yi) + p(x) ∆φ(yi) dx =
∫

Σ∪
S

j Γε
j

−∂np(x)φ(yi) + p(x) ∂nφ(yi) dx = 0,

(3.38)
9



and, thus, get

Kφ =
∫

Σ

∂np(x)φ(yi) dx = −
∫

Γε
i

∂np(x)φ(yi) dx+
∫

Γε
i

p(x) ∂nφ(yi) dx (3.39)

+
∫

Σ

p(x) ∂nφ(yi) dx−
∑
j 6=i

∫
Γε

j

∂np(x)φ(yi)− p(x) ∂nφ(yi) dx.

Taking φ = Ui, we readily check that∫
Γε

i

∂np(x)Ui(yi) dx = − 1
N − 1

∫
Γε

i

p(x) ∂nUi(yi) dx. (3.40)

Indeed, using an harmonic extension of Ui|Γε
i

in Bεi , and Green’s formula we obtain∫
Γε

i

∂np(x)Ui(yi) dx =
∫

Γε
i

p(x)Ti(Ui)(yi) dx.

Recall that we have already computed ∇xUi(yi) in (3.21). Now, since x− xi = −εn on Γεi
we have ∂nUi(yi)|Γε

i
= −αi∇xu0(xi) · n = −(N − 1)Ti(Ui), which yields (3.40). Using a

third-order Taylor expansion of p at x = xi we compute∫
Γε

i

p(x) ∂nUi(yi) dx = −αi
∫

Γε
i

p(xi)∇xu0(xi) · ndx+ εαi

∫
Γε

i

∇p(xi) · n∇xu0(xi) · ndx

−ε
2

2
αi

∫
Γε

D2p(xi)(n)2∇xu0(xi) · ndx+
ε3

3!
αi

∫
Γε

i

D3p(xi)(n)3∇xu0(xi) · ndx+O(εN+3)

= αi|Bεi |∇xu0(xi) · ∇p(xi) +
αi

2(N + 2)
ε2|Bεi |∇(∆p(xi)) · ∇u0(xi) +O(εN+3).

Note that we have |Bεi | = πε2 for N = 2 and |Bεi | = 4
3πε

3 for N = 3. As the function p is
harmonic and in view of (3.40) we finally obtain

KUi
=

N

N − 1
αi|Bεi |∇xu0(xi) · ∇p(xi) +O(εN+3) (3.41)

+
∫

Σ

p(x) ∂nUi(yi) dx+
∑
j 6=i

∫
Γε

j

∂np(x)Ui(yi) + p(x) ∂nUi(yi) dx. (3.42)

Below we shall see that the first integral in (3.42) will be canceled by a term coming from
Kg . The integrals in the sum in (3.42) vanish according to Green’s formula (3.38).

3.4.2. Calculation of KVi
. We take φ = Vi in (3.39). As in (3.40) we have∫

Γε
i

∂np(x)Vi(yi) dx = − 2
N

∫
Γε

i

p(x) ∂nVi(yi) dx. (3.43)

Using a Taylor expansion for ∂np(x) about xi we get for the main integral

−
∫

Γε
i

∂np(x)Vi(yi) dx = −
∫

Γε
i

∇p(xi) · nVi(yi) dx+ ε

∫
Γε

i

D2p(xi)(n)2 Vi(yi) dx+O(εN+3)

= ε

∫
Γε

i

D2p(xi)(n)2 Vi(yi) dx+O(εN+3)

=
βi
N
ε3

∫
Γε

i

D2p(xi)(n)2D2u0(xi)(n)2 dx+O(εN+3)

=
βi

N(N + 2)
ε2|Bεi |(2D2p(xi) ·D2u0(xi) + ∆p(xi)∆u0(xi)) +O(εN+3)
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Since u0 and p are harmonic functions and using (3.43) we obtain

KVi
=
βi
N
ε2|Bεi |D2p(xi) ·D2u0(xi) +O(εN+3) (3.44)

+
∫

Σ

p(x) ∂nVi(yi) dx+
∑
j 6=i

∫
Γε

j

∂np(x)Vi(yi) + p(x) ∂nVi(yi) dx. (3.45)

As before, we shall see below that the first integral in (3.45) will be canceled by a term coming
from Kg . The integrals in the sum in (3.45) vanish according to Green’s formula (3.38).

