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MULTILAYERED MEDIA
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ABSTRACT. The optimization of shape and topology of piezo-patchdayared piezo-electrical material attached

to structural parts, like elastic bodies, plates and sipédigs a major role in the design of smart structures, as piezo
mechanic-acoustic devices in loudspeakers or energy starge While the design for time-harmonic motions is
genuinely frequency-dependent, as has been reported litetegure in the context of density optimizaiton with
the SIMP-method, time-varying piezoelectric material hasbeen investigated with respect to optimal design so
far. Therefore, shape sensitivities for layered piezagtematerial and time-varying loads and charges are derive

in this paper. In particular, we provide the shape-denreatifor nested piezo-layers associated to a class of shape
functional. More general layers can be dealt with similarly

1. INTRODUCTION

Piezo-electrical materials play an important role in serstd actuator devices used in smart-materials.
There are naturally occurring piezo-materials, typicadlyealing rather weak piezoelectric effects usable for
sensor applications, and those synthetically manufagiditee ceramics, which exhibit high coupling effects
and are therefore important in actuator devices. The speotif applications is becoming broader in recent
years. In particular small loudspeakers, c-muts and piegtiie harvesters contain layers of piezoelectric
material. Most of the recent application of piezoelecteosor- and actuator devices are on a small scale and
require a minimum of such material while maximizing its effeBecause of such restrictions on weight and
the cost of the material with respect to a particular perforoe of the desired device, the piezo-layers should
be optimized with respect to their shape and their topology.

The mechanical properties of piezoelectric material arkéunelerstood. The literature is vast and therefore
we refrain from attempting an appropriate account of palilbms. Let us mention instead surveys|as [14, 15].
While well-posedness of the static equations has beenédimdmany publications, the full dynamic equations
of piezoelectricity and also multi-component piezo-stnoes have been studied in e.gl [[5] [16,[17, 23]. Again
the list far from being complete.

When it comes to optimization in the context of piezoeledtyithe literature is sparce. Topology optimiza-
tion of piezo-patches has been considered by Silva and Ki20] and Kogel and Silva [12]. Coupling of
piezoelectric patches and elastic material has been dréathe context of SIMP-optimization in Wein et al.
[24,[25]. In particular in[[25] a piezo-patch was consideasdbeing glued to a 3-d elastic body. The piezo-patch
was subject to a frequency input of a defined frequen@nd the maximal displacement of the elastic body
was calculated. See Figurk 1 for the set-up.

The question raised in_[24, 25,126] was concern as to whetleetdpology of the piezo-patch coupled
to the elastic plate could be optimized with respect to argisast-function, like maximal displacement at a
given point, by using the material interpolation method 8I[,[20]. This question was considered under the
assumption of time-harmonic motions, that is to say, baseal ldelmholtz-like static model. The optimization
was done for a given frequency or a given frequency band. Aapaesult can be seen in figulel§12,3.

Sweeping over a frequency range, the overall behavior has tested numerically. See Figlile 4.

It is obvious that the optimal topology obtained this wayrisguency dependent. Moreover, the SIMP-
method as such provides optimal density distributionseratihan shapes or true 0-1 designs. The question of
optimal shapes of piezo-layers and their 0-1 topology aesigas left open. Even though robust topology op-
timization with respect to frequency bands has been aathiessmg min-max-SIMP optimization, the question
of optimal shape and topology for time-dependent problevas, also left open.
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FIGURE 2. [26] SIMP optimized topology and corresponding disphaeat
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FIGURE 3. [26]SIMP optimized topology and corresponding disphaeat

We recall that shape derivatives obtained for solutionsafiolary value problems lead to the shape gradients
of the associated functionals. By the structure theorenstich a shape gradient of a shape differentiable
functional, it follows that it is given by a distribution sp@rted on the moving boundary. On the other hand,
we require the shape gradient given by a function in ordeppiyathe level-set strategy for numerical solution
of the associated shape optimisation problem. This issaésgsaddressed in the paper, and the appropriate
regularity of solutions to boundary value problems is déscto guarantee the required regularity of shape
gradients.

The more general boundary perturbations which are caltegliar domain perturbations cannot be directly
analysed by the speed method. However, such boundary Ipatiturs as well as the associated topological
derivatives can be used in the numerical procedure in oodehange the domain topology, by creating small
voids, or adding small rigid inclusions in an elastic bodyheTanalysis of singular domain perturbations is
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FIGURE 4. |26] a frequency sweep and gain

performed by means of matched and compound asymptotic sixesn with the estimates of asymptotic re-
mainders in weighted spaces [2]. We point out that the tapcéd gradients of shape functionals can be
obtained in the form of singular limits of shape derivativdsen the radius of a small void is going to zero.
This observation indicates that the topological gradiengsin fact of the same nature as the shape derivatives,
even if the derivation procedure is more involved from théhmamatical point of view. Another observation on
this aspect of shape sensitivity analysis is that in thetélicase the topological gradient are in fact continuous
with respect to contrast, which turns out to be an easy wahefderivation. First, we consider the regular
perturbations of the coefficient of the elliptic operatordmding a small inclusion, then perform the limit pas-
sage in the resulting topological derivative with respedhe contrast, i.e. the coefficient which transforms the
elastic inclusion into a void or into a rigid inclusion. Unfionately, this argument does not work for evolution
problems, since the topological derivatives obtained égutar perturbations cannot furnish by such a limit
passage the topological derivatives for singular pertisha. On the other hand, this passage is possible for
time harmonic regime, if the frequency is fixed.

