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ABSTRACT. The inverse electromagnetic casting problem consists in looking for a suitable set
of electric wires such that the electromagnetic field induced by an alternating current passing
through them makes a given mass of liquid metal acquire a predefined shape. In this paper
we propose a new method for the topology design of such inductors. The inverse electromag-
netic casting problem is formulated as an optimization problem, and topological derivatives are
considered in order to locate new wires in the right position. Several numerical examples are
presented showing that the proposed technique is effective to design suitable inductors.

1. INTRODUCTION

The industrial technique of electromagnetic casting allows for contactless heating, shaping
and controlling of chemical aggressive, hot melts. The main advantage over the conventional
crucible shape forming is that the liquid metal does not come into contact with the crucible
wall, so there is no danger of contamination. This is very important in the preparation of
very pure specimens in metallurgical experiments, as even small traces of impurities, such as
carbon and sulphur, can affect the physical properties of the sample. Industrial applications are,
for example, electromagnetic shaping of aluminum ingots using soft-contact confinement of the
liquid metal, electromagnetic shaping of components of aeronautical engines made of superalloy
materials (Ni,Ti, ...), control of the structure solidification, etc. [62, 25].

The electromagnetic casting is based on the repulsive forces that an electromagnetic field
produces on the surface of a mass of liquid metal. In the presence of an induced electromagnetic
field, the liquid metal changes its shape until an equilibrium relation between the electromagnetic
pressure and the surface tension is satisfied. The direct problem in electromagnetic casting
consists in determining the equilibrium shape of the liquid metal. In general, this problem can
be solved either directly studying the equilibrium equation defined on the surface of the liquid
metal, or minimizing an appropriate energy functional. The main advantage of this last method
is that the resulting shapes are mechanically stable [41, 56, 29].

The inverse problem consists in determining the electric currents and the induced exterior
field, for which the liquid metal takes on a given desired shape. This is a very important
problem that one needs to solve in order to define a process of electromagnetic liquid metal
forming.

In a previous work we studied the inverse electromagnetic casting problem considering the
case where the inductors are made of single solid-core wires with a negligible area of the cross-
section [17]. In a second paper we considered the more realistic case where each inductor is
a set of bundled insulated strands [16]. In both cases the number of inductors was fixed in
advance. In this paper we aim to overcome this constraint, and look for configurations of
inductors considering different topologies with the purpose of obtaining better results. In order
to manage this new situation we introduce a new formulation for the inverse problem using
a shape functional based on the Kohn-Vogelius criterion, see [55, 24, 37, 14, 20]. A topology
optimization procedure is defined by means of topological derivatives.

The remaining contents of this paper are organized as follows. The next section describes
the direct free-surface problem concerning the electromagnetic casting. Section 3 introduces
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the topological derivative concept. Section 4 presents the inverse problem in electromagnetic
casting, describes how to formulate this problem as an optimization problem, and shows how to
compute the topological derivative of the objective functional. The numerical method proposed
here to construct the solution using the topological derivative is detailed in Section 5. Some
examples are presented in Section 6 to show the efficacy of the proposed approach. Finally, the
conclusions of this paper are presented in Section 7.

2. THE MATHEMATICAL MODEL OF THE ELECTROMAGNETIC CASTING PROBLEM

The simplified model of the electromagnetic casting problem studied here concerns the case
of a vertical column of liquid metal falling down into an electromagnetic field created by vertical
inductors. We assume that the frequency of the imposed current is very high so that the magnetic
field does not penetrate into the metal. In other words, we neglect the skin effect. Moreover,
we assume that a stationary horizontal section is reached so that the 2-dimensional model is
valid. The equilibrium of the system is ensured by the static balance on the surface of the metal
between the surface tension and the electromagnetic forces. This problem and other similar
ones have been considered by several authors, we refer the reader to the following papers for the
physical analysis of the simplifying assumptions of the model: see [11, 26, 30, 41, 49, 51, 56].

We denote by 0 C R? the exterior of the closed and simply connected domain w occupied by
the cross-section of the metal column. The exterior magnetic field can be found as the solution
of the following boundary value problem:

VxB = pod in O,
V-B = 0 in O, (1)
B-n = 0 onl',

IB@)l = O(lz[™") asllzl =00 inQ.

Here the fields J = (0,0,j9) and B = (Bj, B2,0) represent the mean square values of the
current density vector and the total magnetic field, respectively. The constant g is the vacuum
permeability, n the unit normal vector to the boundary I" of © and || - || denotes the Euclidean
norm. We assume that jo has compact support in €2 and satisfies:

/ngd:c:O. (2)

Besides, the cross-section area of the liquid metal column is known and equal to Sp:

/wd:p:So. (3)

The magnetic field produces a surface pressure that acts on the liquid metal changing its shape
until the equilibrium is attained. The equilibrium is characterized by the following equation [51,
52, 53, 54, 50]:

1
— |B|*+0¢C=py onT, 4
2MOII I (4)

where C is the curvature of I' seen from the metal, o is the surface tension of the liquid and the
constant pg is an unknown of the problem. Physically, pg represents the difference between the
internal and external pressures.

