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Abstract. A simple analytical expression for crack nucleation sensitivity analysis is proposed
relying on the concept of topological derivative and applied within a two-dimensional linear
elastic fracture mechanics theory (LEFM). In particular, the topological asymptotic expansion
of the total potential energy together with a Griffith-type energy of an elastic cracked body
is calculated. As main result, we derive a crack nucleation criterion based on the topological
derivative and a criterion for determining the direction of crack growth based on the topolog-
ical gradient. The proposed methodology leads to an axiomatic approach of crack nucleation
sensitivity analysis.

1. INTRODUCTION

The theory of brittle fracture takes its origin in the work of Griffith [38], later pursued by the
key theoretical contributions by Cherepanov [27], Erdogan [29], Irwin [46] and Rice [60] – among
others. In the 80ies several contributions (cf., e.g., [4, 5, 52]) paved the way for the numerical
simulation of crack evolution (cf., e.g., [14, 20, 54, 55]). Most of these approaches have proved
a long time ago their physical validation and shown useful engineering applications. However,
only a few of them have been fully mathematically justified.

About 15 years ago Francfort and Marigo [34] introduced a mathematical approach to brittle
fracture called “variational brittle fracture”, which remains nowadays a subject of intensive
research [21, 26]. One of their main contribution was to avoid the specification of a known
crack path for crack predictions, while focussing on solutions obtained by a global minimization
approach in a quasi-static setting. However, according to Miehe et al. [48], one drawback of global
solutions is to predict underestimated crack initiation times. Today, their original approach is
also being extended to dynamic crack growth [22], while local approaches are also addressed
from a numerical viewpoint [2]. Discussions on the question of time-continuity of crack paths as
related to kinking criteria can also be found in the recent literature [25].

In general, analysis of crack propagation considers an already cracked body. However, criteria
for crack growth are still discussed in the Mechanical community. The first laboratory exper-
iments of bar extensions appealed to the so-called maximal stress criterion, but this criterion
failed to predict general cracked bodies where the loads are not aligned with the crack. In order
to generalize this observation, the concept of stress intensity factors (SIF) [64] as a measure of
stress in the crack process zones appeared useful and soon reached consensus. Later, instead of
relying on a simple critical SIF criterion, a local criterion based on the so-called strain-energy
density functions was suggested [61], while other works [46, 60] proposed local crack growth
principles based on the notion of maximal dissipation at the crack tip. On the other hand,
relying on symmetry arguments, Barenblatt and Cherepanov [16] proposed yet another local
criterion based on the principle that the crack grows with vanishing (shearing) mode II, also
known as the principle of local symmetry (see also [37]). However, all these local methods are
not easily tractable in the applications since relying on the permanent re-evaluation of the SIF
for every new cracked body configuration. Moreover, as shown by Amestoy and Leblond [5],
these various coexisting criteria are not equivalent from a physical viewpoint, and therefore the
continued interest in mathematical approaches is justified [42].

Concerning crack nucleation criteria, even less consensus is reached. It is sometimes read that
initiation is not the concern of fracture modeling, limited to the growth of existing pre-cracks,
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while other authors believe that crack evolution and nucleation criteria should be intimately
related. Then, the above mentioned growth criteria are usually postulated for crack of finite
length as well as for infinitesimal cracks, i.e., for nucleation. From a mathematical viewpoint,
Chambolle et al. [26] have derived several results relating crack initiation to a local measure of
singularity, that is, to the presence, or not, of defects in the elastic body. In particular, they
have proved that in the absence of defects, brittle fracture can only occur brutally, that is, with
a critical minimal crack length.

In this paper, we propose a general exact analytical expression for crack nucleation sensitivity
analysis. Here, the sensitivity is a scalar field which measures how the elastic energy (or,
in general, an appropriate shape functional) changes when a small crack is introduced at an
arbitrary point of the domain. Its analytical formula is derived by making use of the concept
of topological asymptotic expansion. In particular, we propose a tool for crack nucleation and
crack growth analysis in linear elastic bodies, based on the notions of topological derivative and
topological gradient.

In general, the mathematical notion of topological derivative [24,62] provides the closed form
exact calculation of the sensitivity of a given shape functional with respect to infinitesimal
domain perturbations such as the insertion of voids, inclusions, source term or, in this case, a
crack. The concept of topological derivative is an extension of the classical notion of derivative.
It has been rigorously introduced by Soko lowski and Żochowski [62] in the context of shape
optimization for two-dimensional heat conduction and elasticity problems. In their pioneering
paper, these authors have considered domains topologically perturbed by the introduction of
a hole subjected to homogeneous Neumann boundary condition. Since then, the notion of
topological derivative has proved extremely useful in the treatment of a wide range of problems
and has become a subject of intensive research [11, 36, 56]. Its use in the context of topology
optimization of load bearing structures [1–3, 12, 23, 51, 58, 59], inverse problems [13, 31, 44, 53]
and image processing [15,18,43,45,49] are among the main applications of this analytical tool.
Concerning the theoretical development associated to the powerfull methods derived from the
asymptotic analysis of PDE solutions, the reader may refer for instance to [8–10]. See also [6,7,47]
for applications of these ideas to inverse problems.

As main results of this paper, we propose the following:

(1) a crack nucleation criterion based on the topological derivative
(2) a criterion for determining the direction of crack growth based on the topological gradient
(3) a nucleation result linking the maximal dissipation, vanishing mode II, and maximal

stress criteria (which do not classically coincide)
(4) an alternative proof of the brutal crack nucleation in Griffith’s setting.