It is this set-up that we want to further investigate in théger. In particular, once a topology optimization
step is performed, either using topological gradients [@per material interpolation (e.g. by SIMP[26]) one
may use shape optimization and the level-set method in eaoderomote the optimal shape using the speed-
method. To this end one needs the shape-gradient for pleztiie material. In this paper we go a step further,
and ask for such gradients when the fully dynamic problenoisicered. We consider the shape optimization
problem of minimizing the shape functiondh (u, ¢) for the coupled fields: elastic displacemerdnd electric
potentialg. The model, for a given shage is given by a coupled electromechanical system. For thielgmo
we establish:

e the existence of an optimal shape;
e the first order optimality conditions.

Therefore, we need to perform the shape sensitivity arglyssolutions to the model. We also need to
determine the shape gradients and their densities for Suriased shape functionals. To this end the speed
method is used (see[21]).

2. THE PROBLEM FORMULATION

Let us consider an open bounded dom@inf R? with smooth boundarg = S. We assume thdt has
the formQ = By\ B, whereB, and3; are open bounded domains wifh C By, with U used to denote
the closure of-). In addition,0By = Sy andoB; = Sy, thusS = Sy U S;. Letm > 1 be a given integer.
For eachi with 1 < ¢ < m let D; be and open subset with smooth boundgyand such thaB; C D; C By,
D; C Dir1. We setQ)yg = DI\By, Q = D \D; forl <i <m —1andQ,, = By\D,,. In summary,
as shown in fig[15, we hav@ = U €, such that2; N Q; = @ for i # j, with boundarie2 = S, U S,
0y =51Ul',00; =T, Ul fori=1,...m—1,andof),, =TI, U Sy.



FIGURE 5. Domain{2 with boundaryo$2 = Sy U .S;.

2.1. Thestrong system. Letwu : Q x [0,7] — R? be such that(z,t) is the displacement of the body in
x € Qatthe timet € [0, T]. Let moreovel : 2 x [0, 7] be such that(z, t) is the electric potential at €
andt € [0, 7]. We defineVsu := 1(Vu + VuT). The electromechanical interaction phenomenon is modeled
by the following coupled systerh|[9]
uy —dive = F .

{ _dive = G in Qx(0,7), (2.1)
whereo is the mechanical stress tensor andhe electrical displacement field; is a given load ands a
given field. The material law describing the piezoelectfiect in the linearized case of small mechanical
deformations and electric fields reads as

p(u,q) = PTe(u)+ De(q),
whereC is the elasticity fourth-order tensap, the piezoelectric coupling third-order tensor dndhe dielectric
second-order tensor. As usu@l D satisfy the symmetry conditionS;;z; = Cj, = Crij andD;; = Dy,
whereasP satisfiesP; ;;, = Pj;;,. Furthermore, there exist nonnegative constants, such that

CijiXij X > X, Dijyay; > doys,

where Einstein’s summation convention is used. It is assufoesimplicity that all tensors are piecewise
constant, i.e., constant in each layer. In addition, thehaeical strain tensar and the electric vector field
are given by

e(u) =Vu and e(q) =—-Vgq. (2.3)
We also associate with systein (2.1) the following giveniahitonditions
u(,0) = f(z) and w(z,0) = g(x), (2.4)
and boundary conditions of the form
on = X n = ¢
{ ¢ = 0 onSy x (0,7) and {QD u — 0 onsS; x (0,7), (2.5)

wheren is the outward unit normal vector pointing toward the exteof 2. It is apparent that the inhomo-
geneous Dirichlet conditions can be shifted into the riginichsides of (2]1) and be incorporatedit@and G.
Thus, without loss of generality, we may consider homogsrditichlet boundary conditions in(2.5), namely
g=00nS, x (0,7), in the sequel. Finally, we consider the following transsita conditions

on = 0 -n = 0
{[[[[]L]] ~, and {[[‘P]][[q]] ~ o (2.6)
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where, for any(z,t) € T'; x (0,7), i = 1,2,...,m, the symbol[(-)] is used to denote the jump between
guantities evaluated on the boundakyof each pair2; _; and2;, that is

[O]=(" =Y, 2.7
andn = n(Y = —n(=1 s the unit normal vector pointing toward the exteriofhf

Remark 1. Notice that systenf2.1) can be derived from the fully coupled dynamic equations mpirveg the
elasto-dynamic system and the Maxwell system with comsatittelations(Z.2).

uy — dive(u, E) =0
E: =rotH (2.8)
pwoH; = —rotE

Without loss of generality, we can assume the permeability- 1, F(q) is regular enough such that the
second equation can be differentiated with respect to tiime third then being inserted and finally thiév
operator being applied. This deletes the terrot(rot ). After that one can integrate twice with respect time
and obtain the second equation @.1). From this setting one also obtains various important sifigations
such as transverse isotropic material, where the equatlmemome much simpler. The full systéiB) and
its shape-sensitivity is subject to current research. We ttwat Nicaisg[18] has treated well-posedness for a
similar system using semi-group theory. See f€H11]

Remark 2. We may introduce time-harmonics upon introducing
u(z,t) = e “ta(z), qz,t) = e “jx).
Then the systerf?.1) reads as follows

{wQZZ +dive=0 IinQ (2.9)

divg = 0 in Q

wheres = 6(4,4) = Ce(u) — Pe(q), ¢ accordingly. Systenf?.9) can be considered as a Helmhotz-type
systen{19]. We associate t@.9) the boundary and transmission conditiofs1),(2.6). See e.g. Mercier and
Nicaise[17] for well-posedness. The SIMP-based topology optimizatif@b, 24 [26]has been based on such
time-harmonic models. Moreover, far= 0 (2.9) reduces to a problem that has been discussed in Cardone et
al.[2] also with respect to topological sensitivities.