In the direct problem the electric current density jp is given and one needs to find the shape
of w that satisfies (3) and such that the magnetic field B solution of (1) satisfies also the
equilibrium equation (4) for a real constant py.

Conditions (1) and (2), with the function jy compactly supported in €2, imply the existence
of the flux function ¢ : @ — R such that B = ( gTi’ _%’ 0), with ¢ solution of:

—Ap = pojo in Q,
o = onT, (5)
o(r) =c+o(l) as|z| = .



This equation have a unique solution in the space W{(£2) defined as [46]:
Wi (Q) ={u: puc L*Q) and Vu € L*(Q)}, (6)

with p(z) = [v/1 + ||z||2 log(2 + ||z]|?)]~!. The constant ¢ of the condition at infinity in (5) is
also an unknown, which has a unique solution in R. Equivalent formulations of the conditions
at infinity are p(z) = O(1) and ¢(z) = ¢+ O(1/||z||) [8]. The form used in (5) is the most
convenient in the development of numerical methods of solution.

The solution ¢ of the exterior problem (5) satisfies the following Poincaré type inequality:
there exist a constant C' > 0 such that [46]

lellwi ) < ClIVellrzq) » (7)
where the norm ||- ”Wol(Q) comes from the scalar product of the Hilbert space Wy ():
(u,v>W01(Q) = / Vu-Vudr + / pPuvdr. (8)
Q Q
The equilibrium equation (4) in terms of the flux becomes:
1 |0yp 2

R i - r.

S0 | o +0C=py on (9)

The direct problem, in terms of the flux, consists in looking for a domain w such that the solution
¢ of (5) satisfies (9) for a real constant py.

3. TOPOLOGICAL DERIVATIVE CONCEPT

The topological derivative measures the sensitivity of a given shape functional with respect to
an infinitesimal singular domain perturbation, such as the insertion of holes, inclusions, source-
terms or even cracks. The topological derivative was rigorously introduced by Sokotowski and
Zochowski [57]. Since then, this concept has proved extremely useful in the treatment of a
wide range of problems, namely, topology optimization [1, 3, 4, 7, 15, 48], inverse analysis
[5, 21, 28, 32, 40] and image processing [9, 10, 31, 33, 38], and has become a subject of intensive
research. Concerning the theoretical development of the topological asymptotic analysis, the
reader may refer to the papers [2, 6, 18, 23, 27, 34, 36, 39, 42, 43, 44, 45, 58, 59|, for instance.

More precisely, let us consider that the domain €2 is subject to a non-smooth perturbation
confined in a small ball B.(Z) of radius € and center ¥ € Q. Then, we assume that a given
shape functional 1 (¢), associated to the topologically perturbed domain, admits the following
topological asymptotic expansion [57]

P(e) = ¢(0) + f(e) Dry + o(f(e)), (10)

where 1(0) is the shape functional associated to the original (unperturbed) domain and f(¢) is
a positive function such that f(¢) — 0, when ¢ — 0. The function ¥ — D7(7) is called the
topological derivative of ¢ at Z. Therefore, this derivative can be seen as a first order correction
of ¥(0) to approximate ¢ (). In fact, the topological derivative Dr is a scalar function defined
over the original domain that indicates, at each point, the sensitivity of the shape functional
when a singular perturbation of size ¢ is introduced at that point.

In this paper we propose a new method for inverse electromagnetic casting problems based
on the topological asymptotic expansion (10), which is presented in details in the next section.

4. THE INVERSE PROBLEM

The goal of the inverse problem is to find a distribution of current around the liquid metal
column so that it attains a given shape. Therefore, we have to determine the electric current
jo such that the solution B of (1) satisfies also the equilibrium equation (4). This topic has
been already studied and there are a few number of papers about the existence of solutions
of the inverse problem, see [30, 22]. Although these above-mentioned references constitute
an important insight on the existence issue, we are also interested in obtaining approximate



4

solutions in situations where the existence of solutions can not be ensured. In other words, if
the inverse problem has a solution, we say that the target shape is shapable, if it does not, we
say that it is not shapable. In the last case we will be interested in obtaining a distribution jg
such that the equilibrium shape be a good approximate to the target shape. There are also two
other reasons that lead us to reject the idea of an algorithm for obtaining exact solutions only.
First, to the author’s knowledge, there is not a complete treatise about the characterization of
the solution set, and, considering a shapable shape, the uniqueness of the solution in terms of
jo can not be ensured. Second, unlike the direct problem, the inverse problem is inherently ill
posed: small variation of the liquid boundary may cause dramatic variations in the solution jg
of the inverse problem [30, 22].

