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ABSTRACT. A shape optimization problem in three spatial dimensions for an elasto-dynamic piezoelectric body
coupled to an acoustic chamber is introduced. Well-posedness of the problem is established and first order necessary
optimality conditions are derived in the framework of the boundary variation technique. In particular, the existence
of the shape gradient for an integral shape functional is obtained, as well as its regularity, sufficient for applications
e.g. in modern loudspeaker technologies. The shape gradients are given by functions supported on the moving
boundaries. The paper extends results obtained by the authors in [9] where a similar problem was treated without
acoustic coupling.
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1. INTRODUCTION

Shape optimization for coupled models is an emerging field of research required for applications in modern
key-technologies. In the present paper a model for interactions between elastic, piezo-electric and acoustic
fields with non stationary partial differential equations is proposed and analyzed. The geometrical domain
is decomposed into regions with different physical properties, and the sub-domains are coupled by means of
appropriate transmission conditions for the equations under considerations. The problem is chosen in such a
way, that the results can be applied for a broad class of models, with the appropriate modifications, if necessary.
The configuration is viewed e.g. as a loudspeaker in an acoustic chamber. The question asked in applications
concerning loudspeakers, beepers or energy harvesters is about the shape and the topology of the material
components involved. See [13, 14, 15, 16] for the original engineering problem formulation along with topology
optimization results based on the classical SIMP method. Indeed, a main objective is e.g. to maximize the
acoustic pressure in the chamber by choosing appropriately shaped elasto-piezo-systems. However, in these
articles the problem was concerned with optimizing the topology of the piezo-patches only. Moreover, only a
time-harmonic solution was considered. Time dependent piezo-electric coupled systems have been investigated
in the literature before, e.g. in [10, 11]. Multilayered piezo-actuator devices have been studied e.g. in [5]. In
[9], the dynamic problem without acoustic coupling was first studied with respect to well-posedness and shape-
sensitivity analysis. See the references in [9] for further information about the literature in this context. In this
paper the same authors consider the fully coupled dynamic system involving also the acoustic chamber. For the
mathematical theory concerning the evolution problems the reader may refer to e.g., [8].

In order to avoid additional difficulties with respect to geometrical singularities, and in order to have a
simpler presentation of the results, we decide to use a layered system as in fig.1.

Topological sensitivity analysis is not performed in the paper, however we can refer to the related papers
which include the topological derivatives for the stationary models. The shape and topological sensitivity
analysis of partial differential equations is an efficient tool in numerical solution of optimum design problems
for distributed parameter systems. We are interested in shape sensitivity analysis in three spatial dimensions of
the complete model of the interaction between elastic, piezoelectric and acoustic fields. There is a difference
between stationary problems and evolution problems in this respect. To be more precise, the difference concerns
the singular domain perturbations, e.g. the analysis of the influence of nucleation of small voids on the solutions
of the mathematical model. Such an analysis can be performed in the framework compound and matched
asymptotic expansions for stationary models, and it is unknown in the case of full evolution model. The
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asymptotic analysis is not, however, our principal activity in the present paper, we refer the reader to [2] for
some results in this direction for piezoelectric elastic bodies.

The techniques of boundary variations, which we employ in the paper, is the speed method. By this method,
material and shape derivatives are determined for the partial differential equations involved, and the Hadamard
structure theorem for shape gradients is used in order to identify the boundary density function of the shape
gradient which, in turn, can be used in numerical methods for shape optimization.

This means that the first part of our analysis in the framework of shape sensitivity analysis is devoted to
the so-called material derivatives of solutions to the boundary value problems in the stationary case or to the
evolution initial-boundary value problems in the evolution case. The analysis which leads to the material
derivatives is usually performed in the fixed domain setting by an application of the implicit function theorem.
To this end transport mapping for the family of admissible domains is constructed, and by construction the
mapping is a diffeomorphism in three spatial dimensions between admissible domains. We need some regularity
of domains and of the mappings to assure all necessary properties of the diffeomorphism.

In optimum design of elastic structures the topological derivatives can be determined by asymptotic analysis
with respect to the small parameter which governs perturbations of coefficients in a regular case or singular
domain perturbations in limit cases of small voids and/or rigid inclusions. We point out that for evolution
problems that case of singular domain perturbations is still out of the reach, however regular perturbations in
coefficients make no additional difficulties compared with the shape sensitivity analysis.

In the paper the shape gradient (5.48) is obtained for shape functional (2.8) defined for the model introduced
in Section 2.1. We need the expression of the shape gradient to be given by a function, for the purposes of nu-
merical methods of shape optimization. Therefore, the regularity issue we adress in the paper can be described
as follows. Under minimal regularity assumptions for the model and for the shape functional, determine the
expressions for Eshelby tensors (5.36) and (5.37) in such a way, that the traces of tensors on moving boundaries
are given by functions. Therefore, the shape gradient is given by a function and the levelset methods of shape
optimization can be applied in order to solve numerically the associated optimization problems.

2. THE PROBLEM FORMULATION

Let us consider an open bounded domain Ω of R3 with smooth boundary ∂Ω. We assume that Ω has the
form Ω = D�D0, where D and D0 are open bounded domains with D0 ⊂ D and Ω denotes the closure of
Ω. In addition, let Bi, with i = 0, 1, 2, 3, be open subsets with smooth boundary Γi, such that, for j = 0, 1, 2,
Bj ⊂ Bj+1, withB0 = D0 andB3 = D. We set ΩP = B1�B0,ΩM = B2�B1 and ΩA = B3�B2. In summary,
as shown in figure 1, the mutually disjoints open domains ΩP , ΩM , ΩA have boundaries ∂ΩP = Γ0 ∪ Γ1,
∂ΩM = Γ1 ∪ Γ2 and ∂ΩA = Γ2 ∪ Γ3, respectively. We remark that the order of domains can be chosen in
reverse order such that the acoustic part is inside and represents an acoustic chamber.

FIGURE 1. Layered domain represented by Ω.

According to our above motivation, ΩM and ΩP represent the regions where mechanical and piezoelectric
devices are located, respectively, and ΩA represents the acoustic chamber.
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2.1. The model. We are interested in the following system
1
c2
φtt −∆φ = f in ΩA × (0, T )
wtt − divS = g in ΩM × (0, T )
utt − divσ
−divψ

=
=

h
0

}
in ΩP × (0, T )

(2.1)

where the first equation describes the acoustic wave propagation, the second one is the linear elasticity sys-
tem and the last coupled system represents the electromechanical interaction phenomenon. The equations are
coupled at layers Γj (j = 1, 2). In particular, φ is the acoustic potential scalar field, S is the mechanical
stress tensor, σ is the electromechanical stress tensor and ψ the electrical displacement field. The constitutive
laws describing the elastic behavior and piezoelectric effects, both in the linearised case of small mechanical
deformations and electric fields, are 

S(w) = Aε(w) ,
σ(u, q) = Cε(u)− Pe(q) ,
ψ(u, q) = P⊤ε(u) +De(q) ,

(2.2)

where w = w(x, t) and u = u(x, t) are the mechanical and electromechanical displacements, respectively, and
q = q(x, t) is the electric potential. In addition, A and C are the elasticity fourth-order tensors respectively
associated to the elastic and electromechanical parts, P the piezoelectric coupling third-order tensor and D the
dielectric second-order tensor. As usual A, C and D satisfy the symmetry conditions Aijkl = Ajikl = Aklij ,
Cijkl = Cjikl = Cklij and Dij = Dji, whereas P satisfies Pijk = Pjik. Furthermore, there exist nonnegative
constants a0, c0 and d0 such that

AijklXijXkl ≥ a0X2
ij , CijklYijYkl ≥ c0Y 2

ij , Dijzizj ≥ d0z2i ,
where Einstein’s summation convention is used. It is assumed for simplicity that all constitutive tensors are
piecewise constant, i.e., constant in each layer. The mechanical strain tensors ε(u), ε(w) and the electric vector
field e(q) are given by

ε(u) = ∇su :=
1

2
(∇u+∇u⊤), ε(w) = ∇sw :=

1

2
(∇w +∇w⊤) and e(q) = −∇q , (2.3)

We complement the system (2.1) with the following initial conditions φ(x, 0) = φ0(x), φt(x, 0) = φ1(x),
w(x, 0) = w0(x), wt(x, 0) = w1(x),
u(x, 0) = u0(x), ut(x, 0) = u1(x),

(2.4)

and boundary conditions of the form{
ψ · n = 0

u = 0
on Γ0 × (0, T ),

∂φ

∂n
= −1

c
φt on Γ3 × (0, T ), (2.5)

where n is the outward unit normal vector pointing toward the exterior of Ω. Finally, we consider the following
transmission conditions u = w

σn = Sn
q = qP

on Γ1 × (0, T ) and

{
wt · n = −∂φ

∂n
Sn = −φtn

on Γ2 × (0, T ), (2.6)

where n = n(i) = −n(i−1) is the unit normal vector pointing toward the exterior of Bi. We also assume the
compatibility condition qP (x, 0) = qPt (x, 0) = 0.