3.4.3. Calculation of KWi
. We take φ = Wi in (3.39). The integral on Σ will be

canceled by a term coming from Kg , and the integrals on Γεj for j 6= i vanish as usual. The
integrals on Γεi are of order O(εN+3). Indeed, the main term vanishes since u0 is harmonic
and

ε3

∫
∂Bε

i

D3u0(xi)(n)3∇p(xi) · n =
3

N + 2
ε2|Bεi |∇(∆u0(xi)) · ∇p(xi) = 0.

3.4.4. Calculation of KeUj
i
. Taking φ = Ũ ji and splitting the sum over k, we get∑

j 6=i

KeUj
i

= −
∑
j 6=i

∫
Σ

∂np(x) Ũ ji (yi) dx−
∫

Σ

p(x) ∂nŨ
j
i (yi) dx (3.46)

−
∑
j 6=i

∫
Γε

i

∂np(x) Ũ ji (yi)− p(x) ∂nŨ
j
i (yi) dx (3.47)

−
∑
j 6=i

∑
k 6=i

∫
Γε

k

∂np(x) Ũ ji (yi)− p(x) ∂nŨ
j
i (yi) dx. (3.48)

The sum of integrals (3.48) vanishes according to Green’s formula. The term (3.47) is com-
puted as in (3.41), and we obtain∑

j 6=i

KeUj
i

= −
∑
j 6=i

∫
Σ

∂np(x) Ũ ji (yi) dx−
∫

Σ

p(x) ∂nŨ
j
i (yi) dx (3.49)

+
N

N − 1
αiε

N |Bεi |Aij∇xu0(xj) · ∇p(xi) +O(ε2N+3). (3.50)

The sum of integrals in (3.49) will be canceled by a term in Kg .

3.4.5. Calculation ofKg . Since p and g are both harmonic in Ω we haveKg =
∫

Σ
p(x) ∂ng(x) dx.

According to the boundary condition in (3.25), Kg cancels out the sum of integrals of (3.42),
(3.45) and (3.46).

3.4.6. Calculation of KGi
. In a similar way as for KUi

we get

KGi =
N

N − 1
|Bεi |αi∇xg(xi) · ∇p(xi) +O(ε2N+3) +

∫
Σ

p(x) ∂nGi(yi) dx (3.51)

The integral in (3.51) will be canceled by a term from Kvε . The main term in (3.51) can be
further simplified using (3.27):

N

N − 1
|Bεi |αi∇xg(xi)·∇p(xi) = −

nq∑
j=1

N

(N − 1)2
|Bεi |εNαiαj∇xu0(xj)·∇h(xi, xj)·∇p(xi).

(3.52)
Note that∇h(xi, xj) in (3.52) is an N ×N matrix.
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3.4.7. Calculation of Kvε . Using Green’s formula we get

Kvε =
∫

Σ

p(x) ∂nvε(x) dx−
nq∑
k=1

∫
Γε

k

∂np(x) vε(x)− p(x) ∂nvε(x) dx. (3.53)

The first integral in (3.53) cancels with the integral in (3.51) due to the boundary condition in
(3.31). The lowest-order terms on the right-hand side of (3.32) are of order O(ε3). Thus, the
sum in (3.53) is of order O(εN+3).

3.4.8. Calculation of L. In L, we only keep the terms of orderO(εN ) inside the square,
so that L can be written as L = Lε0 +O(ε2N+1), with

Lε0 =
∫

Σ

(
nq∑
i=1

Ui + g + λε1

)2

dx

=
nq∑
k,l=1

∫
Σ

UkUl +
∫

Σ

g2 + |Σ|(λε1)2 + 2
nq∑
i=1

∫
Σ

gUi + 2λε1

∫
Σ

nq∑
i=1

Ui + g

=
nq∑
k,l=1

∫
Σ

UkUl +
∫

Σ

g2 + 2
nq∑
i=1

∫
Σ

gUi − |Σ|(λε1)2. (3.54)

We further obtain∫
Σ

Ui =
αi

N − 1
εN∇u0(xi) · Ii,

∫
Σ

UkUl =
αkαl

(N − 1)2
ε2N

[
∇u0(xk)⊗∇u0(xl)