These reasons motivates us to formulate the inverse problem as an optimization problem,
in order to look for a solution (maybe just approximate solution) minimizing an appropriate
functional. There are, however, some known facts about the exact solutions of the inverse
problem that are of main importance in what follows. It has been shown [30] that, assuming
that the solution jy has a compact support, the magnetic field B is, in a neighborhood of T,
the unique analytic extension of the field B-7 defined on the boundary I' of the liquid metal (7
being the unit tangent vector to I'). In [30], the authors proved that such analytic extension,
solution of (1) and (4), exists only if ' is an analytic curve, and the function B-7 is analytic.
Furthermore, from (4) it is possible to show the following:

B-1 = 3\/2uo(po —0C) with s =+£1. (11)

The constant py must satisfy pg > maxp oC. If pg > maxr oC then s should be constant on I.
That situation is not possible if (2) is satisfied, see [30]. Hence we have the important result:

po = max oC. (12)

Another restriction is imposed on I' since s may change the sign at points where B.7 = (
(i.e. where C attains its global maximum), depending on the multiplicity order of these zero
points: if the multiplicity order of a zero point is even, > remains constant. On the other hand,
if the multiplicity order of a zero point is odd, s changes the sign. Hence, by the periodicity
of s, the number of zero points of odd order must be even. For example, any curve which
has the curvature attaining its maximum value at an odd number of points (at which B.7 has
non-degenerate zeros), is in fact impossible to form.

Therefore, calling p = +/2uo(po — oC), with py known and given by (12), the equilibrium
constraint in terms of the flux function reads

gi =xp onl, (13)

where > = 41, with the sign changes located at points where the curvature of I' is a global
maximum. Of course we have two possible ways to define . However, both lead to the same
solution jg but with the opposite sign.

4.1. Problem Formulation. The previous considerations allow us to formulate the inverse
problem as follows: determine the electric current density jo and the real constant ¢ such that
the system

Ay = pojo in Q,

v =0 on I,
0 14
e =xp onI', (14)
on

p(r) =cto(l) as|zf| = o0,

has a solution ¢ € W} (). Let us introduce a shape functional based on the Kohn-Vogelius
criterion, namely

1 1
9(0) = J(8) = ol = 3 [ 16 ds, (15)
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where the auxiliary function ¢ depends implicitly on jy and ¢ by solving the following boundary-
value problem

—§¢ = HoJo in Q,
% —xp  onl, (16)
on

o(x) =c+o(l) as|z]| = oco.

Note that (16) has a unique solution in Wi (Q) if and only if the compatibility condition:

/%;ﬁds:o, (17)
r

is satisfied [8, 35].

The approach proposed here to deal with (14) is the following: determine the electric current
density jo and the constant ¢ such that the solution ¢ of (16) minimizes the shape functional (15).
We note that the minimum of the shape functional (15) is attained when ¢ = 0 on I'. This
means that in this situation, from the well-posedness of problems (5) and (16), we have ¢ = ¢
in .

In a first step we can eliminate the variable ¢ of the optimization problem defining it as the
global minimum ¢*(jp) of (15) for any fixed jo, i.e., we take ¢ = ¢*(jo) = arg min. J(¢(jo,c)). In
fact, ¢ = ¢ + ¢, where ( is the unique solution in W} (Q) to the following problem

—SC = pojo in 2,
X _up onT, (18)
n
C(r) =o(l) as|z| = co.

From (15), and denoting |T'| = [;, ds, we have J(¢) = J(¢) + ¢ [ (ds + 3¢*||. Differentiating
this expression with respect to ¢, we obtain the global minimum

¢ (jo) =~ /F Cds. (19)

Note also that ¢ = ¢*(jp) if and only if the integral of ¢ on I' vanishes. In fact, taking ¢ = ¢*(jo)
we have [ ¢ds = [ Cds+ c*(jo)|T| = 0. Conversely, if we ask for the integral of ¢ on I to be
zero, we have [ (ds+ ¢|T'| = 0, that has the solution ¢ = ¢*(jo).

Hence, we can formulate an equivalent optimization problem as follows: minimize the shape
functional (15), where ¢ depends implicitly on jy only, by solving the following problem

—A¢ = ppjo in 2,
=xp onl, (20)

9
on
/ ¢ds =0.
r
The variational formulation of (20) is
¢€U:/V¢~V77da;:/%pnds—i—/,uojondx VnelU, (21)
Q T Q

where U is the closed subspace of Wy () defined as U = {u € W3 () : [puds = 0}.
Therefore, the proposed approach is to solve the optimization problem

N S
min LI (22)

subject to the constraint given by (21).



Before continue, let us introduce an adjoint state v for further simplification, which is solution
to the following boundary-value problem

—Av =0 inQ,
ov

/vds =0.
I

or, equivalently, solution to the variational problem
vEU:/Vv-Vndm+/¢nds:0 VnelU. (24)
Q r

Note that the compatibility condition for (23) is satisfied, since the integral of ¢ on I' vanishes.
Hence (23) and (24) always have a unique solution. In addition, we can also split the solution
v =w + 3, where w is the unique solution in W (Q) to the following problem

—Aw =0 in Q,
8—w =—¢ onl, (25)
w(z) =o(l) as [lz]| = o0,

and the constant 8 = —|T'|~! [Lwds.