2.2. Shape functional. We consider a shape functional of the form

JΩ(φt, w) =

∫ T

0
JΩ(φt, w) , (2.7)

with JΩ(φt, w) defined as

JΩ(φt, w) := α
1

2

∫
ΩA

(φt − p⋆)2 − β
∫
ΩM

(div(w)η + w · ∇η) , (2.8)
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where p⋆ is a target acoustic pressure, η is an arbitrary scalar function, α = 1 − β and β ∈ [0, 1]. By taking
η|Γ1

= 0 and η|Γ2
= 1, we have

JΩ(φt, w) = α
1

2

∫
ΩA

(φt − p⋆)2 − β
∫
Γ2

w · n , (2.9)

where w · n is the normal component of the mechanical displacement on the interface Γ2 between the acous-
tic chamber and the mechanical device, respectively represented by ΩA and ΩM . It means that we want to
maximize the mechanical displacement and the acoustic pressure by taking p⋆ large enough.

3. STATE EQUATIONS

In this section the existence and the regularity of weak solutions to the model of coupled equations in multi-
layered domain is established by Theorem 1. The same results are valid for other coupled systems introduced
in the paper, including the material and shape derivatives as well as the adjoint state equations.

3.1. Weak solutions. In order to derive a weak formulation of the piezoelectric problem (2.1)-(2.6) we intro-
duce the following bilinear forms

aA(φ,φ) := ⟨∇φ,∇φ⟩ΩA ,

aM (w,w) := ⟨A∇sw,∇sw⟩ΩM ,

aMM (u, u) := ⟨C∇su,∇su⟩ΩP ,

aEE(q, q) := ⟨D∇q,∇q⟩ΩP ,

aME(u, q) := ⟨P⊤∇su,∇q⟩ΩP ,

aEM (q, u) := ⟨P∇q,∇su⟩ΩP ,

and spaces
WA = H1(ΩA), WM = [H1(ΩM )]3, WP = [H1(ΩP )]3, WE = H1(ΩP ), (3.1)

as well as

W = {(φ,w, u, q)(t) ∈ WA ×WM ×WP ×WE :

u = 0 on Γ0, w = u on Γ1 and q = qP (t) on Γ1, for each t ∈ (0, T )} , (3.2)

W̃ = {(φ̃, w̃, ũ, q̃) ∈ WA ×WM ×WP ×WE :

ũ = 0 on Γ0, w̃ = ũ on Γ1 and q̃ = 0 on Γ1} . (3.3)

Then the weak formulation of (2.1)-(2.6) is obtained by multiplying the equations with test functions
(φ̃, w̃, ũ, q̃)∈ W̃(Ω), respectively, followed by integration by parts. It reads: for each t ∈ (0, T ) and any
(φ̃, w̃, ũ, q̃)∈ W̃(Ω), find the acoustic potential φ, the mechanical displacement w, the electromechanical dis-
placement u and the electric potential q, with (φ,w, u, q) ∈ W , such that

1
c2
⟨φtt(t), φ̃⟩ΩA + aA(φ(t), φ̃)− ⟨wt(t) · n, φ̃⟩Γ2 +

1
c ⟨φt(t), φ̃⟩Γ3

+⟨wtt(t), w̃⟩ΩM + aM (w(t), w̃) + ⟨φt(t), w̃ · n⟩Γ2

+⟨utt(t), ũ⟩ΩP + aMM (u(t), ũ) + aEM (q(t), ũ)
+aEE(q(t), q̃)− aME(u(t), q̃) = 0 .

(3.4)

In order to put this into a more convenient format, we introduce the variable W := (φ,w, u, q) and the bilinear
forms

A(W, W̃ ) := aA(φ, φ̃) + aM (w, w̃) + aMM (u, ũ) + aEE(q, q̃) + aEM (q, ũ)− aME(u, q̃), (3.5)

B(W, W̃ ) := −⟨w · n, φ̃⟩Γ2 + ⟨φ, w̃ · n⟩Γ2 +
1

c
⟨φ, φ̃⟩Γ3 , (3.6)

where the symbol ⟨·, ·⟩K denotes the usual inner product for elements of functional spaces defined in a domain
K. Notice that

A(W,W ) = aA(φ,φ) + aM (w,w) + aMM (u, u) + aEE(q, q), B(W,W ) =
1

c
⟨φ,φ⟩Γ3 .



5

The space W̃ can be seen as the form-domain of A(·, ·). The weak system (3.4) can be rewritten as

⟨MWtt, W̃ ⟩Ω + B(Wt, W̃ ) +A(W, W̃ ) = 0, ∀W ∈ W̃ , (3.7)

whereM = diag ( 1
c2
I, I, I, 0). Still, (3.7) is not a standard vectorial dissipative wave equation in weak form,

the mass matrix-operatorM is singular. Therefore, a proof of well-posedness seems to be at order.

Theorem 1. Given f ∈ L2(0, T ;L2(ΩA)), g ∈ L2(0, T ; [L2(ΩM )]3), h ∈ L2(0, T ; [L2(ΩP )]3), (φ0, w0, u0, 0) ∈
W̃ , (φ1, w1, u1, 0) ∈ L2(ΩA) × [L2(ΩM )]3 × [L2(ΩP )]3 × {0} and compatibility condition qP (x, 0) =
qPt (x, 0) = 0, then, there exists a unique weak solution to (3.4) belonging to the class

φ ∈ L∞(0, T ;H1(ΩA)) , φt ∈ L∞(0, T ;L2(ΩA)) ,
w ∈ L∞(0, T ; [H1(ΩM )]3) , wt ∈ L∞(0, T ; [L2(ΩM )]3) ,
u ∈ L∞(0, T ; [H1(ΩP )]3) , ut ∈ L∞(0, T ; [L2(ΩP )]3) ,
q ∈ L∞(0, T ;H1(ΩP )) .

(3.8)

In addition, if we assume that qP (t) ∈ C2(Γ1) and the initial data satisfy the compatibility conditions
(φ0, w0, u0, φ1, w1, u1) ∈ Ŵ , with

Ŵ = {(φ0, w0, u0) ∈ H2(ΩA)× [H2(ΩM )]3 × [H2(ΩP )]3, (φ1, w1, u1, 0) ∈ W̃ (Ω) :

û = 0, ψ0 · n = 0 on Γ0, ŵ = û, σ0n = S0n on Γ1 and q̂ = 0 on Γ1

w1 · n = − ∂

∂n
φ0, S0n = −φ1n on Γ2,

∂

∂n
φ0 = −

1

c
φ1 on Γ3} , (3.9)

then the solution belongs to the (more regular) class

φ ∈ L∞(0, T ;H2(ΩA)) , φt ∈ L∞(0, T ;H1(ΩA)) , φtt ∈ L∞(0, T ;L2(ΩA)) ,
w ∈ L∞(0, T ; [H2(ΩM )]3) , wt ∈ L∞(0, T ; [H1(ΩM )]3) , wtt ∈ L∞(0, T ; [L2(ΩM )]3) ,
u ∈ L∞(0, T ; [H2(ΩP )]3) , ut ∈ L∞(0, T ; [H1(ΩP )]3) , utt ∈ L∞(0, T ; [L2(ΩP )]3) ,
q ∈ L∞(0, T ;H2(ΩP )) .