]
· Ik,l,

with Ii =
∫

Σ
(x−xi)‖x−xi‖−N and Ik,l =

∫
Σ

x−xk

‖x−xk‖N ⊗ x−xl

‖x−xl‖N . The integrals depending
on g simplify due to (3.27)∫

Σ

g2 =
nq∑
k,l=1

αkαl
(N − 1)2

ε2N
[
∇u0(xk)⊗∇u0(xl)

]
· Ihk,l +O(ε2N+2)

with Ihk,l =
∫

Σ
h(x, xk)⊗ h(x, xl) dx. We also have for the mixed term

nq∑
i=1

∫
Σ

gUi = −
nq∑
i,j=1

αiαj
(N − 1)2

ε2N
[
∇u0(xi)⊗∇u0(xj)

]
· Imi,j +O(ε2N+2)

with Imi,j =
∫

Σ
‖x − xi‖−N (x − xi) ⊗ h(x, xj). Note that λε1 is given by (3.33) and can be

further simplified according to (3.27):

λε1 = −|Σ|−1

nq∑
i=1

αi
(N − 1)

εN∇u0(xi) · Ii +O(εN+2).

REMARK 3. The integrals Ii, Ik,l, Ihk,l and Imi,j in (3.54) depend only on the geometry of
Ω. They can be computed at the beginning of the optimization process and stored for further
computations. The computation of Ii and Ik,l might even be explicit if the geometry of Ω
is simple, e.g. in the case of a rectangle. On the other hand, the computation of Ihi , I

h
k,l

and Imi,j requires to solve (3.26) at every point of the domain, which costly on fine meshes.
Approximation by interpolation from a coarse grid reduces the computational load.
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3.4.9. Expansion of the functional. Gathering the previous results for the expansion of
(3.35) we obtain

J(Ωε) = J(Ω)+
nq∑
i=1

T i0,ε(xi) + T i1,ε(xi) +
nq∑
j=1

T i,j2,ε (xi, xj) +
∑
j 6=i

T i,j3,ε (xi, xj)

+Lε0+O(εN+3),

(3.55)
with

T i0,ε(xi) =
N

N − 1
αi|Bεi |∇u0(xi) · ∇p(xi), (3.56)

T i1,ε(xi) =
βi
N
ε2|Bεi |D2u0(xi) ·D2p(xi), (3.57)

T i,j2,ε (xi, xj) = − N

(N − 1)2
|Bεi |εNαiαj∇u0(xj) · ∇h(xi, xj) · ∇p(xi), (3.58)

T i,j3,ε (xi, xj) =
N

N − 1
αiε

N |Bεi |Aij∇u0(xj) · ∇p(xi), (3.59)

and Lε0 = Lε0({xi}
nq

i=1) given by (3.54).
REMARK 4. Note that the orders of the quantities T ik,ε, k = 0, 1, 2, 3 are T i0,ε(xi) =

O(εN ), T i1,ε(xi) = O(εN+2), T i2,ε(xi) = O(ε2N ), and T i,j3,ε (xi, xj) = O(ε2N ). Since
2N = N +3 for N = 3, T i,j2,ε (xi), T i,j3,ε (xi) and Lε0 are of the same order as the rest in (3.55)
and should not, therefore, be taken into account for numerical tests when N = 3.

REMARK 5. The terms T i,j3,ε (xi, xj) appear in (3.55) only if nq > 1, i.e. if several
objects with different conductivities are to be reconstructed. They correspond to interaction
between the inclusions. In the case N = 3, even if nq > 1, T i,j3,ε (xi, xj) is negligible and is
of the order ε6 of the remainder. Note also that the term T i,j2,ε (xi, xj) is negligible in three
dimensions.

4. Shape and conductivity derivatives. Our higher-order topological derivatives will
be used to efficiently initialize the overall algorithm for detecting the inclusions in EIT. The
non-local attributes of the higher-order terms in the topological derivative (3.55) (see Remark
2) make it difficult to use them in a method using these higher-order expansions iteratively.
We thus rely on the notion of shape derivative [11, 23] based on the velocity method to evolve
the interface obtained using the topological derivative in the initialization phase. In section
4.2, we study the sensitivity of the conductivities with respect to the scalar values qi.