4.2. The topological derivative calculation. Associated to ¢ we define the function ¢,
solution to the perturbed variational problem. In this context, the perturbation is characterized
by changing the electric current distribution jy by a new one j. which is identical to jy everywhere
in  except in two small regions B.(z1) C Q and B.(z~) C Q, such that B.(z~) N B.(z") = @.
More precisely, j. is given by

Je = Jo+ IXB.(x+) — IXB.(a) - (26)

Therefore, the perturbed electric current distribution j. also satisfies the compatibility condi-
tion (2), namely

/ Jedxr =0. (27)
Q
In this way, the shape functional associated to the perturbed problem reads:
1
vle) = J(0:) = 3 [ loc s, (28)

where ¢, is solution to the following variational problem:

quGU:/V¢E-Vnd$:/%ﬁnds+/uoj€ndw VneU. (29)
Q r Q

Before proceeding, let us introduce the adjoint state v. associated to the perturbed problem,
which is solution to the variational problem

UEEU:/VUE-Vnd:v+/¢E17d8:O VnelU. (30)
Q r

Lemma 1. Let ¢ and ¢. be the solutions to the variational problems (21) and (29), respectively.
Then, there exist a constant C, independent of €, such that the inequality

16 = Allwa ) < Ce, (31)

1s satisfied for any small parameter .
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Proof. We have seen that ¢ = ¢ + ¢ with ¢ solution to (18) or, equivalently, solution to the
variational problem

CGV:/VC-Vndxz/%ﬁnds—&—/,u,ojondx VneVv, (32)
Q r Q
where V = {u € W3(Q) : u(z) — 0as|z| — oo} and the constant ¢ = —|T|7! [ {ds.
Analogously, ¢: = (; + ¢ with (; solution to the variational problem
CEEV:/VC5~V77d:c:/%pnds+/uojgnd:c Ynev, (33)
Q r Q
and with the constant ¢c = —|T|™! [ (-ds. By subtracting the variational problems (32)
and (33), we get
[ 9= nda = pot (/ ns— [ ndw> eV, (34)
Q Bc(zT) (x7)
Now, by taking n = (; — (, we have
/HV@~<wﬁm=ua</ -qd— [ <@—0¢Q. (3)
Q B.(zt) e (z7)

Thanks to the behavior of (¢ — () at infinity, there exist a constant C; such that the following
Poincaré type inequality holds [46]

¢ — CHI%V(}(Q) <Oy V(G = C)H%Q(Q) ; (36)
From (35) and (36) we obtain
G = ¢l < C1 (/ (G~ Q) da —/ (¢ —¢) dar) - (37)
Be(zT) ()
Therefore, thanks to the Cauchy-Schwarz inequality, there exist a constant Cs such that
¢ = Cllg ey < Coe (16 = Clliagaqeny + 1 = Cllzaaay ) - (33)
Let p(z) = [\/1+ [|z|? log (2 + [|2]|*)]7L. Then 0 < p(z) < 1 for all x € Q. Let us introduce
1nf{p( ), @ € Bey(27) U Bey(z7)} with the constant €9 > 0. Then, for any € < gy we have
16 = Cll 2. 2+ ||P( = Ollr2(p. 2+
1
< e 10(Ce = Ol 22
1
< 2 16 = Clhwgeen (39)
and
1
16 = Cllze (o) ; 16 = Cllwa oy - (40)
Then, from (38), (39) and (40) there exist a constant Cs such that
HCE—CHIQ/V(}(Q) < Csellée = Cllway » (41)
that can be expressed as
¢ — CHWl < Cse. (42)
On the other hand, from the Cauchy-Schwarz 1nequahty and the trace theorem, we obtain

=

< G116 = Cllwagey (43)



8

Therefore,
e =] < Call¢e = Cllwacay - (44)
Using (42), there exist a constant C5 such that
e —¢| < Cse. (45)
Finally, since (¢p: — ¢) = (¢: — ) + (¢ — ¢),
1P = Pllwp ) < lIke = Cllwg ) + lee = el Iy » (46)
and using (42) and (45) we obtain (31) with C' = C5 + C5||1”W01(Q)' O

Lemma 2. Let v and v. be solutions the the variational problems (24) and (30), respectively.
Then, we have the following estimate for the difference v. — v,

HUE_UHW(}(Q) <Ce¢, (47)
where C' is a constant independent of the small parameter €.