(3.10)

Proof. The proof of Theorem 1 is relegated to the Appendix. �

Remark 2. We can replace φ̃ with c2φ̃ in (3.4) which amounts to multiplying the first equation in (2.1) by c2.
This is the form used in the sequel.

3.2. Outlines of the shape sensitivity analysis. Theorem 1 implies the existence and the regularity of solu-
tions to the model as well as to the systems which are obtained for material and shape derivatives as well as for
the adjoint state.

• If the solution of state equation belongs to the class (3.10), then all boundary conditions for the shape
derivatives are well defined.
• For the shape functional under consideration the shape differentiability is achieved for the material

derivatives belonging to the class (3.8).
• Once the existence of the material derivatives is established for the model, the existence of shape

derivatives follows from the relation (4.10).
• If material derivatives belong to the class (3.10), then the shape derivatives belong to the class (3.8).
• If material derivatives belong to the class (3.8) then, in view of (4.10), the shape derivatives are given

by very weak solution of the system.

Therefore, what we really need for the proof of shape differentiability of the functional, is the existence of
the regular solution to the model, and the existence of sufficiently smooth material derivatives which can be
used in order to obtain the shape differentiability of the functional. The adjoint state allows us to simplify
the form of the shape gradient, but there is no implication of the adjoint state on the shape differentiability of
the functional. The existence of material derivatives implies the existence of the shape derivatives as well as
the differentiability of the shape functional by means of the Hadamard structure Theorem [12] for the shape
gradient.
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4. SHAPE SENSITIVITY ANALYSIS

Formal derivation of the coupled equations for shape derivatives of solutions to the model under consider-
ations leads to the shape gradient of the cost functional. In this derivation the transmission conditions on the
interfaces should be taken into account, it means that the derivatives with respect to the shape parameter τ → 0
are evaluated from both sides of the interface. In our model one exterior boundary Γ0 and one interface Γ1

move according to the boundary perturbations rule defined by the speed velocity method. In formal derivation
no attention is payed to the regularity of solutions, however we are interested in the resulting shape gradient
regularity since the regularity has the important implications on the numerical methods. If the shape gradient is
given by a distribution which lives on the moving boundaries or interfaces, this property should be taken into
account when computing numerically the descent direction for gradient type numerical methods of shape opti-
mization. On the other hand the levelset methods for shape optimization require the shape gradient of the cost
given by a function, the shape gradient becomes the coefficient of the associated Hamilton-Jacoby equations
for the levelset function.

On the other hand, the proof of the shape differentiability of the cost functional relies on the material deriva-
tives of solutions to the model. The stability analysis of the model which results in the material derivatives
is performed in the fixed domain setting. In this way the shape gradient of the continuous shape functional is
precisely determined and it can be used for numerical computations.

For sake of simplicity, in this section we consider that the f , g and h in (2.1) are identically zero. We
also consider that the initial conditions (2.4) are homogeneous. We observe that the only source in the system
is given by q = qP (x, t) on Γ1 × (0, T ), which satisfies the compatibility condition, namely, qP (x, 0) =
qPt (x, 0) = 0.

The perturbed domain, parameterized by τ ∈ R+ small enough, is denoted as

Ωτ = {xτ ∈ R3 : xτ = x+ τV, x ∈ Ω, τ ≥ 0} , (4.1)

where V is a smooth vector field defined in Ω that represents the shape change velocity. Thus, the original
domain is retrieved by setting τ = 0, that is Ω0 ≡ Ω. In particular, we are interested in the perturbations of the
boundary Γ0 of the electromechanical device and of the interface Γ1 between the mechanical and electrome-
chanical devices. It means that the shape change velocity field can be defined as

V = 0 on Γ2 ∪ Γ3 = ∂ΩA . (4.2)

The shape functional defined in the perturbed domain reads

JΩτ (φτ,t, wτ ) =

∫ T

0
JΩτ (φτ,t, wτ ) , (4.3)

where φτ = φτ (xτ , t) and wτ = wτ (xτ , t), together with uτ = uτ (xτ , t) and qτ = qτ (xτ , t), are solu-
tions of the following variational problem defined in the perturbed domain Ωτ : for each t ∈ (0, T ) and any
(φ̃, w̃, ũ, q̃) ∈ W̃(Ωτ ), find (φτ , wτ , uτ , qτ ) ∈ W(Ωτ ), such that

⟨φτ,tt, φ̃⟩ΩA + c2⟨∇φτ ,∇φ̃⟩ΩA − c2⟨wτ,t · n, φ̃⟩Γ2 + c⟨φτ,t, φ̃⟩Γ3

+⟨wτ,tt, w̃⟩ΩM + ⟨A∇s
τwτ ,∇s

τ w̃⟩ΩM + ⟨φτ,t, w̃ · n⟩Γ2

+⟨uτ,tt, ũ⟩ΩP + ⟨C∇s
τuτ ,∇s

τ ũ⟩ΩP + ⟨P∇τqτ ,∇s
τ ũ⟩ΩP = 0 ,

⟨D∇τqτ ,∇τ q̃⟩ΩP − ⟨P⊤∇s
τuτ ,∇τ q̃⟩ΩP = 0 .

(4.4)

with homogeneous initial conditions. In addition, the sets W(Ωτ ) and W̃(Ωτ ) are defined analogously as
before.

4.1. Material derivatives of solutions. We are going to evaluate material and shape derivatives for the state
system, and two formulae for the shape gradient including the distributed representation and the boundary
representation. Before start, let us introduce the following notation for material derivative of a function ξ(x)

ξ̇(x) =
d

dτ
ξτ (xτ )

∣∣∣∣
τ=0

. (4.5)



7

We assume for the sake of simplicity that the only source in the system is given by q = qP (x, t) on
Γ1 × (0, T ), which satisfies the compatibility condition qP (x, 0) = qPt (x, 0) = 0. In addition, we have
the nonhomogeneous initial conditions for all functions.

For each t ∈ (0, T ) and any (φ̃, w̃, ũ, q̃) ∈ W̃ , find the acoustic potential φ, the mechanical displacement w,
the electromechanical displacement u and the electric potential q, with (φ,w, u, q) ∈ W , such that

⟨φtt, φ̃⟩ΩA + c2⟨∇φ,∇φ̃⟩ΩA − c2⟨wt · n, φ̃⟩Γ2 + c⟨φt, φ̃⟩Γ3

+⟨wtt, w̃⟩ΩM + ⟨A∇sw,∇sw̃⟩ΩM + ⟨φt, w̃ · n⟩Γ2

+⟨utt, ũ⟩ΩP + ⟨C∇su,∇sũ⟩ΩP + ⟨P∇q,∇sũ⟩ΩP = 0 ,

⟨D∇q,∇q̃⟩ΩP − ⟨P⊤∇su,∇q̃⟩ΩP = 0 .

(4.6)

Beside the above system, for the state equation the initial and boundary conditions are imposed, and the poten-
tial qP is prescribed on Γ1 × (0, T ).

The material derivatives are given by the solutions to the following system

⟨φ̇tt, φ̃⟩ΩA + c2⟨∇φ̇,∇φ̃⟩ΩA − c2⟨ẇt · n, φ̃⟩Γ2 + c⟨φ̇t, φ̃⟩Γ3

+⟨ẇtt, w̃⟩ΩM + ⟨A∇sẇ,∇sw̃⟩ΩM + ⟨φ̇t, w̃ · n⟩Γ2

+⟨u̇tt, ũ⟩ΩP + ⟨C∇su̇,∇sũ⟩ΩP + ⟨P∇q̇,∇sũ⟩ΩP

= ⟨∇w⊤(A∇sw̃) +∇w̃⊤(A∇sw),∇V ⟩ΩM

−⟨wtt · w̃ +A∇sw · ∇sw̃, divV ⟩ΩM

+⟨∇u⊤(C∇sũ) +∇ũ⊤(A∇su) +∇q ⊗ P⊤∇sũ+∇ũ⊤P∇q,∇V ⟩ΩP

−⟨utt · ũ+ C∇su · ∇sũ+ P∇q · ∇sũ, divV ⟩ΩP ,

⟨D∇q̇,∇q̃⟩ΩP − ⟨P⊤∇su̇,∇q̃⟩ΩP

= ⟨∇q ⊗D∇q̃ +∇q̃ ⊗D∇q −∇u⊤P∇q̃ −∇q̃ ⊗ P⊤∇su,∇V ⟩ΩP

−⟨D∇q · ∇q̃ − P⊤∇su · ∇q̃, divV ⟩ΩP .