4.1. Shape derivative of the functional. For shape optimization purposes, we consider
a different framework than for the topological derivative. For this purpose, we introduce the
domains Ω∗ = Ω \

(
∪nq

i=1Ωi
)

with Ωi ∩ Ωj = ∅ for i 6= j, and still use Σ = ∂Ω and
Γi = ∂Ωi. The analogues of problems (3.2) and (3.3) in the domains Ωi and Ω∗ are

−∆u = 0 in Ω∗, q∂nu = f on Σ, q∂nu = qi∂nui on Γi, (4.1)
−∆ui = 0 in Ωi, ui = u on Γi. (4.2)

In the framework of the velocity method, we choose V : RN → RN to be a given smooth
vector field with compact support in RN . According to [23], the shape derivatives u′i and u′

of ui and u, respectively, solve the following systems

−∆u′ = 0 in Ω∗, q∂nu
′ = 0 on Σ, (4.3)

q∂nu
′ = qi∂nu

′
i −

∂2

∂n2
(qu− qiui)vn +∇Γ(qu− qiui) · ∇Γvn on Γi, (4.4)
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and further

−∆u′i = 0 in Ωi, u′i = ∂n(u− ui)vn + u′ in Γi, (4.5)

where the tangential gradient ∇Γ is defined as ∇Γ(·) = ∇(·) − ∂n(·)n, and vn = V · n.
Notice that in all equations, and in particular (4.4) and (4.5), n denotes the outer normal
vector to ∂Ω∗. Therefore it is the inner normal vector to ∂Ωi. Note that this does not affect
(4.5) since n appears once on both sides of this equation. This consideration is also important
for the calculation of the shape derivative in section 4.1, for instance when considering signs
in Green’s formulae.

The derivative of the functional in (2.5) with respect to the shape is

dJ({Ωi}
nq

i=1;V ) =
∫

Σ

2(u−m)u′ + β

nq∑
i=1

|q − qi|
∫

Γi

Hvn, (4.6)

where H is the mean curvature of the boundary of Ω∗. In order to further study the integral
over Σ in (4.6), we introduce the following adjoint states p and pi as the solutions to

−∆p = 0 in Ω∗, q∂np = 2(u−m) on Σ, q∂np = qi∂npi on Γi, (4.7)
−∆pi = 0 in Ωi, pi = p on Γi, (4.8)

respectively. Applying Green’s formula gives

0 =
∫

Ω

−u′∆p+ p∆u′ =
nq∑
i=1

∫
Γi

−u′∂np+ ∂nu
′p+

∫
Σ

−u′∂np+ ∂nu
′p, (4.9)

0 =
∫

Ωi

−u′i∆pi + pi∆u′i = −
∫

Γi

−u′i∂npi + pi∂nu
′
i. (4.10)

In view of the boundary conditions in (4.7) and using (4.3),(4.9) and (4.4) we get∫
Σ

2(u−m)q−1u′ =
nq∑
i=1

∫
Γi

−u′∂np+ ∂nu
′p+

∫
Σ

∂nu
′p

=
nq∑
i=1

(∫
Γi

−u′∂np+ pq−1qi∂nu
′
i

+
∫

Γi

−pq−1 ∂
2

∂n2
(qu− qiui)vn +

∫
Γi

pq−1∇Γ(qu− qiui) · ∇Γvn

)
.

In view of (4.10) and (4.5) we have∫
Γi

pq−1qi∂nu
′
i =

∫
Γi

u′i∂np =
∫

Γi

∂npi∂n(u− ui)vn + u′∂np. (4.11)

Therefore we conclude∫
Σ

2(u−m)q−1u′ =
nq∑
i=1

(∫
Γi

∂npi∂n(u− ui)vn

+
∫

Γi

−pq−1 ∂
2

∂n2
(qu− qiui)vn +

∫
Γi

pq−1∇Γ(qu− qiui) · ∇Γvn

)
.
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In order to further process the right hand side above, we rely on the following proposition;
see [14, Prop. 5.4.12].

PROPOSITION 4.1. Let Ω be an open set of class C2 and u : Ω → R of class C2.
Let n be the outer unit normal vector to Ω and H the curvature of Γ = ∂Ω. Then ∆u =
∆Γu+H∂nu+ ∂2

nu on Γ, where ∆Γ is the so-called Laplace-Beltrami operator on Γ.
Since ∆ui = ∆u = 0 and ∂n(qu− qiui) = 0 on Γ, applying Proposition 4.1 we have∫

Σ

2(u−m)q−1u′

=
nq∑
i=1

∫
Γi

∂npi∂n(u− ui)vn +
∫

Γi

pq−1 [∇Γ(qu− qiui) · ∇Γvn + ∆Γ(qu− qiui)vn]

=
nq∑
i=1

∫
Γi

∂npi∂n(u− ui)vn +
∫

Γi

pq−1∇Γ(qu− qiui) · ∇Γvn −∇Γ(qu− qiui) · ∇Γ

(
p

q
vn

)

=
nq∑
i=1

∫
Γi

[
∂npi∂n(u− ui)−∇Γ(u− qi

q
ui) · ∇Γp

]
vn.