Let us emphasize that all these results cannot be claimed new. Nevertheless, to our knowledge
the original contribution of this paper is to establish an axiomatic approach to address crack
nucleation problems, where a precise mathematical notion of nucleation is given. Moreover, the
nucleation criterion provided by this approach shows how the principles of maximal dissipation,
vanishing mode II, and maximal stress, are understood with respect to crack nucleation. Let us
also precise that the specification of a global or local approach is not here an a priori requirement.

Moreover, with a view to practical application of this theory, let us remark that the intrinsic
local notion of the topological derivative as a nucleation criterion is a tool which can eventually
be used to perform numerical simulation of crack nucleation and growth. We refer to [2] for a
method which could easily be coupled with the concepts as presented in this paper.

The paper is organized as follows. The mechanical model associated to plane stress and
plane strain linear elasticity is described in section 2. In section 3 we introduce an overview of
the topological asymptotic analysis concept and state a method for calculating the topological
derivative. The adopted approach is cast within the shape sensitivity analysis setting described
in [57]. In section 3.1 we extend our theory for cracked bodies. Following the original ideas
presented in [32], the shape sensitivity analysis is performed in section 3.2. The calculation
of the topological derivative associated to the total potential energy of the cracked body is
then presented in section 4, where we derive closed formulas for the crack nucleation sensitivity
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analysis. Section 5 is dedicated to the interpretation of the obtained topological derivative and
gradient in terms of optimization properties. In section 6, another energy criterion, including
surface contributions, is analysed within our method. Finally, some concluding remarks are
made in section 7.

2. THE MECHANICAL MODEL

Let us consider an open bounded domain Ω ⊂ R
2 with smooth boundary ∂Ω = ΓN ∪ ΓD

(ΓN∩ΓD = ∅), submitted to volume forces b, surface loads q on ΓN and prescribed displacement
h on ΓD. In our model, the volume forces b will eventually be neglected. Let us also consider
a topologically perturbed domain Ωε containing a small straight crack γε with endpoints x̂
and x∗, where the parameter ε is a small positive scalar defining the size of the topological
perturbation. Symbol n will designate the outward unit normal vector to ∂Ωε. In order to
formulate the equilibrium in plane stress and strain linear elasticity as related to the original
and perturbed problems, the constitutive relations for linear elastic isotropic materials will be
considered. Strain and stress are defined by

∇sξ :=
1

2

(

∇ξ + ∇ξT
)

and σ(ξ) = C∇sξ , (1)

respectively, where ξ represents an admissible displacement field, (∇ξ)ij = ∂jξi,
(

∇ξT
)

ij
= ∂iξj.

In addition, C is the (symmetric) isotropic elasticity tensor given by

C = 2µII + λ (I ⊗ I) , (2)

where µ and λ are the Lamé coefficients, that is

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1 − 2ν)
and λ = λ∗ =

νE

1 − ν2
, (3)

with E denoting the Young’s modulus, ν the Poisson’s ratio and λ∗ the particular case for plane
stress, while I and II denote the second and fourth order identity tensors, respectively.

2.1. Unperturbed problem. Let us consider an elastic body represented by Ω (see Fig. 1),
which is in equilibrium if the following variational problem holds: find the displacement field
u ∈ U , such that

∫

Ω
σ(u) · ∇sη =

∫

Ω
b · η +

∫

ΓN

q · η ∀η ∈ V , (4)

where σ(u) = C∇su, U is the set of admissible displacements and V the space of admissible
variations, which are respectively defined, for b ∈ L2(Ω) and h, q ∈ L2(∂Ω), as

U :=
{

u ∈ H1 (Ω) : u|ΓD
= h

}

and V:=
{

η ∈ H1 (Ω) : η|ΓD
= 0
}

. (5)

The above variational problem has a unique solution and corresponds to the weak formulation
of the momentum conservation law with appropriate boundary conditions:















− div(σ(u)) = b in Ω
σ(u) = C∇su

u = h on ΓD

σ(u)n = q on ΓN

, (6)

where n is the outward unit normal vector to the boundary ∂Ω.
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Figure 1. Elastic uncracked body represented by the domain Ω.

2.2. Perturbed problem. Let us now consider an elastic cracked body represented by Ωε =
Ω \ γε, where γε ⊂ Ω represents a straight crack of length ε. Two distinct situations will
be analysed (cf. Fig. 2). In the first case, the crack nucleates at an interior point x̂ ∈ Ω
and grows symmetrically in the direction e. Thus we will consider cracks which are segments
γε = [x∗A;x∗B ] ⊂ Ω, where x∗A and x∗B are the crack tips. In this case, since the size ε of the crack
is a small parameter,which tends to zero, the stress distribution around the crack extremities
x∗A and x∗B is assumed to coincide. This assumption amounts to a symmetry condition with
respect to the plane orthogonal to the crack at its mid-point. Alternatively, the crack initializes
at a boundary point x̂ ∈ ∂Ω and grows in the direction e oriented by an angle β defined with
respect to the direction of n on ∂Ω. In general, we will consider cracks which are segments
γε = [x̂;x∗] ⊂ Ω, where x∗ is the crack tip.
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Figure 2. Elastic cracked body represented by the domain Ωε.