2.2. Theweak system. The weak formulation of the piezoelectric problem readsofievf. Given the initial
conditions [(Z.#), find for eache (0,T") the displacement € W), (Q2) and the electric potentiagl € Wg(Q),
such that

{ (wr,ma + aff™ (u,n) + afM(q,n) = (Fima+ (Sm)s, Vi€ Wau(Q)
, (2.10)

67(q,6) —afP(u,&) = (G,&a+(®,&)s, VE€Wg(Q)

where
<utt777>§2:/gutt'777 (2.11)
adM (u,n) /Cvsu V*n and aEM(q,n)—/PVq-VSn, (2.12)
Q

q,€ / DVq-VEé and adF(u, &) = / PTV*u - Ve, (2.13)

with a5 (q,u) = ad¥(u,q) andV := 9/9z. In addition, the space®/y;(2) andWg(2) are respectively
defined as

Wu(Q) = {ue[H' Q)P :ulg, =0, [u]lp, =0, i=1,2,...,m}, (2.14)
We(Q) = {geH'(Q): qlg, =0, [qll;, =0, i=1,2,...,m} . (2.15)
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Theorem 3. Let the initial datau(z,0) := f(z), u(z,0) := g(x) satisfy
feEWuQ), geL*(Q), (2.16)
and consider distributed data
F e L0, T; Wi (Q)), G e L0, T; Wg(Q)*), Gy € L*(0,T; Wg(Q)*),
S € L0, T; H2(So)*), ® € L™(0,T; H2(S))"), ®; € L*(0,T; H2(Sy)"). (2.17)
Then there exists a unique weak solutieng) to (2.10)such that
u € L0, T; Wi (), ug € L0, T; L*(Q)), uy € L*(0,T; Wa (Q)*), ¢ € L=(0, T; Wg(Q)), (2.18)
If in addition we assume that
fe HYQ)P, g e Wy(Q), ®(0) € H2(S))*, £(0) € H2(S) (2.19)

such that there is gy € H2(Q) with (f, qo) satisfying and the boundary conditions

{“(f’%)qz — 2(0()) onSy x (0,7) and {w(f’q‘))'? _ @(o()) onS; x (0,7), (2.20)

together with the transmission conditions

{[["[[]L’ﬁ - 8 and {[[“O]][ﬁ - 8 , onT) (2.21)

and
F e L>®(0,T;L*(Q)) F; € L*(0,T; L*(R2)), G € L=(0, T; Wg(Q)*), Gy € L*(0,T; Wg(Q)*),
S e L0, T; L2(So)) Sy € L2(0,T; L2(So)), ® € L0, T; Hz (Sy)*), &y € L2(0,T5 H2(Sy)").

(2.22)
Then the solution td (2. 10)-(Z.2A)-(Z121) satisfies
we L%0,T; H*(Q)), u € L0, T;War(Q)),  uy € L=(0,T; L2(Q)),
q € L®(0,T; H*(Q)), g € L0, T; Wg(9)) . (2.23)

Proof. The proof can be established by a Galerkin procedure. Fdk saations with different boundary con-
ditions see the PhD thesis [13]. [ [8] the authors considmmaigroup approach, based on a Shur-complement
operator that reduces the piezoelectric system to anielppoblem inu. As we treat different boundary condi-
tions and also need wealkd strong regularity of the solutions which is not revealedrffd3,[8], for the sake
of self-consistency, we provide the necessary a prionregts. We consider sequendes}, {&;}in Wi (Q)
andWg(2), respectively. Then we have the finite dimensional subspage (2)™ = span{n,...,n,} and
Wg(Q)™ = span{&,... &}, such that the union over all such spaces is mutually dengéii€2), Wg(Q).
Clearly, taking the test functions = «™(t), £ = ¢™(¢) we obtain for finitem that [2.10) has a unique so-
lution (u™(t),¢™(t)) with initial datau™(0) = ug’, uf*(0) = ui*, whereug" — «(0) = fin Wy () and
u — uy(0) = g in L?(£2), asm — oo. The finite dimensional system of ordinary differential atjons takes
the form

(wip)ym) + ad ™M (W™ (8),n) + ag™ (@™ (£),1) + P (g™ (1), €) — agy F(u™ (¢),€)
= <F(t)777> + <G(t)7§> + <2777>S() + <(I)7§>5’17 V(W7§) € Wﬂn}[(Q) X WZ}(Q) (224)

We then take test functioris}"(¢), 0) in (2.24) and, after differentiating with respect to tiitle¢™ (¢)), use the
symmetrya ¥ (u, ¢) — a5 (¢,u) = 0 and obtain after adding the results followed by integratidth respect



to time fromO to ¢:
W), uf" (@) +  ad™ @™ (1), ™ (1) + a§" (" (1), ¢ (t))

= (u" u") + ag ™ (ug’ uf) + ag " (™ (0), ¢ (0))

2 /0 (F($),u(5)) + (Gi(5), ™ (5))) ds

t
2 [ (20,0 )5, + (@1l).a" (s ds (2.25)
To obtain an initial condition fog™ we need to solve
a”(¢™(0),€) = agy * (ui", €) + (G(0),€) + (®(0),&)s, VE € Wi ().