(4.7)

The system becomes closed provided we complement the system (4.7) with the following initial conditions φ̇(x, 0) = ∇φ0(x) · V (x, 0), φ̇t(x, 0) = ∇φ1(x) · V (x, 0),
ẇ(x, 0) = ∇w0(x)V (x, 0), ẇt(x, 0) = ∇w1(x)V (x, 0),
u̇(x, 0) = ∇u0(x)V (x, 0), u̇t(x, 0) = ∇u1(x)V (x, 0),

(4.8)

and boundary conditions{
ψ̇ · n = −ψ · ṅ

u̇ = 0
on Γ0 × (0, T ),

∂φ̇

∂n
= −1

c
φ̇t on Γ3 × (0, T ) . (4.9)

In addition, the potential ∇qP (x, t) · V (x, 0) is prescribed on Γ1 × (0, T ) for the material derivative of the
electric potential q̇.

Theorem 3. The material derivatives of solutions for the system (4.6) are given by (4.7) along with the initial
conditions (4.8) and boundary conditions (4.9).

Proof. The proof of Theorem 3 is given in Section 5.3. �
4.2. Shape derivatives of solutions. The system of equations with the initial and boundary conditions is
derived for the shape derivatives of solutions to the model. The shape derivatives lead to the shape gradient
of the cost functional. By the Hadamard representation Theorem of the shape gradient, it follows that it is
a distribution which lives on the moving boundary. From the point of view of numerical methods of shape
optimization, it is preferable to have the shape gradient given by a function. The shape derivatives are given
by solutions to the linearized equations with respect to the shape by using the speed method. The initial and
boundary value problem for the linearized equations, in view of the shape functional under considerations,
lead to appropriate adjoint state equations. All together the obtained system defines the regularity of the shape
gradient which is expressed in terms of the shape derivatives, the adjoint state and the integrand of the shape
functional. By the regularity assumptions on the data, the sufficient regularity of the shape gradient can be
achieved. In fact, the regularity of the data is also required for derivation of the shape gradient using the material
derivatives. Roughly speaking, the proof of shape differentiability is performed in the material derivatives



8

framework in the fixed domain setting. However, in general, the shape gradient identification is possible with
the shape derivatives.

Condition 4. In this section the normal component

vn := V · n

of the velocity vector field is nonnull only on the boundary Γ0 and on the interface Γ1. It means that only Γ0

and Γ1 are perturbed by an action of the shape velocity field V .

We have the following relation between material and shape derivatives, since in general case the material
derivative of a function ξ can be written as

ξ̇ = ξ′ + ⟨∇ξ, V ⟩ . (4.10)

From relation (4.10) it follows that the shape derivatives looses the spatial regularity compared to the material
derivatives. For hyperbolic problems this property should be taken into account in order to assure the regularity
of shape derivatives in terms of the regularity of the data to the state equation.

The shape derivatives satisfy the homogeneous system (2.1) of the form
φ′
tt − c2∆φ′ = 0 in ΩA × (0, T )
w′
tt − divS′ = 0 in ΩM × (0, T )
u′tt − divσ′

−divψ′
=
=

0
0

}
in ΩP × (0, T )

(4.11)

along with the homogeneous initial conditions, φ′(x, 0) = 0, φ′
t(x, 0) = 0,

w′(x, 0) = 0, w′
t(x, 0) = 0,

u′(x, 0) = 0, u′t(x, 0) = 0 .
(4.12)

and nonhomogeneous boundary and interface conditions obtained below from (2.5) on Γ0 and from (2.6) on
Γ1, respectively.

The constitutive relations (2.2) are in the same form for the shape derivatives, therefore are not repeated here.
Boundary conditions for shape derivatives on Γ0. Now, we derive the boundary conditions on Γ0.

• The homogeneous Dirichlet boundary condition for the displacement field u = 0 leads to the homoge-
neous boundary condition for the material derivative, and in view of (4.10) becomes the nonhomoge-
neous boundary condition for the shape derivative

u′ = −∂u
∂n
V · n = −vn

∂u

∂n
on Γ0 × (0, T ) , (4.13)

• The homogeneous Dirichlet boundary condition for the normal component of the vector field ψ written
in the form ψτ (xτ ) · nτ (xτ ) = 0 becomes the nonhomogeneous boundary condition for the normal
component of the shape derivative vector field after differentiation with respect to τ ,

ψ′ · n+ vnn ·Dψ · n− ψΓ · ∇Γvn = 0 on Γ0 × (0, T ) , (4.14)

where we denote by ψΓ := ψ−(ψ ·n)n the tangential component of the field ψ on the moving boundary
Γ0 × (0, T )
• The third condition in (2.5) is just repeated for φ′ since the boundary Γ3 × (0, T ) is independent of the

shape parameter τ .

Boundary conditions for shape derivatives on Γ1. Now, we derive the transmission conditions on the interface
Γ1.

• The transmission condition for displacement fields u = w leads to nonhomogeneous transmission
condition for the shape derivatives obtained in the same way as for homogeneous Dirichlet boundary
condition, actually

u′ + vn
∂u

∂n
= w′ + vn

∂w

∂n
on Γ1 × (0, T ) , (4.15)
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• In the similar way the boundary value for the shape derivative q′ of the potential q is obtained

q′ + vn
∂qP

∂n
= 0 on Γ1 × (0, T ) , (4.16)

• The equality of normal stresses σn = Sn on the interface Γ1 × (0, T ) leads to the nonhomogeneous
transmission conditions for normal stresses of shape derivatives σ′n, S′n,

σ′n− vn(h+ 2κSn) + divΓ(vnσΓ) = S′n− vn(g + 2κσn) + divΓ(vnSΓ) on Γ1 × (0, T ) , (4.17)

where κ is the mean curvatrure of Γ1, σΓ = σn − (σn · n)n is the tangential stress on Γ1, divΓ is the
tangential divergence on Γ1, and SΓ = Sn− (Sn · n)n is the tangential stress on Γ1.

Therefore, we complement the system (4.11) with the following boundary and transmission conditions{
ψ′ · n = −vnn ·Dψ · n+ ψΓ · ∇Γvn

u′ = −vn
∂u

∂n

on Γ0 × (0, T ) , (4.18)


u′ + vn

∂u

∂n
= w′ + vn

∂w

∂n
σ′n− vn(h+ 2κSn) + divΓ(vnσΓ) = S′n− vn(g + 2κσn) + divΓ(vnSΓ)

q′ = −vn
∂qP

∂n

on Γ1 × (0, T ) (4.19)

{
w′
t · n = −∂φ

′

∂n
S′n = −φ′

tn
on Γ2 × (0, T ) , (4.20)

∂φ′

∂n
= −1

c
φ′
t on Γ3 × (0, T ) . (4.21)

where n is the outward unit normal vector pointing toward the exterior of Ω.