If the cracked body is in equilibrium, then the following variational problem must be satisfied:
find the displacement field uε ∈ Uε, such that

∫

Ωε

σ(uε) · ∇sη =

∫

Ωε

b · η +

∫

ΓN

q · η ∀η ∈ Vε , (7)

where σ(uε) = C∇suε, Uε is the set of admissible displacements and Vε the space of admissible
variations, which are respectively defined, for b ∈ L2(Ωε) and h, q ∈ L2(∂Ω), as

Uε:=
{

uε ∈ H1 (Ωε) : uε|ΓD
= h

}

and Vε:=
{

η ∈ H1 (Ωε) : η|ΓD
= 0
}

. (8)

The above variational problem is known to have a unique solution, and is precisely the weak
formulation of the momentum conservation law with appropriate boundary conditions:























− div(σ(uε)) = b in Ωε

σ(uε) = C∇suε
uε = h on ΓD

σ(uε)n = q on ΓN

σ(uε)n = 0 on γε

. (9)

Let us remark that, since the perturbed domain is non-Lipschitz, the solution of (9), as op-
posed that of to (6) does not belong to H2(Ωε). In particular the stress is singular at the crack
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tip, and the displacement jumps across γε. Let us remark that the tip singularity is due to the
inadequacy of the linear elastic model near the crack extremities. Moreover, the last condition
in (9) amounts to neglect the dynamic effect of cohesive forces between the crack lips, but their
inter-penetration (i.e., negative normal jump component of the displacement at the crack) is not
prohibited in the above model. This latter classical drawback of linear fracture mechanics will
not be discussed any further in the sequel.

The solution to (9) is known to minimize

JΩε (v) =
1

2

∫

Ωε

σ(v) · ∇sv −
∫

Ωε

b · v −
∫

ΓN

q · v , (10)

whose minimal value JΩε (uε) is recognized as the total potential energy of the cracked body.

The above minimal property of JΩε , namely equation (10) is a simple energetical criterion
for determining the displacement in the cracked body. Of course it is by far insufficient from a
mechanical viewpoint, since it does not consider any energetical contribution of the (infinitesi-
mal) crack. Let us observe that for any crack, JΩε (uε) ≤ JΩε (u) = JΩ (u), where the solution
to the unperturbed problem u is a candidate with vanishing jump for the minimum problem
(10). Therefore, physically, there should be at least a competition between the above decrease
of total potential energy due to the presence of a crack, and an increase of a surface energy con-
centrated on the crack to take into account crack growth. Accordingly, the so-called Griffith’s
and Barenblatt’s-type variational models are discussed in [21] with a view to determining crack
initiation and path prediction.

In this paper, we show how the shape functional (10) can provide some relevant information
as far as initiation of a single crack is concerned. In fact, the energy (10) is the simplest case
addressed by our method. Surface energies can be added, and in general any refinement of
(10) can be considered – provided it admits a topological derivative – within this sensitivity
analysis setting. Two other ingredients are required in order to apply the present method: (i)
the knowledge of the asymptotic expansion of the solution around the crack tip, and (ii) a shape
derivative expression involving a divergence-free Eshelby-type tensor. One example of crack
nucleation with Griffith’s-type surface energy will be addressed in section 6.

Let us remark that the case of cracks with a non penetration condition on γ∗ cannot be
considered within this setting since the tip expansion of the solution is not known [35].

3. SHAPE AND TOPOLOGICAL DERIVATIVES

Let ψ(·) be a shape functional defined over a certain class of domains with sufficient regularity
and assume that the following expansion exists:

ψ (Ωε) = ψ (Ω) + f (ε)DTψ + o (f (ε)) , (11)

where ψ(Ω) is the functional evaluated for the given original domain and ψ(Ωε) for a perturbed
domain obtained by introducing a topological perturbation of size ε. In addition, f(ε) is a
so-called regularizing function which depends on the asymptotic behavior of the problem under
analysis, satisfying

lim
ε→0+

f(ε) = 0 , (12)

where o (f (ε)) contains all terms of higher order in f(ε).
Expression (11) is named the topological asymptotic expansion of ψ. The term DTψ is defined

as the topological derivative of ψ at the unperturbed (original) domain Ω. The term f(ε)DTψ
is a correction of first order in f(ε) to the functional ψ(Ω) to obtain ψ(Ωε). Nevertheless, this
definition of the topological derivative is extremely general. In general, expansion (11) cannot
be obtained by conventional means since Ωε and Ω do not share the same topology.
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Among the methods for calculation of the topological derivative currently available in the
literature, we here adopt the methodology described in [57], whereby the topological derivative
is obtained as the limit

DTψ = lim
ε→0

(

1

f ′ (ε)

d

dε
ψ (Ωε)

)

. (13)

The derivative of the shape functional ψ(Ωε) with respect to the parameter ε denotes precisely
the sensitivity of ψ – in the classical sense [63] – with respect to the size ε of γε. This term is
classically termed the shape derivative. See also [19].

The advantage of definition (13) for the topological derivative is that the whole mathematical
framework developed for the shape sensitivity analysis can be used as an intermediate step to
calculate the topological derivative. This feature was shown in [57] for circular holes and it is
now extended when the domain is perturbed by introducing a small crack.

In order to render this work as self-contained as possible, the remaining of this section is
devoted to prove some classical results concerning shape sensitivity.