Since we know the regularity aff* and G(0), we can apply the Lax-Milgram Lemma to obtain a unique
solutiong™(0) € Wg(2), such that

14O By < CLE vy @) + IOy + 1900V .

Now, using the coercivity ot} aE¥ in Wy (Q) and Wg(Q), respectively, and applying the Gronwall-
Lemma we obtain

1 D172 () + 0™ @B @) + 147 Oy @)

< C LI 2y + 1 By ) + IF I 01200y + 1G22 00w (s

2 2 2 2
+HGHLOO(07T?WE(Q)*) + HEHL?(O,T;H%(Q)*) * Hq)t”H(O,T;H%(Q)*) * Hq)HLC"’(OvT;WE(Q))(}'Z(S)

A standard argument give us the estimate
it | 22 0,7 () < C- (2.27)
Using the a priori energy estimatés (2.26) dnd (2.27), onetimen extract subsequences™}, {u}"}, {u}} },
which we relabel by original indices converging wead-i6 L>°(0,7; W (Q2)), L>(0,T; Wg(£2)) and weak
in L2(0, T; Wy (9)*), respectively to elementss, u}, u},. Standard arguments reveal that these elements solve
the weak systeni (2.10) and that the initial data are matah#tkicorresponding spaces as well.
As for the second part of the theorem, we first differentidte weak system and take:}}(¢),0) and
(0,¢"(t)) as test functions. We obtain
1 m m m m
SAlae 2 s + adf™ (" (8), u (0) + (6" (8), 677 (9)}
= (Fy(t), ug (t)) + (Gu(t), ¢ (1)) + (Ze(t), ugy (1)) s + (Pu(t), gt (1)), (2.28)
Integration with respect to time give us
gt (D72 0y + 1 Oy, @) + 167 O v,

< C {1 O B2y + 1" ) By, ) + 165" )0
t t t
+/o ”E(S)”%2(Q)d3+/0 HGtt(S)H%\zE(Q)*dSJF/O [ty ()1 720y ds

t t t
m 2 2 2
[ M B+ [ I ays + [ IRaellZy  ash @29

We need estimates dfuy (0)|| 12 (oys and|[g;"(0)[|yyq) in terms of our data. As now;"(0) € Wy (Q2) and
G+(0) € Wg(92)* we can uniquely solve the second equatiorf of (2.10) to obtain

lg" Olwe @) < CUGHO)lwe @ + llui" Olwasey + 12O 3 o).}
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Moreover, for givenu™(0) € H2() let ¢™(0) € H?(Q2) be such that

div DVq = G(0) +div PTV*u™(0), inQ
DVgq-n = PT'Vsu™(0)-n—®(0) ons;

qg =0 on Sy
[eln=0, [u]=0 onsS;
[¢] - n=0, [g]=0 onS;

Then|lg"™ (0)| 2y < {IIGO)]lz2(0) + lu™(0)[| g2 ()2 }- Evaluating the strong solution at= 0 and applying
Gronwall's lemma we obtain the a priori estimate
Hug(’f)ﬁ{%m + [[u () + Hu;?(t)H%%Q) + qu(t)H%ﬂ(Q) + g™ ) 3w
< C{llu™ (032 () + 14 () vy + 1F I e 0,122 + 1Ee 172072200
+HGH%°°(O,T;W(Q)*) + HGttH%Q(O,T;W(Q)*) + HEH%OO(O,T;L?(SO)) + ||Et\|%2(o,T;L2(SO))

2 2
+H<I)”Loo(o,T;H% (S1)*) + @ ”L2(0,T;H% (Sl))*} (2:30)

We then subtract weak-) convergent subsequences and pass to the limit in the egsafl he fulfillment of
the initial data is proved by a standard argument. Note tisat @on-homogenous boundary conditions gor
(andu ) can be easily handled. O

Remark 4. The weak formulation of the piezoelectric problem reads:
{ (—w*u,ma + ay M (u,n) +aiM(g,n) = (Fna+(Z,m)s, ¥neWu(Q)

ab"(q,€) — ay/P(w, ) = (G,ma +(®,m)s, VEE€ Wi(Q)
This system witbh = 0 has been investigated e.g.[@]. The corresponding differential operator {8.9) has
a compact resolvent. Hence it exhibits a pure point spectriiimerefore, foru? in the resolvent set of this
operator the problem can be uniquely solveddoy by Lax-Milgram lemma.

2.3. Theshapefunctional. We consider the shape functional of the form

T
Ja(u,q) = /O Jo(u,q) - (2.31)

Some particular examples of shape functionals are giveliciékpin section[3.2. We assume that
e the sets) range in the se® of subsets oRR? satisfying the uniform cone property. Under the further
assumption tha? — (u, q)q is continuous, the = {(Q, (u,q)q)|Q2 € O} is compact;
e that7 is lower semi-continuous in the sense thatyr < O, (u,, ¢,) € War(2,,) X Wg(Qy,)
Q,—Q2iIn0, Q,,Q2c0
(Un, qn) = (u,q) € (u,q)
Theorem 5. Assume that the admissible family of doméifg = O, the seG is compact and the functiafi,
is lower semi-continuous. Then there exists a solutiongcsttape optimization problem.
Proof. The proof is standard. See e.g., Sokolowski and Zolésiod21§ell as Delfour and Zolesipl[3]. O

Remark 6. We will prove, by an application of the speed method of theals&nsitivity analysis, that in fact
the solutiongu, ¢) depend continuously on the doméine O.