According to the boundary conditions (4.1),(4.2) and (4.8) we get

dJ({Ωi}
nq

i=1;V ) =
nq∑
i=1

∫
Γi

(qi − q) (∂npi∂nu+∇Γu · ∇Γpi) vn + β|q − qi|
∫

Γi

Hvn

=
nq∑
i=1

∫
Γi

[(qi − q) (∇pi · ∇u) + β|q − qi|H] vn. (4.12)

4.2. Derivative with respect to the conductivity qi. We consider a family of subre-
gions and conductivities {Ωi, qi}i∈{1,..,nq} as in section 4.1. The small perturbations are of
the form qηi = qi + ηq′i, where η is a small real parameter. Denote by uη and uηi the solutions
of (4.1)-(4.2) with qη instead of q. Formally, we define the derivatives u′ and u′i by

u′ = lim
η→0

uη − u
η

and u′i = lim
η→0

uηi − ui
η

. (4.13)

Substituting (4.13) in (3.2)-(3.3) we get the following equations for u′ and u′i:

−∆u′ = 0 in Ω∗, q∂nu
′ = 0 on Σ, q∂nu

′ = q′i∂nui + qi∂nu
′
i on Γi, (4.14)

−∆u′i = 0 in Ωi, u′i = u′ on Γi. (4.15)

We assume that qi 6= q for all i as qi = q leads to a trivial situation. Therefore, the derivative
of J with respect to qi is

dJ ({Ωj , qj}
nq

j=1; q′i) =
∫

Σ

2(u−m)u′ + sign(qi − q)βq′iP(Γi). (4.16)

The first term on the right-hand side of (4.16) may be computed using the adjoint states (p, pi)
defined in (4.7)-(4.8). From Green’s formula for pi and p in Ωi and Ω∗, respectively, we get∫

Σ

2(u−m)q−1u′ =
∫

Σ

∂np u
′ =

∫
Γi

−u′ ∂np+ u′i ∂npi + p ∂nu
′ − pi ∂nu′i. (4.17)

Finally, using the relations (4.14)-(4.15) and (4.7)-(4.8) and Green’s formula in Ωi we obtain

dJ ({Ωj , qj}
nq

j=1; q′i) = q′i

(
sign(qi − q)βq′iP(Γi)−

∫
Ωi

∇ui · ∇pi
)
. (4.18)
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5. Numerical results. In our numerical tests, we use Ω = (0, 1)× (0, 1) and finite vol-
umes to solve the state equation (4.1)-(4.2) and the adjoint equation (4.7)-(4.8) on a uniform
grid of size 60× 60.

5.1. Comparison of the topological derivative at different orders. In Figure 5.1, with
the assumption nq = 1, we compare three different types of topological derivatives: the
"classical" first-order topological derivative T 1

0,ε, the extended topological derivative T 1
0,ε+L

ε
0

considered in [15], and the full expansion (3.55) obtained in this paper given by T 1
0,ε+T 1

1,ε+
T 1,1

2,ε + Lε0, under the assumption that nq = 1. We further assume that q1 is known and take
M = 8 measurements. A range of three test values for ε is chosen, with the middle value
being the true size of the inclusion. In Figure 5.1, the inclusion is a ball of radius ε = 0.05
and center x1 = (0.35, 0.3) and the topological derivatives are represented by the color plots,
where the darkest color corresponds to the lowest value. The contour of the true inclusions
are the circles in the lower left corner of each plot.