3.1. Shape sensitivity of cracked bodies. It is assumed that the infinitesimal crack γε
remains straight during the growth process (see Fig. 3). Moreover, since the derivative of the
shape functional ψ(Ωε) with respect to the parameter ε means the sensitivity of ψ as the straight
crack γε grows, an appropriated shape change velocity field has to be defined. Thus, we consider
an uncracked control volume ω∗ with boundary γ∗ such that x∗ ∈ ω∗. Then, we can define its
cracked counterpart as ω∗

ε = ω∗ \ γε. Moreover let η∗ denote a neighborhood of the crack tip
x∗. From these elements, the following kinematically admissible shape change velocity sets are
introduced

M := {V ∈ C∞(Ωε) : V = 0 on ∂Ω, V · n = 0 in η∗ ∩ γε} (14)

M1 :=
{

V ∈ C∞(Ωε) : V = 0 on ∂Ω, V = e in ω∗
ε

}

(15)

M2 :=
{

V ∈ C∞(Ωε) : V = −e on ∂Ω, V = 0 in ω∗
ε

}

, (16)

where e is a constant unit vector aligned with the crack. Therefore, a kinematically admissible
velocity field V (i.e., belonging to M1 or M2) simulates a crack growth in the direction e.

e
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*g
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e

g
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e
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*g n

e
g
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Figure 3. Shape change velocity field.

3.2. Rice invariance property and shape derivative expressions. The concept of energy
release rate [38] represents the rate of change, with respect to crack growth, of the total potential
energy available for fracture. As a matter of fact, this concept plays an important role in the
mechanical modelling of cracked bodies in linear elastic fracture mechanics. In [32] a systematic
methodology was presented in order to obtain the expression of energy release rate in cracked
bodies based on shape sensitivity analysis.

Let us restate the equivalence between the concept of energy release rate and the shape
sensitivity analysis of the functional

ψ(Ωε) := JΩε (uε) =
1

2

∫

Ωε

σ(uε) · ∇suε −
∫

Ωε

b · uε −
∫

ΓN

q · uε , (17)

where the first term represents the energy stored in the linear elastic cracked body, while the
second and third terms represent the work done by the body and surface loads, respectively.

In order to compute the shape derivative of ψ(Ωε), it is convenient to introduce an analogy
to classical continuum mechanics where the shape change velocity field V is identified with the
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classical velocity field of a deforming continuum and ε is identified as a time parameter (see e.g.
the book [40] or, for analogies of this type in the context of shape sensitivity analysis, [63]).

The following notation is introduced:

J̇Ωε (uε) :=

〈

∂

∂Ωε
JΩε (uε) , V

〉

=
d

dε
JΩε (uε) , (18)

according to the definition of the shape change velocity sets M1 (15) or M2 (16) to which the
velocity field V belongs.

Proposition 1 (First form of the shape derivative). Let JΩε (uε) be the functional defined by
(17). Then, its derivative with respect to the small parameter ε can be written as

J̇Ωε =

∫

∂Ωε

Σ(uε)n · V , (19)

where V is any shape change velocity field belonging to M, while Σ is a generalization of the
classical Eshelby momentum-energy tensor [30,41], given by

Σ(uε) :=
1

2
(σ(uε) · ∇suε − 2b · uε)I −∇uTε σ(uε) . (20)

Proof. Let us calculate the shape derivative of the functional JΩε (uε) using the following version
for the Reynolds’ Transport Theorem [40,63],

J̇Ωε (uε) =
1

2

∫

Ωε

(σ(uε) · ∇suε)
′ +

1

2

∫

∂Ωε

(σ(uε) · ∇suε)V · n−
∫

Ωε

b · u′ε

−
∫

∂Ωε

(b · uε)V · n−
∫

ΓN

q · u̇ε −
∫

ΓN

q · uε div∂Ω(V) , (21)

where div∂Ω(V) = (I−n⊗n)·∇V is the superficial divergence of the velocity field V . In addition,
the prime and the superimposed dot are respectively used to denote the partial and the total
derivatives with respect to ε, i.e.,

u′ε := ∂εuε and u̇ε := u′ε + ∇uεV.
Let us observe that the last term on the RHS of (21) vanishes by the definition of the velocity
field. Moreover, the cracked body Ωε has a singular boundary and hence that usual regularity
theorems do not hold at the crack extremities. However it is known [39] that the solution uε
can be represented by a regular H2(Ωε)-term plus a singular term writing as usε = Ψε(θ)r

1/2

where (r, θ) is a system of polar coordinates with pole at the crack tip. Therefore, it appears
that the second term on the RHS of (21) is, because of that singular term, not well-defined at
the crack tip, unless V · n vanishes, which is indeed assumed. Next, by using the concept of
material derivatives of spatial fields we find that the first term of the above RHS integral can
be written as

(σ(uε) · ∇suε)
′ = 2σ(uε) · ∇su′ε = 2σ(uε) · (∇su̇ε −∇s(∇uεV )) ,

where the last term inside the parenthesis, as integrated over Ωε, is given a meaning by integra-
tion by parts and by the property that σ(uε)n vanishes along the crack. With the above result,
the sensitivity of the functional JΩε (uε) reads

J̇Ωε (uε) =
1

2

∫

∂Ωε

(σ(uε) · ∇suε − 2b · uε)V · n−
∫

Ωε

σ(uε) · ∇s(∇uεV )

+

∫

Ωε

b · ∇uεV +

∫

Ωε

σ(uε) · ∇su̇ε −
∫

Ωε

b · u̇ε −
∫

ΓN

q · u̇ε . (22)