Proof. According to (25), the solution of the adjoint problem can be obtained as v = w+  with
w solution to the following variational problem

wEV:/Vw-Vndm+/¢nds:O VneV, (48)
Q r
and with the constant 8 = —|T'| [pwds. Analogously, v. = w. + . with w. solution to the
variational problem
wEEV:/ng-Vnda:—}—/(bgnds:O VneV, (49)
Q r

and with the constant S. = —|'| [ w. ds. By subtracting the variational problems (48) and (49),
we get,

/V(ws—w)'VUdJE:/(cbs—cb)ndw Vnev, (50)
Q T

Now, by taking n = w. — w, we have

Lt = wl? de = [ (6 = ¢)w —w) da. 61)
Thanks to the behavior of (w. — w) at infinity, the Poincaré inequality gives [46]
[|we — w||%vol(sz) <Oy [V(we = w)l[72(0 » (52)
From (51) and (52) we obtain
e = wlfygoy < 1 [ (6= O)we = w) . (5)

By taking into account the Cauchy-Schwarz inequality and the trace theorem, there exist a
constan Cy such that

lwe = wlliyy ) < C1lige — Al 3 o lwe = wll 3
< G2 162 = Bl llwe — oy - (54)
Therefore, using Lemma 1, there exist Cs such that
2
[we — w1y < Csellwe —wllyqy, (55)

which leads to

e = wllyy@ < Cae. (56)



In addition, from the Cauchy-Schwarz inequality and the trace theorem, we obtain

[ (e = w)ds| < CulE o = wlhgie (57)
r
Therefore,
B = B < Callwe —wllyaq) - (58)
From the result (56), there exist a constant C5 such that
|Be = Bl < Cse. (59)
Finally, since (ve —v) = (we — w) + (B — B),
[ve = vllwa ) < llwe = wllwaq) +18: = BHIwe ) » (60)
and using (56) and (59) we obtain (47) with C' = C5 + C5||]-”W01(Q)- O

Among the methods for calculation of the topological derivative currently available in liter-
ature, here we shall adopt the methodology developed in [47], which is given by the following
result

1 d

Dy = lim ———

Y =0 f/(e) de

where d%w(a—:) is the derivative of 1(¢) with respect to the small parameter €, which can be seen
as the sensitivity of ¥ (g), in the classical sense [19, 60] to the domain perturbation produced by
an uniform expansion of the perturbation B.. Therefore, we can use the concept of shape sensi-

tivity analysis as an intermediate step in the topological derivative calculation. This procedure
enormously simplifies the analysis, allowing us to state the following result:

OF (61)

Theorem 3. The topological derivative of the shape functional (15) is

Drp = —pol (v(zt) —v(z7)) . (62)
Furthermore, the topological asymptotic expansion of the shape functional reads
$(E) = ¥(0) — 7ol (v(a™) — o)) + ofe?). (63)
Proof. The shape derivative of the functional (28) can be obtained as follows
V) = ) = [ o.buds. (64)

Now, let us calculate the shape derivative of the state equation (29), which leads to

. . 2
gbgGU:/Van-Vndx:,uOI / ndx—/ ndx VneU. (65)
Q € B.(zt) B:(z™)
Since ée € U, we can take it as a test function in (30), namely n = és, to obtain
Q/w@v¢m:—/@@@. (66)
Q r

In the same way, since v, € U, we can take it as a test function in (29), namely 1 = v., to obtain

. 2
/ Voo - Voo dr = —pgl (/ Ve dT — / Ve dx) ) (67)
Q € Be(zt) Be(z™)

By comparing both equations and taking into account the symmetry of the bilinear forms on
their left-hand sides, we have from (64) the following important result

. 2
J(p:) = —g,uol (/B ( +)vgdac—/B( )U€d$> . (68)
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In addition, by Lemma 2 we have

[ve = vllypq) < Ce. (69)
Therefore we can approximate v, as
ve(r) = v(z) + O(e) (70)
where v is solution to (24). Then, from the regularity of v at x* and 2~ we obtain
d . 2
d—€¢(5) = J(¢e) = —g,uOI (me?v(z™) — me?v(z™)) + O(?)
= —2mepol (v(zh) —v(z7)) + O(?). (71)
From the result (61) we obtain
e
+ —
Dry = élm% e ) pol (v(@™) —v(z™) + O(e)) . (72)
Therefore, in order to extract the main term of the above expansion, we can choose f’(g) = 2me
(f(e) = me?) and calculate the limit passage € — 0 to obtain the desired result. O

Since we want to minimize the shape functional 1, in the numerical approach we have to
include a pair of inductors at the points 1 (positive inductor) and 2~ (negative inductor) were
the topological derivative D1 takes its more negative values.

5. NUMERICAL METHOD

5.1. The exterior Neumann problem. We have seen that to compute the topological deriv-
ative given by formula (62) we have to solve the Neumann problems (20) and (23). To obtain
approximate solutions for the these problems, we can resort again to functions ¢ and w, solu-
tions to (18) and (25), respectively. So, let us consider the following general form of the exterior
Neumann problem:

—Au =b in Q,
Ou q onT, (73)
on

u(z) =o(l) as zf| = oo,

The solution u of (73) satisfies the following integral equation [8, 35, 13, 12]
(e + [ a'€audy = [ (€ aat@)dr = [ w6 do, (74)

where u* is the fundamental solution of the problem, u*(&,z) = —%logﬂf —zl, ¢"(§x) =
%(g,x), the characteristic function ¢(§) = 1, for any interior point &, and ¢(§) = %, for any
point & € T', where A# is the angle, internal to €2, formed by the right and left tangents to I" at
¢ (c(§) = 3 at points where I is smooth). The first integral on left hand side of (74) must be
understood in the Cauchy principal value sense.