In Figure 5.1, the columns correspond to the three different types of topological deriva-
tives, while the lines correspond to the trial values of ε. For T 1

0,ε (left column), we observe the
phenomenon which motivated our extended expansions in [15], i.e. the most negative values
of the first-order term T i0,ε are always concentrated near the boundary Σ. This phenomenon is
due to the non-uniform behavior of the remainder when considering only T 1

0,ε. This substan-
tiates the assumption that the centers of the inclusions have to be at a certain distance from the
boundary Σ. Since the most negative value of the topological derivative indicates the creation
of an inclusion, T 1

0,ε clearly provides the wrong result in all cases. Numerically, it was shown
in [15] that T 1

0,ε+Lε0 allows to obtain good results by correcting the topological derivative on
the boundary of the domain Ω. Such a correction can be seen in the second column of Figure
5.1. However, one observes a certain mismatch between the true value of ε and the value
indicated by the topological derivative. Indeed, the topological derivative provides a better
estimate of the location when one chooses ε larger than the true value of ε; see the plot in
third line and second column. Finally, the last column of Figure 5.1 shows that this mismatch
almost disappears when considering higher-order terms. For the true value of ε (second line),
the topological derivative is most negative close to the true location of the inclusion.

5.2. Combined topology and shape algorithm. We introduce the notation

Tε({xk}
nq

k=1) =
nq∑
i=1

T i0,ε(xi) + T i1,ε(xi) +
nq∑
j=1

T i,j2,ε (xi, xj) +
∑
j 6=i

T i,j3,ε (xi, xj)

+ Lε0.

(5.1)
The usual procedure for applying the topological derivatives is to create a small inclusion
where its minimum is attained. In the case of higher-order expansions, the topological deriva-
tive depends on ε. Thus, a possible approach is to minimize first Tε with respect to ε, and
then with respect to the position. We choose a given range for the minimization with respect
to ε, i.e. we choose an interval [ε0, ε1], and we define the following function

Tm({xk}
nq

k=1) := minε∈[ε0,ε1] Tε({xk}
nq

k=1). (5.2)

In the numerical computation, the interval [ε0, ε1] is discretized into a user-defined number
of values. This discretization may be very fine and does not impose a heavy computational
load.

There are two approaches of how to use Tm({xk}
nq

k=1): (1) the first approach consists
in finding the minimum of Tm({xk}

nq

k=1) and in obtaining a set of points {x̄k}
nq

k=1. Then ε
is given by the minimizing argument in (5.2). Hence, the domain is initialized by creating
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FIG. 5.1. Columns: T 1
0,ε (left), T 1

0,ε + L0
ε (center), T 1

0,ε + T 1
1,ε + T 1,1

2,ε + L0
ε (right). The lines correspond,

from top to bottom, to three different trial values of ε in ascending order, the middle line corresponding to the true
value. Dark colors indicate negative values of the topological derivative.

inclusions with centers {x̄k}
nq

k=1 and respective radius ε (the shape of inclusions are balls, but
"any" shape could be considered instead). Note that our computations may be extended to
the case of a set of different radii {εk}

nq

k=1. (2) The second approach consists in choosing a
threshold γ and in initializing the domain Ω1 as

Ω1 := {x ∈ Ω | Tm(x) < γmin
y∈Ω
Tm(y)}.

The first approach is completely automatized, but allows only to create inclusions with fixed
shapes. The second approach is more flexible in terms of the shape, and may therefore provide
finer results. But it needs a user-defined parameter γ as an input quantity. In [15] we relied
on the second approach. In this paper we focus on the first one.

After this initialization by topological sensitivity, the remaining iterations are as follows:
First we update the shape using the shape derivative in a steepest descent framework. Ac-
cording to (4.12) the steepest descent direction is given by

vn = − [(qi − q) (∇pi · ∇u) + β|q − qi|H] on Γi.

For the representation and transport of the geometry of the Ωi according to the steepest de-
scent direction, we use a level set method [20, 21]. Note that due to the nature of shape
sensitivity, the update velocity vn normal to the internal boundary of Ω is defined only on the
Γi’s. As the transport of domains is achieved by the level set equation φt + V ‖∇φ‖ = 0 in
Ω, we have to extend vn to the entire domain Ω (this yields V in the above equation). Above,
φ represents the level set function which we assume to be a signed distance function with
φ|Γ = 0. We extend vn constant along normals to Γ. Observe that the level set equation is a
partial differential equation of Hamilton-Jacobi-type. For its appropriate numerical treatment
we refer to [20, 21]. Having advanced the geometry, in a second step, according to (4.18), the
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FIG. 5.2. Red: true inclusion. Green: initialization. Blue: final result. After 300 iterations using T0,ε + L0
ε

(left), after 50 iterations using T0,ε + T1,ε + T2,ε + L0
ε (right)

value of qi is updated along the direction

q′i = −sign(qi − q)βq′iP(Γi) +
∫

Ωi

∇ui · ∇pi

again within a steepest descent framework. For choosing an appropriate step length, we use
a standard Armijo line search procedure with backtracking.