Since u̇ε ∈ Vε, the equilibrium equation (7) implies that the last three terms of (22) vanish, and
hence

J̇Ωε (uε) =
1

2

∫

∂Ωε

(σ(uε) · ∇suε − 2b · uε)V · n−
∫

Ωε

σ(uε) · ∇s(∇uεV ) +

∫

Ωε

b · ∇uεV . (23)
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Eventually, using the tensor relation

div(σ(uε)(∇uεV )) = σ(uε) · ∇s(∇uεV ) + div(σ(uε)) · ∇uεV , (24)

and the divergence theorem, expression (23) can be written as

J̇Ωε (uε) =

∫

∂Ωε

Σ(uε)n · V +

∫

Ωε

[ div(σ(uε)) + b] · ∇uεV , (25)

and since the stress field σ(uε) is in equilibrium, the proof of (19) simply results from (9). �

The above shape derivative expression shows a surface integral. Without assuming a vanishing
normal velocity field at the crack tip, the following expression of the shape derivative as given
by an integral over the cracked domain, instead of its boundary, is obtained.

Proposition 2 (Second form of the shape derivative). Let JΩε (uε) be the functional defined by
(17). Then, the derivative of the functional JΩε with respect to the small parameter ε is given
by

J̇Ωε =

∫

Ωε

Σ(uε) · ∇V −
∫

Ωε

∇bV · uε , (26)

where V is any shape change velocity field belonging to M and Σ is given by (20).

Proof. Another version of Reynolds’ Transport Theorem [40,63] provides the identity

J̇Ωε (uε) =
1

2

∫

Ωε

[(σ(uε) · ∇suε)
· + (σ(uε) · ∇suε) div(V )] −

∫

ΓN

q · u̇ε

−
∫

Ωε

[(b · uε)· + (b · uε) div(V )] −
∫

ΓN

q · uε div∂Ω(V) , (27)

Once again, the last term on the RHS of (27) vanishes by the definition of the velocity field.
Next, by using the concept of material derivative of a spatial field [40,63], we find that the first
term of the above RHS integral can be written as

(σ(uε) · ∇suε)
· = 2σ(uε) · ∇su̇ε − 2∇uTε σ(uε) · ∇V , (28)

which, substituted in (27) gives

J̇Ωε (uε) =

∫

Ωε

Σ(uε) · ∇V +

∫

Ωε

σ(uε) · ∇su̇ε −
∫

Ωε

(b · uε)· −
∫

ΓN

q · u̇ε , (29)

Since u̇ε ∈ Vε, and with the equilibrium equation (7), the last three terms of (29) reduce to

−
∫

Ωε

ḃ · uε , thereby proving the result. �

By taking into account Propositions 1 and 2, the divergence-free property of the Eshelby
tensor can immediately be proved in the following sense.

Corollary 3 (Conservation law). Provided the body force b is constant, the Eshelby tensor Σ(uε)
is a divergence-free tensor field away from the crack tip.

Proof. By applying the divergence theorem to the right hand side of (26), we have

J̇Ωε =

∫

∂Ωε

Σ(uε)n · V −
∫

Ωε

div(Σ(uε)) · V . (30)

Since (19) and (26) hold for any velocity fields in M, it results that
∫

Ωε

div(Σ(uε)) · V = 0 ∀V ∈ M ⇒ div(Σ(uε)) = 0 a.e. in Ωε \ ω∗
ε . (31)

�
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Proposition 4 (Rice integral). Provided the body force b is constant, for any control volume ω∗

containing the crack tip x∗ with boundary γ∗, the shape derivative of the total potential energy
for a variation in the direction e of a crack of length ε reads

J̇Ωε = e ·
∫

∂Ω
Σ(uε)n = e ·

∫

γ∗

Σ(uε)n , (32)

where Σ is given by (20).

Proof. Let us define γ̂ε = γε∩ (Ω \ω∗). Since div(Σ(uε)) = 0 in Ωε \ω∗
ε it results that the shape

derivative of the total potential energy given by (26), after integrating by parts, becomes

J̇Ωε =

∫

Ωε

Σ(uε) · ∇V =

∫

Ωε\ω∗

ε

Σ(uε) · ∇V +

∫

ω∗

ε

Σ(uε) · ∇V

=

∫

∂Ω
Σ(uε)n · V +

∫

γ̂ε

Σ(uε)n · V −
∫

γ∗

Σ(uε)n · V +

∫

ω∗

ε

Σ(uε) · ∇V . (33)

Let us consider the velocity field V ∈ M2 given by (16) in the above result (33), which implies

J̇Ωε =

∫

∂Ω
Σ(uε)n · V +

∫

γ̂ε

Σ(uε)n · V with V ∈ M2 . (34)

Taking into account that n ⊥ V on γ̂ε and considering that σ(uε)n = 0 on γ̂ε, equation (34)
becomes

J̇Ωε =

∫

∂Ω
Σ(uε)n · V = −e ·

∫

∂Ω
Σ(uε)n with V ∈ M2 . (35)

If, in turn, the velocity field V ∈ M1 given by (15) is inserted in (33), it results, by using the
same arguments as above, that

J̇Ωε = −
∫

γ∗

Σ(uε)n · V = −e ·
∫

γ∗

Σ(uε)n with V ∈ M1 . (36)

On the other hand, by considering (31) and since ∂
(

Ωε \ ω∗
ε

)

= ∂Ω ∪ γ̂ε ∪ γ∗, it can be shown
that (35) and (36) are equivalents:

0 = e ·
∫

Ωε\ω∗

ε

div(Σ(uε)) = e ·
(
∫

∂Ω
Σ(uε)n+

∫

γ̂ε

Σ(uε)n−
∫

γ∗

Σ(uε)n

)

= e ·
∫

∂Ω
Σ(uε)n− e ·

∫

γ∗

Σ(uε)n , (37)

where the above result was obtained with help of the divergence theorem for second-order tensor
fields and taking into account the fact that on γ̂ε we have n · e = 0 and σ(uε)n = 0, implying in
Σ(uε)n · e = 0 on γ̂ε. �

The shape derivative of the total potential energy, namely (35) or (36), might be interpreted
as minus energy release rate Gε due the crack growth. In addition, the above result shows that,
for a smooth enough shape change velocity field V , the expression of the energy release rate
is independent of the value of V at the interior of the domain Ωε. In addition, since γ∗ is an
arbitrary curve around the crack tip x∗, the energy release rate due the crack growth can be
written as

Gε := −αJ̇Ωε = αe ·
∫

∂Ω
Σ(uε)n = αe ·

∫

γ∗

Σ(uε)n = αe ·
∫

∂B∗

ρ

Σ(uε)n , (38)

where B∗
ρ is the ball of radius ρ ≪ ε centered at the crack tip x∗ (see Fig. 4) and α is the

number of crack extremities (α = 1 for x̂ ∈ ∂Ω and α = 2 for x̂ ∈ Ω). Let us mention that the
energy release rate classically coincides with the Rices’s integral [28, 60].



10

e

x*x^

r

rB*

n

e 1

e 2

q

j
r

Figure 4. Polar coordinate system (r, θ).

It turns out that (38) also provides the definition of the configurational force [41] denoted by
g∗ε as exerted at the crack tip x∗, and hence (38) enlights the following relation between force,
velocity and dissipation:

Proposition 5 (Shape derivative). The shape derivative of JΩε as given by (17) reads

J̇Ωε = −Gε

α
= −g∗ε · e where g∗ε = lim sup

ρ→0

∫

∂B∗

ρ

Σ(uε)n, (39)

and with Σ given by (20).

The limit property in (39) will show crucial in the computation of the topological derivative.

4. TOPOLOGICAL SENSITIVITY ANALYSIS

The aim of the following sections is to analyse the energetical effect of infinitesimal crack
nucleation at x̂ in a prescribed direction e. We will assume that there are no body forces.

In fact, we seek the optimal x̂ and e in view to decrease at most the potential energy of the
elastic cracked body Ωε. This will be achieved by calculating the so-called topological derivative
of the total potential energy associated to a crack located at x̂ in the direction e, as presented
in the previous sections. From equations (13) and (39) the topological derivative is introduced
as

TOPOLOGICAL DERIVATIVE DTψ = −lim
ε→0

α

f ′ (ε)
g∗ε · e. (40)

This expression of the topological derivative for crack nucleation is interpreted as a directional
derivative, thereby identifying the associated topological gradient GTψ as

TOPOLOGICAL GRADIENT GTψ = −lim
ε→0

α

f ′ (ε)
g∗ε . (41)

The objective is now to compute rigorously the shape derivative in order to compute exact
formulae for the topological derivative and gradient by using (40) and (41) and by means of an
asymptotic analysis of the displacement around the crack tip. This analysis will be performed
in the case of a bulk crack only.

4.1. Canonical problem. According to (6) & (9), let us define vε := uε − u, solution to














− divσ(vε) = 0 in Ωε

vε = 0 on ΓD

σ(vε)n = 0 on ΓN

σ(vε)e
⊥ = −σ(u)e⊥ on γε

. (42)

Moreover, let us introduce a microscopic variable y := (x−x∗)/ε in order to re-scale the problem
with a unit crack γ in R

2 as ε→ 0. Indeed, it suffices to analyse the canonical problem
{

− div(σ(w)) = 0 in R
2

σ(w)e⊥ = −σ(u)(x∗)e⊥ on γ
. (43)

which is well posed in the following Hilbert space (so-called Deny-Lions or Beppo-Levi space)

W := {w ∈ H1
loc(R

2;R2) such that ∇sw ∈ L2(R2;R2×2)}, (44)
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The solution of (43) is known as the Westergaard solution and reads (see, e.g., [65]), as a function
of the complex variable Z := y1 + iy2:

2µw1(Z) =
κ− 1

2
ℜ{φI} +

κ+ 1

2
ℜ{φII} − y2ℑ{φ′I + φ′II} (45)

2µw2(Z) =
κ+ 1

2
ℑ{φI} +

κ− 1

2
ℑ{φII} − y2ℜ{φ′I + φ′II} (46)

with κ = 3 − 4ν in plane strains and κ = (3 − ν)/(1 + ν) in plane stresses, and

φ′I(Z) + iφ′II(Z) = (KI(u, e) − iKII(u, e))

(

Z√
Z2 − a2

− 1

)

(47)

φI(Z) + iφII(Z) = (KI(u, e) − iKII(u, e))
(

√

Z2 − a2 − Z
)

+ C (48)

given in terms of a constant C and the (normalized) stress intensity factors:

KI(u, e) := σ(u)(x∗)e⊥ · e⊥ and KII(u, e) := σ(u)(x∗)e · e⊥ . (49)

4.2. Asymptotic analysis at the crack tip. Let us first mention that the displacement (45)-
(46) shows by an asymptotic analysis of (47) and (48) around the crack tip x∗ to be of the
form

w := Θ∗w + w̃ (50)

where the cut-off function Θ∗ ∈ C∞
c (R2) verifies Θ∗ ≡ 1 in a neighborhood of x∗ and

w(y) :=
√
Rψ(Θ) (51)

with y1 + iy2 = ReiΘ and (R,Θ) the polar coordinates centered at x∗. Moreover, from [39] it is
known that w̃ ∈ H2

loc(R
2) ∩W .