Theorem 5. For the shape derivatives of the solutions to the coupled model described in Section 2.1, we have:
• The shape derivatives φ′, w′, u′, q′, of the solutions φ,w, u, q, for the system (4.6) are given by (4.11),

(4.12), (4.18)-(4.21) in the strong formulation.
• For the regularity of the weak solutions to this system it is required that the following assumption
qD ∈ L∞(0, T ;H2(ΩP )) is satisfied, which implies the regularity of the nonhomogeneous Dirichlet
boundary condtion for the shape derivative q′,

∂qD

∂n
V · n ∈ L∞(0, T ;H1/2(Γ1)) . (4.22)

• According to (3.10), (4.10) and (4.22), there exist shape derivatives of the solutions to the system (3.4)
with the following regularity

φ′ ∈ L∞(0, T ;H1(ΩA)) , φ′
t ∈ L∞(0, T ;L2(ΩA)) ,

w′ ∈ L∞(0, T ; [H1(ΩM )]3) , w′
t ∈ L∞(0, T ; [L2(ΩM )]3) ,

u′ ∈ L∞(0, T ; [H1(ΩP )]3) , u′t ∈ L∞(0, T ; [L2(ΩP )]3) ,
q′ ∈ L∞(0, T ;H1(ΩP )) ,

(4.23)

given by weak solutions to the following system:
– equations are given by (4.11);
– initial conditions are homogeneous (4.12);
– boundary and and transmission conditions are given by (4.18)-(4.21).

Proof. The proof is standard, taking into account the specificity of the hyperbolic systems, the simplest case of
the wave equation is covered in details e.g., by Cagnol and Zolésio [1], see also Sokolowski and Zolésio [12] as
well as Delfour and Zolésio [3]. Formally, the equations for the shape derivatives are derived by an application
of the Reynolds’ Transport Theorem to the variational formulation of the model in variable domain setting.
Then, the boundary conditions on moving boundary and moving interface are found from the results given
in [12] for the shape derivatives of the elasticity boundary value problems. The initial conditions are derived
from the assumption that the initial conditions for the model are shape independent i.e., the shape derivatives
of initial conditions are null. �
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5. SHAPE DIFFERENTIABILITY OF A FUNCTIONAL

5.1. Adjoint system. In order to simplify further calculations, let us introduce the adjoint states φa, wa, v and
p, which are solutions of the following variational system: For each t ∈ (0, T ) and any (φ̃, w̃, ṽ, p̃) ∈ W̃(Ω),
find the adjoint acoustic potential φa, the adjoint mechanical displacement wa, the adjoint electromechanical
displacement v and the adjoint electric potential p, with (φa, wa, v, p) ∈ W̃ , such that

⟨φa
tt, φ̃⟩ΩA + c2⟨∇φa,∇φ̃⟩ΩA − ⟨wa

t · n, φ̃⟩Γ2 − c⟨φa
t , φ̃⟩Γ3

+⟨wa
tt, w̃⟩ΩM + ⟨A∇swa,∇sw̃⟩ΩM + c2⟨φa

t , w̃ · n⟩Γ2

+⟨vtt, ṽ⟩ΩP + ⟨C∇sv,∇sṽ⟩ΩP − ⟨P∇p,∇sṽ⟩ΩP

= α⟨φtt − p⋆t , φ̃⟩ΩA + β(⟨η, div(w̃)⟩ΩM + ⟨∇η, w̃⟩ΩM ,

⟨D∇p,∇p̃⟩ΩP + ⟨P⊤∇sv,∇p̃⟩ΩP = 0,

(5.1)

with the following final conditions

φa(x, T ) = 0 and φa
t (x, T ) = −α(φt(x, T )− p⋆(x, T )),

wa(x, T ) = wa
t (x, T ) = 0, v(x, T ) = vt(x, T ) = 0. (5.2)

From the above system, we can define the adjoint mechanical stress tensor Sa, the electromechanical stress
tensor σa and the adjoint electrical displacement ψa as following

Sa(wa) = Aε(wa),
σa(v, p) = Cε(v) + Pe(p),
ψa(v, p) = −P⊤ε(v) +De(p).

(5.3)

The strong system associated to the adjoint problem reads as follows
φa
tt − c2∆φa = α(φtt − p⋆t ) in ΩA × (0, T )
wa
tt − divSa = 0 in ΩM × (0, T )
vtt − divσa

−divψa
=
=

0
0

}
in ΩP × (0, T )

(5.4)

with final conditions given by (5.2), boundary conditions{
ψa · n = 0

v = 0
on Γ0 × (0, T ),

∂φa

∂n
=

1

c
φa
t on Γ3 × (0, T ), (5.5)

and transmission conditions of the form{
v = wa

(σa − Sa)n = −βηn on Γ1 × (0, T ) and

{
wa
t · n = −c2∂φ

a

∂n
San = (βη − c2φa

t )n
on Γ2 × (0, T ). (5.6)

In addition, we have p(x, t) = 0 on Γ1 × (0, T ), which naturally satisfies the compatibility condition.

Remark 6. It is important to observe that the adjoint system is a time reversal problem, which should be solved
by taking t← T − t. In this case the boundary condition on Γ3 becomes dissipative, namely

∂φa

∂n
= −1

c
φa
t on Γ3 × (0, T ) , (5.7)

and for the adjoint system holds Theorem 1.

Proposition 7. There is a unique weak solution (φa, wa, v, p) satisfying the regularity (3.8) of Theorem 1 for
the adjoint system (5.4), (5.2), (5.5), (5.6)

5.2. Shape derivative calculation. We are going to denote by φτ,t :=
∂φτ

∂t
the time derivative of the function

φτ which is defined in Ωτ .
Let us perform the shape sensitivity analysis of the functional JΩτ (φτ,t, wτ ). Thus, we need to calculate its

derivative with respect to the parameter τ at τ = 0, that is∫ T

0
J̇Ω(φt, w) = J̇Ω(φt, w) :=

d

dτ
JΩτ (φτ,t, wτ )

∣∣∣∣
τ=0

. (5.8)
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In order to proceed, it is convenient to introduce an analogy to classical continuum mechanics [6] whereby
the shape change velocity field V is identified with the classical velocity field of a deforming continuum and
τ is identified as an artificial time parameter (we refer to [12] for analogies of this type in the context of shape
sensitivity analysis). In this case, by making use of the concept of material derivative of a spatial field [6, 7]
and considering the Reynolds’ Transport Theorem, the shape derivative of the functional JΩ(φt, w) is given by

J̇Ω(φt, w) = ⟨DΩ(JΩ(φt, w)), V ⟩+ ⟨Dφt(JΩ(φt, w)), φ̇t⟩+ ⟨Dw(JΩ(φt, w)), ẇ⟩ , (5.9)

where ∫ T

0
⟨DΩ(JΩ(φt, w)), V ⟩ = β

∫ T

0

∫
ΩM

(∇w⊤η +∇η ⊗ w) · ∇V

− β

∫ T

0

∫
ΩM

(div(w)η + w · ∇η)divV

= β

∫ T

0
⟨∇w⊤η +∇η ⊗ w,∇V ⟩ΩM

− β

∫ T

0
⟨div(w)η + w · ∇η,divV ⟩ΩM , (5.10)

and ∫ T

0
⟨Dφt(JΩ(φt, w)), φ̇t⟩ = α

∫ T

0

∫
ΩA

(φt − p⋆)φ̇t

= α

∫
ΩA

(φt − p⋆)φ̇
∣∣∣∣T
0

− α
∫ T

0

∫
ΩA

(φtt − p⋆t )φ̇

= α

∫
ΩA

(φt(T )− p⋆(T ))φ̇(T )− α
∫ T

0

∫
ΩA

(φtt − p⋆t )φ̇

= α⟨(φt(T )− p⋆(T )), φ̇(T )⟩ΩA − α
∫ T

0
⟨(φtt − p⋆t ), φ̇⟩ΩA , (5.11)∫ T

0
⟨Dw(JΩ(φt, w)), ẇ⟩ = −β

∫ T

0

∫
ΩM

(div(ẇ)η + ẇ · ∇η)

= −β
∫ T

0
(⟨η,div(ẇ)⟩ΩM + ⟨∇η, ẇ⟩ΩM ) . (5.12)