We point out that the shape as well as the q-update procedure might rely on Newton-type
updates as well. This, however, requires the additional work of solving elliptic systems on
the Γi’s and is subject to future research.

5.3. One inclusion. In the case of one inclusion (nq = 1), in Figure 5.2 we compare the
results obtained by using the first-order expansion and corrections T 1

0,ε + Lε0, and the higher-
order expansion given by (5.1), respectively. We use the first approach for the topological
derivative in Figure 5.2. To reduce the amount of computations, the function h is computed
only on a subgrid of size 10 × 10, and then it is interpolated on the finer grid 60 × 60. The
number of measurements is M = 2. The range for the ε-minimization in (5.2) is [ε0, ε1] =
(0.02, 0.12), and [ε0, ε1] is split into 60 equal intervals in our numerical tests. The true values
for the conductivities are q = 10 and q1 = 1.

In Figure 5.2, the true inclusion, highlighted in red, is a ball of radius ε1 = 0.08 and
position x1 = (0.31, 0.3). The initial guess provided by the topological derivative is the
green ball, and the blue object is the final result, after the application of the shape derivative
part of the algorithm. The plot on the left is the result using the first-order expansion while the
graph on the right is the result using higher-order topological expansions. One clearly finds
that the initialization provided by the first-order expansion and corrections, i.e. T 1

0,ε(x1) +
Lε0, is not as good as the one provided by higher-order topological expansions, with respect
to both position and inclusion size. This slows down the shape optimization part of our
algorithm: 300 iterations for first-order expansion instead of 50 for higher-order expansions.
The reconstruction is also slightly worse in the case of first-order expansion although the ball
is rather well-reconstructed in both cases.

In Figure 5.3, the same data as in Figure 5.2 are used, respectively, but with 5% noise
added to the measurements. Comparing the initializations obtained from topological sensi-
tivity, it can be seen that the initialization using the topological derivative is rather robust for
both types (first and higher-order).

In Figure 5.4 we study the case where q is known and q1 is unknown. The inclusion is a
ball of radius ε1 = 0.08 and position x1 = (0.4, 0.5), the true value of q1 is 2. We start with
the initial guess qin1 = 3 and obtain the final value qfi1 = 2.065 after convergence (500 iter-
ations for q1 and 500 iterations for the shape) using the first-order topological derivative for
the initialization and qfi1 = 1.991 after convergence (150 iterations for q1 and 150 iterations
for the shape) using the higher-order topological derivative for the initialization. We observe
that in both cases, the initialization is robust with respect to q1.
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FIG. 5.3. Initialization with 5% noise. Red: true inclusion. Green: initialization. Using T0,ε + L0
ε (left).

Using T0,ε + T1,ε + T2,ε + L0
ε (right)

FIG. 5.4. Red: true inclusion. Green: initialization. Blue: final result. Using T0,ε + L0
ε (left). Using

T0,ε + T1,ε + T2,ε + L0
ε (right)

The conclusion from these numerical tests for one inclusion is that the initialization us-
ing the topological derivative is robust with respect to noise and unknown conductivity, and
the higher-order topological derivative gives a better initial guess and helps to speed up the
convergence of the shape and conductivity optimization part of the algorithm.

5.4. Two inclusions. In this section we reconstruct two objects, i.e. nq = 2. Numeri-
cally, there are several difficulties when nq > 1. First, the expansions that we have computed
previously are not valid when the objects get too close to each other. Thus, the trial points
xk, k = 1, .., nq should be sufficiently distant from each other; otherwise we may have a
significant error in the topological derivative which may lead to wrong initial guesses. Math-
ematically, this requires to ensure a minimal distance d0 > 0 with d(xk, xl) > d0 for all
k 6= l, k, l = 1, .., nq . The radius ε should also guarantee that different balls have no inter-
section and remain at a certain distance from each other. For this purpose we solve (5.2) on
a subgrid of the mesh, where we compute u and p. In this way we ensure automatically that
the points xk, k = 1, .., nq have a certain mutual distance (the case xk1 = xk2 is of course
forbidden). Therefore, when the subgrid increases, on one hand the asymptotic expansions
become more inaccurate, whereas on the other hand, the position becomes more accurate.
Thus one has to find a balance between these two opposing behaviors.