Let us now observe that the re-scaled function

wε := εw

(

x− x∗

ε

)

(52)

solves
{

− div(σ(wε)) = 0 in Ωε

σ(wε)e
⊥ = −σ(u)(x∗)e⊥ on γε

. (53)

with non homogeneous but “small” boundary conditions on ∂Ω.

The function wε := εw((x− x∗)/ε) will be written in polar coordinates as

wε = wr
ε(r, θ)er + wθ

ε(r, θ)eθ , (54)

where {er, eθ} denotes the polar base located at the crack tip x∗ , with −π ≤ θ < π and
r = ||x− x∗||. Moreover wε will be split into mode I and mode II singular components wI

ε and
wII

ε , and a regular part w̃ε := εw̃((x− x∗)/ε) ∈ H2(Ω):

wε = θ∗
(

wI
ε + wII

ε

)

+ w̃ε , (55)

where θ∗ ∈ C∞
c (Ω) is such that θ∗ ≡ 1 in a neighborhood of x∗. Furthermore, the results will

be given explicitly for plane stresses and plane strains. As relying on (45)-(46) and (52), the
following expressions of the singular parts wI

ε and wII
ε are found in [52].

4.2.1. Plane stress problem. For plane stress problem, we have the following asymptotic expan-
sion for the solution wε, valid for r “small enough” (in a “neighborhood” of x∗ ):

• for the mode I

wIr
ε (r, θ) =

KI(u, e)

E

√

rε

2
(3 − ν − (1 + ν) cos θ) cos(

θ

2
) , (56)

wIθ
ε (r, θ) = −KI(u, e)

E

√

rε

2
(3 − ν − (1 + ν) cos θ) sin(

θ

2
) , (57)
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• for the mode II

wIIr
ε (r, θ) =

KII(u, e)

E

√

rε

2
(3ν − 1 + 3(1 + ν) cos θ) sin(

θ

2
) , (58)

wIIθ
ε (r, θ) = −KII(u, e)

E

√

rε

2
(5 + ν − 3(1 + ν) cos θ) cos(

θ

2
) , (59)

where KI,KII are the SIF given in terms of the background solution u (let us precise that a
small mistake in [52] has been here corrected).

4.2.2. Plane strain problem. For plane strain problem, we have the following asymptotic expan-
sion for the solution wε, valid for r “small enough”:

• for the mode I

wIr
ε (r, θ) =

KI(u, e)

E

√

rε

2
(1 + ν) (3 − 4ν − cos θ) cos(

θ

2
) , (60)

wIθ
ε (r, θ) = −KI(u, e)

E

√

rε

2
(1 + ν)(3 − 4ν − cos θ) sin(

θ

2
) , (61)

• for the mode II

wIIr
ε (r, θ) =

KII(u, e)

E

√

rε

2
(1 + ν) (4ν − 1 + 3 cos θ) sin(

θ

2
) , (62)

wIIθ
ε (r, θ) =

KII(u, e)

E

√

rε

2
(1 + ν) (4ν − 5 + 3 cos θ) cos(θ/2) , (63)

where KI,KII are the SIF given in terms of the background solution u.

4.2.3. Crack tip expansion of the displacement. The function wε as given by (52) is the leading
term of a so-called asymptotic expansion for vε as stated by the following Lemma.

Lemma 6. For any cut-off function θ∗ ∈ C∞
c (Ω) such that θ∗ ≡ 1 in a neighborhood of x∗, there

exists a constant C > 0 independent of ε such that

vε := uε − u = θ∗wε + δ, (64)

with wε solution of (53) and

||δ||H1(Ω) ≤ Cε. (65)

Remark 7. Another way of writing (64) in a neighborhood of x∗ is

uε = u+ wε +OH1(ε), (66)

with wε given in a neighborhood of x∗ in plane strains by (56)-(59) and in plane stresses by
(60)-(63), with u ∈ H2(Ω) the solution of the background problem. In fact it is easily verified
that

||w̃ε||2H1(Ω) ≤ C

∫

Ω
|∇sw̃ε|2 dx = Cε2

∫

Ω/ε
|∇sw̃|2 dy ≤ Cε2.

Remark 8. The role of the cut-off function is twofold: (i) to disregard the boundary behaviour
of wε, and (ii) to localize the evaluation of the displacement in a neighborhood of x∗ such that
explicit expressions hold.