The spatial discretization consists in approximating the boundary I' into N linear elements
I';, 1 < j < N. The functions v and ¢ are approximated inside each element by piecewise linear
polynomials in the form:

u(x) = N(z)u, q¢(x) = N(x)g?, inTy, (75)
where IV is the 1 x 2 matrix of the linear interpolation functions and u?) and qU) are the vectors
that contain the nodal variables corresponding to u and ¢ in the element I';. The collocation

boundary element method (BEM), builds a linear system imposing (74) at each node &; of the
boundary:

iUy + Z hzgu Zgzgq(j) = Ul(gz) , 1<i<N, (76)
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where the element matrices h;; and g;; are:

hij Z/F.q*(f,x)N(m)d% gz’jZ/F'U*(ﬁ,fL‘)N(x)d% (77)

J J

and the function u;, which is a particular solution of (73), is defined as:

(@) = [ w6 oo do. (78)
Q
The linear system (76) can be expressed in matrix form as:
Hu=Gq+ up, (79)

where H was assembled from the values of ¢; and h;;, G from the values of matrices g;;, the
vectors u and g contain all the nodal variables corresponding to u and ¢, respectively, and
(u1)i = w1 (&)

Once solved the linear system (79), the solution w provides the piecewise approximation of
uw on I' by using (75). The approximate solution at interior points is obtained using (74), with
c(§¢) =1, and with v and ¢ defined on I" by the interpolation expressions of (75).

5.2. Construction of the solution. The numerical algorithm will look for a current distribu-
tion jo of the form:

Jo=1> apxe,, (80)
p=1

where [ is a predefined intensity of current, the cells ©,, with 1 < p < m, are fixed bounded
domains, xe, are their characteristic functions, and oy, € {—1,0,1}. The solution of the design
problem will be constructed changing the values of a,. Note that the expression (80) assumes
that the electric current density is uniform on each cell ©,,. Inductors made of bundled insulated
strands allow the use of (80) as a good approximation, see [61] and references therein.

Before starting with the optimization process, we have to define a mesh of linear elements
approximating the boundary I', and the mesh of cells ©,, in a region inside {2 surrounding the
liquid metal. For each of these cells we have to set the initial value for the parameters a, of (80).
If there is no information about what would be a good initial configuration, the value o, = 0
should be chosen. The value of the constant pp must be computed using (12). For numerical
calculations, the curvature C at a node of the boundary mesh is approximated by the curvature of
the circumference defined by it and adjacent nodes. Inside the elements the curvature is linearly
interpolated. Next we have to define the function »» = 41 with a sign change at each global
maximum of the piecewise approximation of the curvature. Curves for which this definition of s
does not satisfies the compatibility condition (17), or having an odd number of global maximum
points, are strictly not shapable. However, some extra sign changes can be defined in order to
have (17) satisfied. Some examples of application of this technique to obtain an approximate
solution for curves that are not shapable are shown in Section 6. Finally, we have to assign a
power of two to the integer variable NC. NC is the variable that determines how many cells
increase and how many decrease the value of the electric current density at each iteration.

The procedure proposed here to build the solution is the following:

(1) Find ¢ on the boundary by solving the exterior Neumann problem (16) and compute
the initial value of the objective function J(¢).

(2) Find the adjoint state v on the boundary by solving the exterior Neumann problem (23)
and compute it at the center of each cell of the mesh.

(3) For the set of cells with a;, < 0, set a; := o, + 1 to the NC cells that have the largest
values of v. For the set of cells with oy, > 0, set o, := o, — 1 to the NC cells that have
the smallest values of v.
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(4) Solve the exterior Neumann problem (16) on the boundary and compute the new value
of the objective function J(¢). If the objective function has decreased then return to
step (2). Otherwise, undo the changes made in step (3) and set NC := NC/2. If NC <
1 stop. Otherwise, return to step (3).

Note that the previous procedure generates a sequence of solutions that monotonically de-
crease the value of the objective function. Note also that the stopping criterium is the most
rigorous possible, because the procedure stops only if it can not find other solution having a
smaller value of the objective function.

Step (2) is by far the most expensive of the previous procedure. Roughly speaking, the number
of operations of this step is proportional to the number of elements of the boundary mesh times
the number of cells of the domain mesh. The number of operations of steps (1) and (4) is related
only to the number of elements of the boundary mesh. The number of operations of step (3) is
also related to the number of cells of the domain mesh, but the ordering operations of this step
can be performed in significantly less time than the operations of step (2).