The number of measurements is M = 4. In Figure 5.5, we compare the results for dif-
ferent subgrids (dashed lines) of the main grid of size 60× 60 for computing u. In our tests,
we choose two levels of subgrids: 5 × 5 and 7 × 7. The two first columns correspond to the
subgrid 5 × 5 and the third column to the subgrid 7 × 7. We find that both subgrids provide
good results, up to their respective accuracy. Therefore, a coarse subgrid might provide a bet-
ter result than a fine subgrid if the inclusions are by chance aligned on this coarse subgrid; see
for instance the first row in Figure 5.5. In the two first rows, the two inclusions have the same
sizes, whereas in the third row, the two inclusions have different sizes. The reconstruction
might fail when the two inclusions have different sizes. This is due to the stronger influence
of the bigger object on the measurements. Studying the influence of different inclusion sizes
on the reconstruction process raises several interesting questions, which, however, are beyond
the scope of the present paper. We use the same positions for the three Figures, only the sizes
are changed. In the two first lines the sizes are ε = 0.05 and ε = 0.08, respectively, and in
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FIG. 5.5. First and second columns: subgrid 5× 5. Third column: subgrid 7× 7. True location of inclusions
(red), initial guess by topological derivative (green). Subgrids represented by dashed lines. First and third column:
(x1, y1) = (0.7, 0.3), (x2, y2) = (0.3, 0.5). Second column: (x1, y1) = (0.4, 0.2), (x2, y2) = (0.2, 0.7).

the third line the sizes are ε1 = 0.05 and ε2 = 0.07.
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6. Appendix. For vectors a and b, let us compute the integral

I =
∫
∂Bε

i

(a · n)(b · n).

Since (a⊗ b)c = (b · c)a and
∫
∂Bε

i
n⊗ n = ε−1|Bεi |I , we have

I = (a⊗ b) ·
∫
∂Bε

i

n⊗ n =
|Bεi |
ε

(a⊗ b) · I =
|Bεi |
ε
a · b.

By setting a = ∇u0(xi) and b = ∇p(xi) we obtain∫
∂Bε

i

(∇u0(xi) · n)(∇p(xi) · n) =
|Bεi |
ε
∇u0(xi) · ∇p(xi).

For A = AT and B = BT second-order tensors, let us take into account the integral

I =
∫
∂Bε

i

(An · n)(Bn · n).

Since (A⊗B)C = (B ·C)A and
∫
∂Bε

i
(n⊗ n⊗ n⊗ n) = ε−1(N + 2)−1|Bεi |(2II + I ⊗ I),

where II is the fourth-order identity tensor. Then

I =
∫
∂Bε

i

(n⊗ n⊗ n⊗ n)A ·B =
|Bεi |

ε(N + 2)
(2II + I ⊗ I)A ·B

=
|Bεi |

ε(N + 2)
(2A ·B + tr(A)tr(B)).
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By setting A = D2u0(xi) and B = D2p(xi) we obtain∫
∂Bε

i

D2u0(xi)(n)2D2p(xi)(n)2 =
|Bεi |

ε(N + 2)
(2D2u0(xi) ·D2p(xi) + tr(D2u0(xi))tr(D2p(xi)))

=
|Bεi |

ε(N + 2)
(2D2u0(xi) ·D2p(xi) + ∆u0(xi)∆p(xi)).

For C third-order tensor and a vector, let us compute the integral

I =
∫
∂Bε

i

((Cn)n · n)(a · n).

By setting C = D3p(xi) and a = ∇u0(xi), we have∫
∂Bε

i

D3p(xi)(n)3∇u0(xi) · n = cε∇(∆p(xi)) · ∇u0(xi)

with cε = 3
4πε for N = 2 and cε = 3

5
4
3πε

2 for N = 3. Therefore∫
∂Bε

i

D3p(xi)(n)3∇u0(xi) · n =
3

(N + 2)
|Bεi |
ε
∇(∆p(xi)) · ∇u0(xi).

Finally, by setting C = D3u0(xi) and a = ∇p(xi), we have∫
∂Bε

i

D3u0(xi)(n)3∇p(xi) · n =
3

(N + 2)
|Bεi |
ε
∇(∆u0(xi)) · ∇p(xi).
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