€ War(Q) x We(9) } = lim inf Jo, (un,qn) > Jo(u,q) -

2.4. The adjoint system. In order to simplify the further calculation, let us intraguthe adjoint states and
¢, which solve the following variational system. Given theafinonditions

v(z,T)=0 and w(z,T)=0, (2.32)

find, for eacht € (0,T"), the adjoint displacemente V,,(£2) and the adjoint electrical potentiale Wg (),
such that,

{ (i, ma +ay M (v,n) —af™(p,n) = —(Du(Jalu,q)),n) Vne Wu(Q)
(2.33)

ai®(p,§) +ag P (v,€) = —(Dg(Ja(u,q),§) VEE€Wp(Q).
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The notation for right-hand sides could be misleading. &foege, we explain here that the linear forms
Dy (Ja(u,q)) andDy(Jo(u, q)) are given in general by volume integrals and by the surfaegyials, roughly

speaking there exists functios,i = 1, ..., 4 such that
(Du(Jo(u, 0)) / s+ [ B (2:34)
o0
(Dy(Ja(u,q)) / F3é +/ Fak . (2.35)
In particular,§1 = F, §2 = ®, §F3 = G, §4 = X. In order to assure the existence of solutions to the adjoint

system, it is assumed thg satisfy the assumptions of Theoréin 3 for the respectivelaggurequirements.
From the above system, we can define the adjoint stress tepsod the adjoint electrical displacement
as following

oa(v,p) = Ce(v) + Pe(p),
{ ¢a(v,p) = —PTe(v) + De(p) . (2.30)
Remark 7. We can consider the weak adjoint system in the time-harnuase:
{ (~w*v,ma +ayM(v,n) —ag™(p.n) = —(Du(Ja(u,q)),n) ¥neWu(Q)
af”(p,&) +ay/P(v,€) = —(Dg(Ja(u,q),&) V&€ Wr(9).

Existence and uniqueness of weak (or more regular casedi@aducan be done using the same arguments as
in the original problem. See Remairk 2.

3. SHAPE SENSITIVITY ANALYSIS

For sake of simplicity, in this section we consider that theuhann dat& on Sy x (0,7) and ® on
S1 x (0,7 in (Z8) are homogeneous. We also consider that the souroe feandG in (2.1) are identically
zero. Thus, we focus our attention to the non-homogenediisl tonditions f andg in (2.4).

The perturbed domain, parameterizedrog R+ small enough, is denoted as

Qr={z, Rz, =x+7V, 2€Q, 7>0}, (3.1)

whereV is a smooth vector field defined in that represents the shape change velocity. Thus, the alkigin
domain is retrieved by setting = 0, that is€2y = . The shape functional defined in the perturbed domain
reads

T
Jo (r,q,) = / Jo (ursqr) (3.2)
0

where the paiu, = u,(z-,t) andg, = ¢-(z,,t) are solutions of the following variational problem defined i
the perturbed domaifi;: given the initial conditions:.(x,,0) = f(z.) andu,, (z-,0) = g(z.), find for each
t € (0,T) the displacement, € W) (2,) and electrical potential, € Wg(2,), such that

{ <uTtt7n>Q + aS]\{]M(uTv 77) + ag]w(qm 77) = 0 VU € WM(QT)
(3.3)

agTE(q’Tv g) - a’S]\]{E(u’ﬁ §) =0 V§ € WE(Q’T)v

where
<uTtt’n>QT = / Uryy ~ 7] (34)
Q,
a™ (ur,m) = / CViu, - V*n and afM(g-,n) = / PVgq, -V, (3.5
Q- .

ag”(qr,€) = | DVq,- V¢ and ay P (ur, &) = / PTVu, - VE, (3.6)
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with af™ (¢, ur) = ad/¥(ur,q-) andV := 9/dz.. In addition, the space®Vy;(Q2;) and Wg(Q,) are
respectively defined as

Wir(2) = {ur € [HYQ)P urlg, =0, [urlly, =0, i=12..,m}, (3.7)
We(Q:) = {¢- € H(2): ¢rlg, =0, lgrllr, =0, i=1,2,...,m} . (3.8)

Theorem 8. There exist shape derivative$ u; andq’ of solutions to systerf2.10), such that
u' € L0, T; HY(R)), wu, € L®(0,T;L*(Q)), ¢ € L™(0,T; H'(Q)), (3.9)

given by weak solutions to the following system:

e equations are given by (2.1)
e in general, the nonhomogeneous transmission conditiomseamt from (2.5) and (2.6)

3.1. Shape derivative calculation. Our strategy can be described as follows. The first step ipithef of
shape differentiability of solutions and of the shape fiomals. So, at this stage the material derivatives are
used.

When the shape differentiability is established, we arer@gted in the identification of the shape gradients
as well as in the regularity of the obtained expressions liape gradients. This step is crucial for numeri-
cal methods. The discretized shape gradient can be usedag.gumerical solution of shape optimization
problems. In the framework of the level-set strategy fougoh of shape optimization problems we require in
addition that the shape gradients are given by some furgctiongeneral, however, the structure theorem for
shape differentiable functionals leads only to the distidns supported on the boundalry [21].