6. NUMERICAL EXAMPLES

6.1. Example 1. The target shape of this example is the solution of a direct free-surface prob-
lem for a liquid metal column of cross-section area Sy = 7, considering four distributed currents
of density I = 0.5 as shown in Fig. 1. The surface tension ¢ = 1.0 x 10~ and po = 1.0. For
the inverse problem we considered two cases, named Exla and Ex1b, for meshes of cells of size
D = 0.05 and D = 0.02 respectively, defined in the region shown in Fig. 1. As well as in the next
examples, the initial value oy, = 0 was taken for all the cells. The results obtained are shown in
Fig. 2. The evolution of the objective function along the iterative process is shown in Fig. 3.

(a) (b)

F1aure 1. Example 1. (a) Initial configuration of the direct free-surface problem.
(b) Target shape and exact solution. Black area: positive inductors, gray area:
negative inductors, dashed line: target shape, thin solid line: boundary of the
mesh of cells.
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F1curE 2. Example 1. (a) Solution for a mesh of cells of size D = 0.05. (b)
Solution for a mesh of cells of size D = 0.02. Black area: positive inductors, gray
area: negative inductors, dashed line: target shape, thin solid line: equilibrium
shape.

-2

10 ‘
—e— Coarse mesh
—o— Fine mesh
10-3c ]
S
2 107 :
2
[}
=
210° 1
o)
(e}
10°F :
1077 L L L
0 5 10 15 20

Iteration

FiGURE 3. Example 1. Evolution of the objective function.

6.2. Example 2. This example is similar to the previous one, with the difference that six
distributed currents of density I = 0.4 were considered for the direct free-surface problem as
shown in Fig. 4. Two cases, named Ex2a and Ex2b, for meshes of cells of size D = 0.05 and
D = 0.02 respectively, defined in the region shown in Fig. 4 were considered. The results
obtained are shown in Fig. 5. The evolution of the objective function along the iterative process
is shown in Fig. 6.
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A -

‘ 0.4 ‘ 1.3
.

(a) (b)

FIGURE 4. Example 2. (a) Initial configuration of the direct free-surface problem.
(b) Target shape and exact solution. Black area: positive inductors, gray area:
negative inductors, dashed line: target shape, thin solid line: boundary of the
mesh of cells.

KES

Ficure 5. Example 2. (a) Solution for a mesh of cells of size D = 0.05. (b)
Solution for a mesh of cells of size D = 0.02. Black area: positive inductors, gray
area: negative inductors, dashed line: target shape, thin solid line: equilibrium
shape.
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—e— Coarse mesh
¢ —uo— Fine mesh

Objective function

0 10 20 30 40 50
Iteration

F1GURE 6. Example 2. Evolution of the objective function.

6.3. Example 3. The target shape of this example is the round rectangle depicted in Fig. 7.
The current density I = 0.2, 0 = 1.0x 104 and 1o = 1.0. Two cases, named Ex3a and Ex3b, for
meshes of cells of size D = 0.05 and D = 0.02 respectively, defined in the region shown in Fig. 7
were considered. For this example, the compatibility equation (17) is not satisfied if the sign
changes of s are defined just at the four vertices of the rectangle. However, the compatibility
holds if we define two extra sign changes at locations shown in Fig 7. For this case, the results
obtained are shown in Fig. 8. The evolution of the objective function along the iterative process
is shown in Fig. 9.

R0.4

\

1.2

0.4,

0.4‘ 3.2 0.4

] T 1

(a) (b)

Fieure 7. Example 3. (a) Description of the problem geometry. (b) Target
shape. Dashed line: target shape, thin solid line: boundary of the mesh of cells,
black dots: location of the two extra sign changes of .
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Ficure 8. Example 3. (a) Solution for a mesh of cells of size D = 0.05. (b)
Solution for a mesh of cells of size D = 0.02. Black area: positive inductors, gray
area: negative inductors, dashed line: target shape, thin solid line: equilibrium
shape.

—e— Coarse mesh

—o— Fine mesh

Objective function

0 50 100 150
Iteration

Ficure 9. Example 3. Evolution of the objective function.

6.4. Example 4. The target shape of this example is depicted in Fig. 10. The current density
I=020=10x10"%and pp = 1.0. Two cases, named Ex4a and Ex4b, for meshes of cells of
size D = 0.05 and D = 0.02 respectively, defined in the region shown in Fig. 10 were considered.
The results obtained are shown in Fig. 11. The evolution of the objective function along the
iterative process is shown in Fig. 12.



0.4

1.2

0.4,

1.0

0.4, 0.6
/

F1GuRrE 10. Example 4. (a) Description of the problem geometry. (b) Target
shape. Dashed line: target shape, thin solid line: boundary of the mesh of cells.

(a) (b)

FIGURE 11. Example 4. (a) Solution for a mesh of cells of size D = 0.05. (b)
Solution for a mesh of cells of size D = 0.02. Black area: positive inductors, gray
area: negative inductors, dashed line: target shape, thin solid line: equilibrium
shape.

17
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—e— Coarse mesh
2 —o— Fine mesh

Objective function

0 20 40 60 80 100 120
Iteration

FIGURE 12. Example 4. Evolution of the objective function.