Thus, since the acoustic chamber remains fixed, we have

J̇Ω(φt, w) = β

∫ T

0
⟨∇w⊤η +∇η ⊗ w,∇V ⟩ΩM − β

∫ T

0
⟨div(w)η + w · ∇η,divV ⟩ΩM

−
∫ T

0
α⟨(φtt − p⋆t ), φ̇⟩ΩA −

∫ T

0
β(⟨η,div(ẇ)⟩ΩM + ⟨∇η, ẇ⟩ΩM

+ α⟨(φt(T )− p⋆(T )), φ̇(T )⟩ΩA . (5.13)

5.3. Proof of Theorem 3. Let us now calculate the derivative of the state system (4.4) with respect to the
parameter τ at τ = 0. Thus, by making use again of the concept of material derivative of a spatial field [6, 7]
and considering the Reynolds’ Transport Theorem, we obtain:

• For the acoustic chamber

⟨φtt, φ̃⟩·ΩA = ⟨φ̇tt, φ̃⟩ΩA , (5.14)
⟨∇φ,∇φ̃⟩·ΩA = ⟨∇φ̇,∇φ̃⟩ΩA , (5.15)
⟨wt · n, φ̃⟩·Γ2

= ⟨ẇt · n, φ̃⟩Γ2 , (5.16)
⟨φt, φ̃⟩·Γ3

= ⟨φ̇t, φ̃⟩Γ3 . (5.17)
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• For the mechanical device

⟨wtt, w̃⟩·ΩM = ⟨ẇtt, w̃⟩ΩM +

∫
ΩM

(wtt · w̃)divV , (5.18)

⟨φt, w̃ · n⟩·Γ2
= ⟨φ̇t, w̃ · n⟩Γ2 , (5.19)

⟨A∇sw,∇sw̃⟩·ΩM = ⟨A∇sẇ,∇sw̃⟩ΩM +

∫
ΩM

(A∇sw · ∇sw̃)divV

−
∫
ΩM

(∇w⊤(A∇sw̃) +∇w̃⊤(A∇sw)) · ∇V . (5.20)

• For the piezoelectric device

⟨utt, ũ⟩·ΩP = ⟨u̇tt, ũ⟩ΩP +

∫
ΩP

(utt · ũ)divV , (5.21)

⟨C∇su,∇sũ⟩·ΩP = ⟨C∇su̇,∇sũ⟩ΩP +

∫
ΩP

(C∇su · ∇sũ)divV

−
∫
ΩP

(∇u⊤(C∇sũ) +∇ũ⊤(A∇su)) · ∇V , (5.22)

⟨P∇q,∇sũ⟩·ΩP = ⟨P∇q̇,∇sũ⟩ΩP +

∫
ΩP

(P∇q · ∇sũ)divV

−
∫
ΩP

(∇q ⊗ P⊤∇sũ+∇ũ⊤P∇q) · ∇V , (5.23)

⟨D∇q,∇q̃⟩·ΩP = ⟨D∇q̇,∇q̃⟩ΩP +

∫
ΩP

(D∇q · ∇q̃)divV

−
∫
ΩP

(∇q ⊗D∇q̃ +∇q̃ ⊗D∇q) · ∇V , (5.24)

⟨P⊤∇su,∇q̃⟩·ΩP = ⟨P⊤∇su̇,∇q̃⟩ΩP +

∫
ΩP

(P⊤∇su · ∇q̃)divV

−
∫
ΩP

(∇u⊤P∇q̃ +∇q̃ ⊗ P⊤∇su) · ∇V . (5.25)

where we have used the fact that the admissible variations φ̃, w̃, ũ and q̃ do not depend on the pa-
rameter τ . Thus, the derivative with respect to the shape parameter τ of the state system, after some
rearrangements, becomes (4.7).

5.4. Distributed Shape Gradient.

Theorem 8. The form of distributed gradient of shape functional (4.3) defined in variable domain setting, is
given by (5.35), (5.36), (5.37). In addition, for the strong solutions we have the divergence free Eshelby tensors
(5.46).
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Proof. By setting in (4.7) φ̃ = φa, w̃ = wa, ũ = v and q̃ = p in the above, we obtain

⟨φa
tt, φ̇⟩ΩA + c2⟨∇φ̇,∇φa⟩ΩA − c2⟨ẇt · n, φa⟩Γ2 + c⟨φ̇t, φ

a⟩Γ3

+⟨wa
tt, ẇ⟩ΩM + ⟨A∇sẇ,∇swa⟩ΩM + ⟨φ̇t, w

a · n⟩Γ2

+⟨vtt, u̇⟩ΩP + ⟨C∇su̇,∇sv⟩ΩP + ⟨P∇q̇,∇sv⟩ΩP

= ⟨∇w⊤(A∇swa) + (∇wa)⊤(A∇sw),∇V ⟩ΩM

−⟨wtt · wa +A∇sw · ∇swa,divV ⟩ΩM

+⟨∇u⊤(C∇sv) +∇v⊤(A∇su) +∇q ⊗ P⊤∇sv +∇v⊤P∇q,∇V ⟩ΩP

−⟨utt · v + C∇su · ∇sv + P∇q · ∇sv,divV ⟩ΩP

+⟨φa
tt, φ̇⟩ΩA − ⟨φ̇tt, φ

a⟩ΩA

+⟨wa
tt, ẇ⟩ΩM − ⟨ẇtt, w

a⟩ΩM

+⟨vtt, u̇⟩ΩP − ⟨u̇tt, v⟩ΩP ,

⟨D∇q̇,∇p⟩ΩP − ⟨P⊤∇su̇,∇p⟩ΩP

= ⟨∇q ⊗D∇p+∇p⊗D∇q −∇u⊤P∇p−∇p⊗ P⊤∇su,∇V ⟩ΩP

−⟨D∇q · ∇p− P⊤∇su · ∇p,divV ⟩ΩP .

(5.26)

where we have introduced the terms ±⟨φa
tt, φ̇⟩ΩA , ±⟨wa

tt, ẇ⟩ΩM , ±⟨vtt, u̇⟩ΩP in the left hand side of the first
equality. Using integration by parts, we have∫ T

0
⟨φa

tt, φ̇⟩ΩA −
∫ T

0
⟨φ̇tt, φ

a⟩ΩA = ⟨φa
t , φ̇⟩ΩA |T0 − ⟨φ̇t, φ

a⟩ΩA |T0

= ⟨φa
t (T ), φ̇(T )⟩ΩA

= −⟨α(φt(T )− p⋆(T )), φ̇(T )⟩ΩA , (5.27)∫ T

0
⟨wa

tt, ẇ⟩ΩM =

∫ T

0
⟨ẇtt, w

a⟩ΩM , (5.28)∫ T

0
⟨vtt, u̇⟩ΩP =

∫ T

0
⟨u̇tt, v⟩ΩP , (5.29)∫ T

0
⟨ẇt · n, φa⟩Γ2 = −

∫ T

0
⟨φa

t , ẇ · n⟩Γ2 , (5.30)∫ T

0
⟨φ̇t, φ

a⟩Γ3 = −
∫ T

0
⟨φa

t , φ̇⟩Γ3 , (5.31)∫ T

0
⟨φ̇t, w

a · n⟩Γ2 = −
∫ T

0
⟨wa

t · n, φ̇⟩Γ2 . (5.32)