To obtain the expressions for the shape gradients, firstimg snanipulations including integration by parts
we arrive at boundary integrals, cf. e.§., (3.50). Thengisixclusively the velocity vector fields normal to the
boundary we can identify the expressions for the shape emedi

Let us perform the shape sensitivity analysis of the fumetig’,. (u,, ¢;). Thus, we need to calculate its
derivative with respect to the parameteat = 0, that is

T
. ) d
/ Ja(u,q) = Ja(u,q) := d—jQT(uT,qT) . (3.10)
0 T T7=0

In order to proceed, it is convenient to introduce an anatogsiassical continuum mechanics [6] whereby
the shape change velocity field is identified with the classical velocity field of a deformingntinuum and
7 is identified as an artificial time parameter (refer[tol [22] &malogies of this type in the context of shape
sensitivity analysis). Thus, the shape derivative of tmefional Jo (u, ) is given by

Let us now calculate the derivative of the state sysfen (8i3) respect to the parameterat - = 0. Thus,
by making use of the concept of material derivative of a spdield [6,[7] and considering the Reynolds’
Transport Theorem, we obtain

(e = /Q - + /Q (uss - m)divV (3.12)

aMM(u,n) = oM (u,n) + / (CV3u - Vin)divV — / (Vul (CV*n) + Vil (CV5u) - VV (3.13)
Q Q

as™ (g, m)

a5™ (g, m) + /Q (PVq-Ven)divV — /Q (Vg@ PTV*n+VnTPVq)-VV , (3.14)

aEF(q,6) = abP(q,6) + /Q (DVq - VE&)divV — /Q (Vq®@ DVE+VE®R DVq)-VV,  (3.15)

W E) = alF(ag) + /

(PTV*u - VE)divy — / (Vul PVE 4+ VE @ PTVSu) - VV |, (3.16)
Q Q
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where we have used the fact that the admissible variati@®l{ do not depend on the parameterThus, the
so-called material derivative of the state system, afteresearrangements, is given by the following identities

(e, m)e + ad™ (i,m) + afM (,m) = / (Vu'(CV*n) + V" (CV*u) + Vg ® PTVn + V" PVq) - VV
Q
— / (ug -+ CVu - Vin+ PVq-Ven)divV , (3.17)
Q
ab¥(4,6) — adP(u,€) = / (Vq® DVE+ VE® DV — Vul PVE - VE® PTVAu) - VV
Q

— / (DVq-VE — PTV3u - VE)divY (3.18)
Q
supplemented with initial conditions (cf(2.4))
W(z,0) = (Vf(z))V and 4 (x,0) = (Vg(x))V . (3.19)

Theorem 9. Given initial conditions(V f)V € H'(Q) and (Vg)V € L%*(Q), there is a unique weak solution
to system[(3.17)-(3:18) ar@@.19) such that

e L0, T; HY(Q)), 1 € L0, T;L*(Q)), ay € L0, T; H 1)), ¢ L®0,T; H(Q)).
(3.20)
If we assume the appropriate compatibility conditions foz tnitial and boundary conditions (cf. Theorem
[3), then the weak solution becomes strong solution.

We return to the evaluation of shape gradients for the piggtem. To this end, by setting= v andé = p

in (3.17)-[3.18) we obtain

(e, Wyq + adM (i, v) + a5M (¢,v) = /(VuT(Cst) + Vol (CV3u) + Vg @ PTV*v + Vol PVgq) - VV
9)

— /(utt -v 4+ CV?u - Vv 4+ PVq- Viv)divV
Q
+ (v, o — (e, v)a (3.22)
a§y®(d,p) — agy ¥ (i,p) = /Q (Vg ® DVp+ Vp@ DVq— Vul PVp — Vp® PTV0) - VV

— / (DVq-Vp— PIV3u - Vp)divV (3.22)
Q

where we have introduced the teem{vy, 4)q in the left hand side of the first equality. Using integratimn
parts, we have

T T
/ <Utt7ib>§2—/ (g, v) = <Ut7?l>§z\g— <iLt7U>Q‘(j;
0 0
(e (T), W(T))a — (v:(0),u(0)) — (w(T), v(T))a + (i (0),v(0))
= <g,’U( )> <vt(0) f’>Q
(Vg)V,v(0))a — (v (0), (V/)V)a (3.23)
which implies
T
| Consida = (iu,v)a) = [ (947 00) = V4Tu(0) - V. (3.24)
0 Q
On the other hand,

/(utt co)divV = / (uge -v)n -V — / V(ug -v)-V
Q [2)9] Q
= / (ug -v)n -V — / (Vulv + Voluy) -V, (3.25)
o0 Q
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and from an integration by parts

/OT/Q(Vug;v) = /(Vut )T—/Vu vy) / /vu vyt

- / / VT vy) / (VgTv(O)—VfTvt(O)). (3.26)
Therefore from[(3.25) an@ (3.26) we have

/(]T/Q(utt-v)divv _ /OT /aQ(utt-v)n-V—/OT/Q(VuTvtt—i-VvTutt)-V+/Q(VgTv(0)—VfTUt(O))-V

(3.27)