6.5. Example 5. The target shape of this example is depicted in Fig. 13. The current density
I =02 0=10x10"*and py = 1.0. Two cases, named Ex5a and Ex5b, for meshes of cells of
size D = 0.05 and D = 0.02 respectively, defined in the region shown in Fig. 13 were considered.
As well as in the Example 3, the function s was defined with two extra sign changes with the
purpose of satisfying the compatibility equation. The results obtained are shown in Fig. 14. The
evolution of the objective function along the iterative process is shown in Fig. 15.

R0O.4

0.4

0.2

0.4,0.4,

1.2
4.0

- - G -

0.4 0.4

0.2

0.4,

(a) (b)

FIGURE 13. Example 5. (a) Description of the problem geometry. (b) Target
shape. Dashed line: target shape, thin solid line: boundary of the mesh of cells,
black dots: location of the two extra sign changes of s.
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F1ceure 14. Example 5. (a) Solution for a mesh of cells of size D = 0.05. (b)
Solution for a mesh of cells of size D = 0.02. Black area: positive inductors, gray
area: negative inductors, dashed line: target shape, thin solid line: equilibrium
shape.

T T

—e— Coarse mesh
—o— Fine mesh

Objective function

0 50 100 150 200 250 300
Iteration

FicURE 15. Example 5. Evolution of the objective function.

6.6. Results summary. Table 1 resumes the information about the considered examples. For
each one the number of iterations performed by the optimization algorithm is indicated as well
as the final value of the objective function. Note that the target shapes of examples 1 to 2
are solutions of direct free-surface problems considering known electric currents. Then, those
currents constitute exact solutions for the inverse problem considered here. However, as shown
in the previous figures, the inductors obtained by the optimization algorithm are clearly different
from the known exact solutions. This fact, instead of indicating that the algorithm did not work
properly, suggests that the inductor design problem have multiple solutions. Table 1 shows
that, for these examples, the optimization algorithm obtained approximated solutions with the
value of the total intensity of current clearly lower than the associated to the known exact
solutions. Thus, the results obtained suggest the idea that the optimization algorithm looks for
an economic design, which is consistent with the idea that inspires the use of the topological
derivative: the algorithm puts inductors in the location where they produce the largest influence
on the shape functional.
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Examples 3 to 5 show that the proposed approach is also effective dealing with truly inverse
problems defined considering general shapes. The best result was obtained for the Example
4, which, because of the especial symmetry of the problem, exactly satisfies the compatibility
equation (17). The examples 3 and 5 required the definition of > with some extra sign changes
to satisfy the compatibility equation. For these examples, the results of the free-surface problem
show that the equilibrium shapes have points of maximum curvature in places where they should
not be. The equilibrium shapes obtained for these examples are, however, quite close to the
target shapes.

TABLE 1. Results summary.
Example NE TC NC Iter I IN IOF FOF

Exla 128 4692 16 9 0.160 0.110 1.209e-03 2.779e-06
Ex1b 128 29304 64 18 0.160 0.118 1.209e-03 3.681e-07
Ex2a 120 4724 16 24 0.192 0.112 2.747e-04 7.013e-07
Ex2b 120 29520 64 47 0.192 0.109 2.747e-04 1.292e-07

Ex3a 120 5744 32 42 - 0.143 7.059e-03 4.691e-06
Ex3b 120 36128 128 142 — 0.160 7.059e-03 1.056e-06
Ex4a 152 10228 32 29 — 0.161 1.066e-02 5.300e-06
Ex4b 152 64120 128 108 - 0.173 1.066e-02 8.523e-07
Exba 180 7864 32 40 - 0.216 5.258e-03 2.113e-05
Ex5b 180 49368 128 292 — 0.264 5.258e-03 8.129e-06

NE: number of elements, TC: total number of cells, NC: initial number
of cells that are selected to change the sign, Iter: number of iterations
performed, II: total intensity of the positive inductors of the known exact
solution. IS: total intensity of the positive inductors of the solution
obtained, IOF: initial value of the objective function, FOF: final value
of the objective function.

7. CONCLUSIONS

In this paper we have described a new method for the topology design of inductors in electro-
magnetic casting. For the two-dimensional case, a new formulation of the design problem based
on the Kohn-Vogelius functional was stated. The topological derivative of the Kohn-Vogelius
functional regarding the introduction of small inductors was derived. A numerical procedure
that makes use of the topological derivative to construct the solution was proposed.

Some examples presented show that the method proposed is effective to design suitable induc-
tors. For some examples with known exact solutions, the method was able to obtain solutions
with a value of the total intensity of current clearly lower than the associated to the known so-
lution. This fact suggests that the use of topological derivatives provides the proposed method
with the intrinsic ability of obtaining the most economical design, with respect to the total
intensity of current, among those belonging to the set of solutions. Some other examples with
unknown solutions were also successfully solved.

In summary, the method proposed is easy to code and can be successfully used in the design
of inductors in electromagnetic casting, considering general geometries as objective.
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