Thus, identity (5.26) can be re-written as

⟨φa
tt, φ̇⟩ΩA + c2⟨∇φa,∇φ̇⟩ΩA − ⟨wa

t · n, φ̇⟩Γ2 − c⟨φa
t , φ̇⟩Γ3

+⟨wa
tt, ẇ⟩ΩM + ⟨A∇swa,∇sẇ⟩ΩM + c2⟨φa

t , ẇ · n⟩Γ2

+⟨vtt, u̇⟩ΩP + ⟨C∇sv,∇su̇⟩ΩP − ⟨P∇p,∇su̇⟩ΩP

= ⟨∇w⊤(A∇swa) + (∇wa)⊤(A∇sw),∇V ⟩ΩM

−⟨wtt · wa +A∇sw · ∇swa,divV ⟩ΩM

+⟨∇u⊤(C∇sv) +∇v⊤(A∇su) +∇q ⊗ P⊤∇sv +∇v⊤P∇q,∇V ⟩ΩP

−⟨utt · v + C∇su · ∇sv + P∇q · ∇sv,divV ⟩ΩP

−⟨∇sv, P∇q̇⟩ΩP − ⟨P∇p,∇su̇⟩ΩP ,

⟨D∇p,∇q̇⟩ΩP + ⟨P⊤∇sv,∇q̇⟩ΩP

= ⟨∇q ⊗D∇p+∇p⊗D∇q −∇u⊤P∇p−∇p⊗ P⊤∇su,∇V ⟩ΩP

−⟨D∇q · ∇p− P⊤∇su · ∇p,divV ⟩ΩP

+⟨∇p, P⊤∇su̇⟩ΩP + ⟨P⊤∇sv,∇q̇⟩ΩP ,

(5.33)
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where we have introduced the terms ±⟨P∇p,∇su̇⟩ΩP and ±⟨P⊤∇sv,∇q̇⟩ΩP . In the same way, let us set
φ̃ = φ̇, w̃ = ẇ, ṽ = u̇ and p̃ = q̇ in the adjoint system (5.1), to obtain

⟨φa
tt, φ̇⟩ΩA + c2⟨∇φa,∇φ̇⟩ΩA − ⟨wa

t · n, φ̇⟩Γ2 − c⟨φa
t , φ̇⟩Γ3

+⟨wa
tt, ẇ⟩ΩM + ⟨A∇swa,∇sẇ⟩ΩM + c2⟨φa

t , ẇ · n⟩Γ2

+⟨vtt, u̇⟩ΩP + ⟨C∇sv,∇su̇⟩ΩP − ⟨P∇p,∇su̇⟩ΩP

= α⟨φtt − p⋆t , φ̇⟩ΩA + β(⟨η,div(ẇ)⟩ΩM + ⟨∇η, ẇ⟩ΩM ,

⟨D∇p,∇q̇⟩ΩP + ⟨P⊤∇sv,∇q̇⟩ΩP = 0 ,

(5.34)

By comparing (5.33) with (5.34), and using (5.13) we observe that

J̇Ω(φt, w) =

∫ ⊤

0

(∫
ΩM

ΣM · ∇V +

∫
ΩP

ΣP · ∇V
)
, (5.35)

where the last term of (5.13) is absorbed by (5.27) and we have used the fact that ⟨∇sv, P∇q̇⟩ΩP = ⟨P⊤∇sv,∇q̇⟩ΩP

and ⟨P∇p,∇su̇⟩ΩP = ⟨∇p, P⊤∇su̇⟩ΩP . In addition, the Eshelby tensors [4] ΣM and ΣP are respectively
given by

ΣM = −(wt · wa
t − S · ∇swa + β(div(w)η + w · ∇η))I

−(∇w⊤Sa + (∇wa)⊤S − β(∇w⊤η +∇η ⊗ w) , (5.36)

ΣP = −(ut · vt − σ · ∇sv + ψ · ∇p)I
−(∇u⊤σa +∇v⊤σ −∇q ⊗ ψa −∇p⊗ ψ) , (5.37)

with σ, ψ and σa, ψa given, respectively, by (2.2) and (5.3). �

5.5. Boundary Shape Gradient.

Theorem 9. By the structure theorem for a shape differentiable shape functionals [12], from (5.35) the bound-
ary formulae of the shape gradient is obtained. In general, the shape gradient on the boundary is given by a
distribution. However, for the strong solutions, in view of (5.46), the boundary formula for the shape gradient
takes the form (5.47), and in such a case the shape gradient on the moving boundary is given by a function.

Proof. After applying the divergence theorem in (5.35), we observe that∫
ΩM

ΣM · ∇V =

∫
∂ΩM

ΣMn · V −
∫
ΩM

divΣM · V

=

∫
Γ2

ΣMn · V −
∫
Γ1

ΣMn · V −
∫
ΩM

divΣM · V . (5.38)∫
ΩP

ΣP · ∇V =

∫
∂ΩP

ΣPn · V −
∫
ΩP

divΣP · V

=

∫
Γ1

ΣPn · V −
∫
Γ0

ΣPn · V −
∫
ΩP

divΣP · V . (5.39)

remembering that n = n(i) = −n(i−1) is the unit normal vector pointing toward the exterior of Bi. Let us
calculate the divergence of the tensors ΣM and ΣP given by (5.36) and (5.37), respectively

divΣM = ∇w⊤
ttw

a + (∇wa)⊤wtt −∇w⊤divSa − (∇wa)⊤divS . (5.40)

divΣP = ∇u⊤ttv +∇v⊤utt − (∇u⊤divσa −∇q divψa)− (∇v⊤divσ −∇pdivψ) , (5.41)

since ∇(div(w)η + w · ∇η) = div(∇w⊤η +∇η ⊗ w). Integration by parts yields∫ T

0

∫
ΩM

(∇wtt)
⊤wa =

∫ T

0

∫
ΩM

(∇w)⊤wa
tt , (5.42)∫ T

0

∫
ΩP

(∇utt)⊤v =

∫ T

0

∫
ΩP

(∇u)⊤vtt , (5.43)
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and after some arrangements, we obtain

divΣM = (∇w)⊤(wa
tt − divSa) + (∇wa)⊤(wtt − divS) , (5.44)

divΣP = (∇u)⊤(vtt − divσa) + (∇v)⊤(utt − divσ) +∇qdivψa +∇pdivψ . (5.45)

Finally, by taking into account the strong systems (2.1) and (5.4), we have the following important results

divΣM = divΣP = 0 . (5.46)

In addition, since V = 0 on Γ2, and from these last results together with (5.38,5.39), we obtain the final
expression for the shape derivative of the functional J̇Ω(φt, w), namely

J̇Ω(φt, w) =

∫ T

0

∫
Γ1

(ΣP − ΣM )n · V −
∫ T

0

∫
Γ0

ΣPn · V . (5.47)

with ΣM and ΣP given respectively by (5.36) and (5.37). The above form of shape derivative of the distributed
functional can serve us to identify the shape gradient. �

Since the shape functional in question is differentiable in the sense of the shape sensitivity analysis in [12],
we can apply the structure theorem to this end. In particular, from the boundary and transmission conditions,
namely, (2.5), (5.5) and (2.6), (5.6), respectively, it is straightforward to verify that the above equation holds
the structure theorem. Therefore, it is sufficient to take into consideration the speed vector fields normal to the
boundaries and the interfaces. This observation influences only two boundary integrals with the Eshelby tensor,
and the result is the following.

Corollary 10. The density g of the boundary shape gradient of the distributed shape functional is given by the
following expression

⟨g, V · n⟩ =
∫ T

0

∫
Γ1

((ΣP − ΣM )n · n)V · n−
∫ T

0

∫
Γ0

(ΣPn · n)V · n . (5.48)

As it is indicated before, in order to apply the level-set strategy of shape optimization, it is required that
the density g of the boundary shape gradient is given by functions supported on the boundaries and on the
interfaces.

6. CONCLUSIONS

In this paper the shape optimization problem for coupled non stationary partial differential equations is
analysed. Beside the existence of an optimal shape under realistic conditions, the form of the shape gradient is
established in usual expressions necessary for applications of numerical methods, say, for boundary integrals.
This means, that the shape optimization problem can be solved by the discretization of the continuous shape
gradient and the appropriate finite elements in spatial variables and the finite differences in time variable, for
example. The numerical realization, however, will be subject to a forthcoming publication.