Finally, we obtain

T
/ (<Utt7 U>Q — utt, / / utt 1) leV / / VU Vit + V?) utt / / Ut * ?} n-V.
0 o0

(3.28)
Thus, [3.211){(3.22) can be re-written as

(v, Wy + adM (i, v) + aEM (§,v) = / (Vul (CV*v) + Vol (CVu) + Vg @ PTV0 4+ Vol PVq) - VV
Q

+ /(VUTUtt + VvTutt) -V - / (utt . U)TL -V
Q oN

— / (CViu - Vi + PVq-Vi)divl (3.29)
Q

EE(q,p) — adE(u,p) = / (Vg ® DVp+ Vp® DVq— Vul PVp — Vp® PTV*u) - VV
Q

— / (DVq-Vp— PTV3u - Vp)divV . (3.30)
Q
In the same way, let us sgt= u and¢ = ¢ in the adjoint systeni (2.83), then
{ (v, e + ay M (v, ) — agM(p,a) = —(Du(Jalu,q)), @)

ab"(p,4) +ay P (v,4) = —(Dy(Ja(u,q)),d)-
By comparison of[(3.29)-(3.30) and (3]31), we observe that

(Dy(Ja(u,q)),u) = / (CViu - Vv + PVq-Vi)divV + agM(q, v) + agM(p, )
Q

(3.31)

— / (Vu (CV*0) + Vol (CVPu) + Vq @ PTV*v + Vol PVgq) - VV
Q

- /Q(VuTvtt + VvTutt) -V + /aQ(utt o) -V, (3.32)

(Dg(Ja(u,q)).4) = /Q(DVq - Vp — PTVu - Vp)divV — ag " (i, p) — ay * (v, §)
— / (Vq® DVp+ Vp® DVq— Vul PVp — Vp® PTVsu)-VV . (3.33)
Q

where we have used the fact that the b|||near fordfd’ (-,-) anda5E (., -) are symmetric. In addition, since
&M (p, i) = ag® (4, p) andaG™ (¢,v) = ay F (v, ¢) we have

(Do) i)+ Dyl )od) = [ S-9V+ [ (uaeon-V = [ (Valv+VoTun)- v, (338
0N Q
where the Eshelby tenséfreads (see the fundamental papér [4])
S=(0-Vv—¢-Vp) - (Vulo,+Volo —Vq®p, —Vpy), (3.35)
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with o, ¢ andoy,, ¢, given, respectively, by (2.2) and (2]136). In addition, weatve that

/S-VV:/ Sn-V+Z/[[S]]n-V—/divS-V. (3.36)
Q Gle! =/ Q

Let us calculate the divergence of tenshwhich leads
divS = —(Vu! dive, — Vqdive,) — (Vo dive — Vpdive) . (3.37)
Taking into account that the pait, o satisfies the systerh (2.1), then

divS + (VuTvtt + VvTutt) = VuT(vtt —divo,) + Vadivy, + VUT(utt —dive) + Vpdive
= Vul (vy — dive,) + Vadive, . (3.38)

Considering these last results together with (3.34)1n1{3.Wve obtain the shape derivative of the functional
Ja(u, q) independent ofi andg, namely

Ja(u,q)

/T<DQ(JQ(u,q)),V> —/ b-V
0 0 .
+ /OT/aQ(utt-v)n-V_F/OT aQSn-V_|_/OTZz:;/ri[[s]]n.V7 (3.39)

b= Vul (vy — dive,) 4+ Vadive, . (3.40)

whereb is given by

3.2. Examplesof shapefunctional. Let us present some examples of shape functional which gtheulseful
for practical applications. In particular, the shape fior@l Jq (u, ¢) is defined as

Ja(u,q) = /QFQ(u, q) + - Fs(u,q) , (3.412)

where, for the sake of simplicity we assume thiats(u, ¢)|s, = 0 and d;Fs(u, g)|g, = 0. In this case, the
adjoint system[(2.33) becomes

{ (v, e +ag ™M (v,n) —ag™(p,n) = — [q0uFalu,q) -1~ [g OuFs(u,q)-1n Ve Wn()
ab"(p, &) +ay P (v,€) = — [o9Fa(u,q)€ — [g, 9gFs(u,q)¢ V€ € Wp(Q)
(3.42)
The strong system associated[fo (8.42) is given by
vy —dive, = —0,Fa(u,q) .
{ diver — -0 Faug Qx(0,7), (3.43)

where the adjoint stress tensgrand the adjoint electrical displacement are defined in(2.36). We associate
with system[(3.4B3) the final conditioris (2132). In additismcev € W, (2) andp € Wg(Q), from (3.42) we
have the boundary conditions

{"a’; - aauFS(“’Q) on Sy x (0,T) and {%'z - anFS(“’Q) onsSy x (0,7) , (3.44)

and, forany(z,t) € I'; x (0,7), i = 1,2, ...,m, the transmission conditions of the form

{[["“[% — 8 and {[[%]][f;]ﬁ - 8 . (3.45)
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3.2.1. Domain integral. We setF (u, q) in (3.41) as following
1 * *
Fo(u,q) = 2 (alu —udy)? + Blg — )?) (3.46)

whereug, andgg, are given functions defined @ such thatug,|g, = 0 and g5[g, = 0, anda = 1 — 3 with
S € 10,1]. Thus, since the pair,, », satisfies the adjoint systein (3143), then veétdefined through(3.40)
can be written as

b = —Vuld,Fo(u,q) — Vqd,Folu,q)
= —aVu'(u—uy) — AValg - ¢5) - (3.47)
For this case, the derivative of the shape functiokgl, ¢) with respect to the domain reads

o). V) = 3 (o [ @-uiravy+5 [ (@ afavy)

_ a%(/{zdiv[u—uﬂ /vu—uQ -v)
+ ﬁ%(/gdi\f[q—qﬂ /V q—q5) -V>

= al/(u—ua)n-V—a/Vu (u—uyH) -V
2 Joq Q
1 * *
+ 05 [ gV -5 [@-a@ve . (3.48)
o0 Q
From the above results we observe that
1
Do) V)= [ov=3(a [ wouirnves [ @ogpev). @9
Q B o9

By considering this last result ih (3139) we obtain

Jo(u,q) = %Q/OT/SO(U—UE)QTL'V%—%6/;/51(‘]_‘]5)2” v
/OT/BQ(utt.v)n.VJr/OT 8QSTL‘V+/OT§/FZ,[[SH”‘V. (3.50)

The above form of shape derivative of the distributed fuor@l can serve us to identify the shape gradient.
Since the shape functional in question is differentiabléhi; sense of the shape sensitivity analysis in [21],
we can apply the structure theorem to this end. In particédam the boundary and transmission conditions,

namely, [Z.5){(3.44) and (2.6)-(3145), respectivelysisiraightforward to verify that the above equation holds
the structure theorem. Therefore, it is sufficient to take consideration the speed vector fields normal to the
boundaries and the interfaces. This observation influemtiggwo boundary integrals with the Eshelby tensor,

and the result is the following.

Lemma 10. The density of the boundary shape gradient of the distributed shapetiomal is given by the
following expression

o Vom = %“/OT/SOW—WV-H%ﬁ/OT/S1<q—qa>2v.n
/OT/aQ(utt.v)V-n+/0T aQ(Sn-n)V-n+/0Tiil/n([[S]]n,n)V.n_ (3.51)

As it is indicated before, in order to apply the level-seaiggy of shape optimization, it is required that
the densityg of the boundary shape gradient is given by functions supdoon the boundaries and on the
interfaces.
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Remark 11. For the distributed functional in the time harmonic case bweindary shape gradient is deter-
mined in the following form

1 * 1 *
@V n) = —a/(a—ug>2v-n+—ﬁ (¢— )V -n
2 So 2 Sy

- / (w2u-v)V-n+/ (Sn-n)V-n—{—Z/ ([S]n-n)V -n. (3.52)
o0 o0 =1 I';
3.2.2. Boundary integral.Now, we setF's(u, ¢) in (3.41) as following
1 * *
Fs(u,q) = 3 (au —u%)* + Blg — q5)%) (3.53)
whereu andgy are given functions defined ofisuch thatug|s = 0 andgg[g, = 0, anda = 1 — 8 with
B € [0,1]. Thus, since the pair,, ¢, satisfies the adjoint systein (3143), then veétdefined through{3.40)

vanishes, that ig, = 0. For this case, the derivative of the shape functiohgh:, ¢) with respect to the domain

reads
1

(Dot ) V) =5 (o [ = usPveay +5 [ - @Pavar) . @59

wheredivgoV = (I —n®n) - VV is the superficial divergence of the velocity field. By coesidg these last
results in[(3:3P) and recalling_(Z131) we obtain

. 1 (T ) 1 (T oo
Jalug) = at / / (u — ) 2divoaV + B2 / / (¢ — q)*divonV
2 0 So 2 0 S1

; /OT/mmtt.v)n.m/oT mSn-V—i—/OTg/Fi[[S]]n'V- (3.55)

Let us point out that in the above expression the integrdiipparts on the boundaries, and.S; in two
integrals is necessary (cf. Lemma 2.14[in|[21]) to obtainekeression for the shape gradient. In addition,
by taking into account the boundary and transmission camditrespectively given by (2.5)-(3}44) aid (2.6)-
(3.49), it is straightforward to verify again that the ab@gation holds the structure theorem, leading to the
result below.

Lemma 12. The shape gradient for the boundary functional is given aftillowing form

1 T *\2 1 r *\2
(g,V-n) = ac (u—ug)*s»V -n+ pB= (q—q5)*»V -n
2 0 So 2 0 S1

n /OT/m(utt.UW.n+/OT/m<sn.n>v-n+/0T§;/Fi<u5ﬂn-n>v-n, (3.56)

wheres¢ stands for the mean curvatufl]] on the boundaries, and S;.

Remark 13. For the distributed functional in the time harmonic case Hoeindary shape gradient is deter-
mined in the following form

1 1
@V -n) = —a/(u—u§>2%v-n+—/3 (¢ — q5)PoV
2 So 2 S

— (AJQU'U n n-n n - n-n N . .
/m( W +/m(s 1% +;/Fi([[5]] W (3.57)

4. CONCLUSION AND OUTLOOK

We have derived shape sensitivities for time-varying sofist of the piezoelectric system. The results also
apply almost directly to time-harmonic solutions. The esponding numerical simulations are under way.
Given the shape sensitivities and topological sensigisifor piezoelectric material, the full alternating scheme
for sensitivity-based topology optimization can be appli@here one performs a topological gradient descent
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followed by a level-set based shape gradient descent. Tinemeal implementation is beyond this paper and
will be subject to a forthcoming publication.

The acoustic- and piezo-electric and elastodynamic-a@ogii also subject of current research. S$Seé [26] for
a first treatment.
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