APPENDIX A. PROOF OF THEOREM 1

Without lost of generality, in the proof we can assume that the boundary condition for q (i.e. qP ) as
well as the nonhomogeneous terms f , g and h are identically equal to zero. We can use the Galerkin pro-
cedure. Thus, we introduce sequences {(φ̃m, w̃m, ũm, q̃m)m∈N} in W̃ and the finite dimensional spaces
W̃m = span{(φ̃1, w̃1, ũ1, q̃1), ..., (φ̃m, w̃m, ũm, q̃m)} so that the union over all such spaces is dense in W̃ .
Clearly, if we take the test functions (φm, wm, um, qm), with φm = φ = φ̃, wm = w = w̃, um = u = ũ
and qm = q = q̃, and initial conditions φm(0) = φm

0 , φm
t (0) = φm

1 , wm(0) = wm
0 , wm

t (0) = wm
1 ,

um(0) = um0 , umt (0) = um1 , such that the sequences (φm
0 , w

m
0 , u

m
0 , 0) and (φm

1 , w
m
1 , u

m
1 , 0) are convergent

in W̃ and L2(ΩA)× [L2(ΩM )]3× [L2(ΩP )]3×{0} respectively, then, it follows that problem (3.4) has a local
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solution in an interval [0, tm). In order to extend the solution to [0,+∞), the finite dimensional system of
ordinary differential equations associated to (3.4) now reads as follows. For any (φ̃, w̃, ũ, q̃) ∈ W̃m,

1
c2
⟨φm

tt (t), φ̃⟩ΩA + aA(φ
m(t), φ̃)− ⟨wm

t (t) · n, φ̃⟩Γ2 +
1
c ⟨φ

m
t , φ̃⟩Γ3

+⟨wm
tt (t), w̃⟩ΩM + aM (wm(t), w̃) + ⟨φm

t (t), w̃ · n⟩Γ2

+⟨umtt (t), ũ⟩ΩP + aMM (um(t), ũ) + aEM (qm(t), ũ)
+aEE(q

m(t), q̃)− aME(u
m(t), q̃) = 0 .

(A.1)

Taking as test functions (φm
t (t), wm

t (t), 0, 0) in (A.1) and integrating over [0, t] we obtain
1
2c2
∥φm

t ∥
2 + 1

2 ∥w
m
t ∥

2 + 1
2aA(φ

m(t), φm(t)) + 1
2aM (wm(t), wm(t)) + 1

c

∫ t
0 ∥φ

m
s ∥

2
L3(Γ2)

ds

= 1
2c2
∥φm

t (0)∥2 + 1
2 ∥w

m
t (0)∥2 + 1

2aA(φ
m(0), φm(0)) + 1

2aM (wm(0), wm(0)) .
(A.2)

Now as test functions in (A.1) we take (0, 0, umt (t), 0), (0, 0, 0, qmt (t)) and (0, 0, 0, qm(t)) and to obtain the
identities

1

2

d

dt
{∥umt ∥

2 + aMM (um, um)}+ aEM (qm, umt ) = 0 , (A.3)

and
aEE(q

m, qmt ) = aME(u
m, qmt ) and aEE(q

m, qm) = aME(u
m, qm) , (A.4)

respectively. Then, it follows that
d

dt
aEE(q

m, qm) = aME(u
m
t , q

m) + aME(u
m, qmt )

= aME(u
m
t , q

m) + aEE(q
m, qmt ) . (A.5)

Therefore
1

2

d

dt
aEE(q

m, qm) = aME(u
m
t , q

m) = aEM (qm, umt ) , (A.6)

by symmetry. Using (A.4) in (A.3) and integrating over [0, t] we obtain

∥umt ∥
2 + aMM (um, um) + aEE(q

m, qm) = ∥um1 ∥
2 + aMM (um0 , u

m
0 ) + aEE(q

m(0), qm(0)) . (A.7)

In order to obtain an initial condition for qm we need to solve

aEE(q
m(0), ξ) = aME(u

m
0 , ξ) , (A.8)

for any ξ ∈ {span{ξ1, ξ2, ..., ξm}, ξi ∈ H1(Ω) : ξi = 0 on Γ1}. Since we know the regularity of um0 we can
apply the Lax-Milgran lemma and obtain a unique solution qm(0) belonging to H1(Ω) with qm(x, 0) = 0 on
Γ1. Furthermore

∥qm(0)∥ ≤ c ∥um0 ∥[H1(ΩP )]3 . (A.9)
Using the coercivity of the bilinear forms aMM and aEE inWP andWE respectively to obtain from (A.3) and
(A.7). In case we consider f , g, h and qD different from zero, we use Gronwall’s inequality at this point.

∥umt ∥
2
[L2(ΩP )]3 + ∥u

m∥2WP
+ ∥qm∥2WE

≤ C{∥um1 ∥
2
[L2(ΩP )]3 + ∥u

m
0 ∥

2
[WP
} , (A.10)

for some positive constant C. A standard argument shows that also

∥φm
tt ∥∗, ∥wm

tt ∥∗, ∥umtt ∥∗ ≤ C. (A.11)

Using the a priori energy estimates (A.10) and (A.11) we can then extract subsequences {φm}, {φm
t }, {φm

tt };
{wm}, {wm

t }, {wm
tt }; {um}, {umt }, {umtt }, which we relabel by original indices converging for K := A,M,P

weak-(⋆) in L∞(0, T ;WK(Ω)), and weak in L2(0, T ;WK(Ω)∗), respectively, to elements φ∗, φ∗
t , φ∗

tt; w
∗, w∗

t ,
w∗
tt; u

∗, u∗t , u∗tt. Standard arguments reveal that these elements solve the weak system (3.4) and that the initial
data are matched in the corresponding spaces as well.

As for the second part of the theorem, we first differentiate the approximate weak system and take
(φm

tt (t), 0, 0, 0) and then (0, wm
tt (t), 0, 0). One adds the results and integrates with respect to time to obtain

1

c2
∥φm

tt (t)∥2 + ∥wm
tt (t)∥2 + aA(φ

m
t (t), φm

t (t)) + aM (wm
t (t), wm

t (t)) +
2

c

∫ t

0
|φm

tt (t)|2Γ3
dγ

≤
{

1

c2
∥φm

tt (0)∥2 + ∥wm
tt (0)∥2 + aΩM (wm

t (0), wm
t (0)) + aA(φ

m
t (0), φm

t (0))

}
.(A.12)
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As for the piezoelectric part, we take (0, 0, umtt (t), 0) as test functions and then, after another differentiation of
the weak form with respect to t, (0, 0, 0, qmt (t). We obtain

1

2

d

dt
{∥utt∥2 + aMM

ΩP (umt (t), umt (t)) + aEE
ΩP (qmt (t), qmt (t))} = 0 (A.13)

Integration with respect to time leads to:

∥umtt (t)∥2 + ∥umt (t)∥2WP
+ ∥qmt (t)∥2WE

≤ C
{
∥umtt (0)∥2 + ∥umt (0)∥2WP

+ ∥qmt (0)∥2WE

}
. (A.14)

We need estimates on ∥φm
tt (0)∥, ∥wm

tt (0)∥[L2(ΩM )]3 , ∥umtt (0)∥[L2(ΩP )]3 and ∥qmt (0)∥W in terms of our data. As
now umt (0) ∈ WP we can uniquely solve the second equation of (3.4) to obtain

∥qmt (0)∥WE
≤ C{∥umt (0)∥WP

}.
Moreover, for given um(0) ∈ H2(ΩP ) let qm(0) ∈ H2(ΩP ) be such that div(D∇q) = div(P⊤∇sum(0)) in ΩP

D∇q · n = P⊤∇su · n on Γ1

q = 0 on Γ0

(A.15)

Then ∥qm(0)∥H2(Ω)P ≤ {∥um(0)∥H2(ΩP )3} and after evaluating the strong solution at t = 0 we obtain

∥umtt (0)∥ ≤ C∥um(0)∥H2(ΩP )3

We can now proceed as before, in order to obtain the a priori estimate

∥umtt (t)∥2H2(ΩP )3 + ∥u
m
t (t)∥2W + ∥umtt (t)∥2[L2(ΩP )]3 + ∥q

m(t)∥2H2(ΩP ) + ∥q
m
t (t)∥2W

≤ C{∥um(0)∥2H2(ΩP )3 + ∥u
m
t (0)∥2W}. (A.16)

We then subtract weak-(⋆) convergent subsequences and pass to the limit in the equations. The fulfillment of
the initial data is proved by a standard argument. Note that also non-homogenous boundary conditions for q
(and u ) can be easily handled.
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