Proof. According to (42) and (53), δ is the solution to














− divσ(δ) = fε in Ωε

δ = 0 on ΓD

σ(δ)n = 0 on ΓN

σ(δ)e⊥ = gε on γε

. (67)

where

fε := − div[C(∇θ∗ ⊗ wε)
s + σ(wε)θ

∗] (68)

gε := σ(u)(x∗)e⊥ − σ(u)e⊥. (69)
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By multiplying (67) by δ and integrating by parts it results that
∫

Ω
σ(δ) · ∇sδ =

∫

Ω
fε · δ +

∫

γε

gε · δ. (70)

Let us remark that for some non negative constant C,

||gε||∞ ≤ Cε (71)

by the regularity of the background solution at x∗. Moreover by developing fε and noting that
θ∗ has a compact support in Ω, it results that

∫

Ω
fε · δ =

∫

Ω
C (∇θ∗ ⊗ wε)

s · ∇sδ −
∫

Ω
(σ(wε)∇θ∗ · δ − σ(wε) · θ∗∇sδ) . (72)

Let us also remark that

||wε||L2(Ω), ||∇wε||L2(Ω), ||σ(wε)||L2(Ω) ≤ Cε (73)

since for a non negative constant denoted by the generic symbol C, we have

||wε||2L2(Ω) ≤ C||∇wε||2L2(Ω) ≤ C||∇swε||2L2(Ω) = C

∫

Ω
|∇swε|2 dx = Cε2

∫

Ω/ε
|∇sw|2 dy ≤ Cε2

where the 3 inequalities follows from Poincaré and Korn inequalities, and by (44), respec-

tively. Hence by (72) and (73) and observing that δ ∈ H1(Ω) ∩H1/2(γε) verifies ||δ||H1/2(γε)
≤

C||δ||H1(Ω), it results that

C||∇sδ||2L2(Ω) ≤
(

C ′ε+C ′′ε3/2
)

||∇sδ||L2(Ω)

for some non negative constants C ′ and C ′′, and hence that

||∇sδ||L2(Ω) ≤ Cε (74)

for some non negative constant C, achieving the proof. �

4.3. Estimation of the shape derivative. Let us recall that by Proposition 5 the shape
derivative J̇Ωε can be computed on any loop around x∗. Therefore, consider a family of balls
{Bρ(x∗); ρ} such that θ∗ ({Bρ; ρ}) = 1 and that (56)-(63) hold in ∪ρBρ(x∗). Hence by (64), and
by defining ũ := u+ w̃ε we have

J̇Ωε(uε) = −e · lim sup
{Bρ(x∗);ρ}

∫

∂Bρ(x∗)
Σ(wε + ũ+ δ)n. (75)

On the other hand, according to (20), Σ(v + w) = Σε(v) + Σε(w) +A(v,w) where

A(v,w) :=
1

2
(σ(v) · ∇sw + σ(w) · ∇sv) I −∇vTσ(w) −∇wTσ(v) (76)

Since fε vanishes near x∗ it results from classical regularity that δ ∈ C∞
loc(Bρ \ γε) and ∇δ ∈

C(∂Bρ). By (56)-(63) we have
∫

∂Bρ

Σ(wε) = O(ε) (77)

where the left hand-side is independent of ρ. In addition, by the regularity of ũ, δ on ∂Bρ,
∫

∂Bρ

Σ(δ) = O(ρ),

∫

∂Bρ

Σ(u+ w̃ε) = O(ρ),

∫

∂Bρ

A(ũ, δ) = O(ρ) (78)

Moreover, by expressions (56)-(63),
∫

∂Bρ

A(ũ, wε) = O((ρε)1/2),

∫

∂Bρ

A(wε, δ) = O((ρε)1/2). (79)

By (75)-(79), for every admissible ρ (i.e. such that θ∗ (Bρ) = 1), we have

J̇Ωε(uε) + e ·
∫

∂Bρ

Σ(wε)n = O(ρ) +O((ρε)1/2), (80)
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Since ρ≪ ε < 1, we can take a particular sequence ρ = O(ε2) satisfying θ∗ (Bρ) = 1, to obtain

J̇Ωε(uε) = −e ·
∫

∂Bρ∗

Σ(wε)n+ o(ε), (81)

for any ρ∗ satisfying θ∗ (Bρ∗) = 1 (this choice is arbitrary since the first term on the right
hand-side of the above equation is independent of ρ).

4.4. Topological derivative expression. From the formulas (56)-(63), we can solve the inte-
gral (81), which results in

J̇Ωε(uε) = −2πε
̺

4E

(

K2
I +K2

II

)

+ o(ε). (82)

where ̺ = 1 in plane stresses, ̺ = 1 − ν2 in plane strains. It results that from expression (40)
providing the topological derivative from the shape derivative, i.e. from equation (82), we can
identify function f ′(ε) = 2πε (f(ε) = πε2) and calculate the limit ε→ 0 in (40), that is

DTψ(u, e) = lim
ε→0

α

f ′ (ε)
J̇Ωε(uε) = −α̺

4E

(

K2
I +K2

II

)

(83)

while by (41), the topological gradient reads

GTψ(u, e) = DTψ(u, e)e . (84)

Finally, the topological asymptotic expansion of the energy shape functional reads

ψ(Ωε) = ψ(Ω) − πε2
α̺

4E

(

K2
I +K2

II

)

+ o(ε2) . (85)

5. MINIMAL TOPOLOGICAL DERIVATIVE AS A CRACK NUCLEATION
CRITERION

The above analysis provides a new feature: for cracks of vanishing length, a precise notion of
topological derivative – given by (83) – has been introduced. As far as the total potential energy
JΩε (uε) is concerned, the explicit expression (83) shows that its topological derivative is always
negative, which means that the presence of a crack of any length anywhere in Ω provides a lower
total potential energy as compared to that of the uncracked body. This property is completely
natural since nucleation means extending the class of candidates for the minimization of (10)
with those candidates allowed to jump across the crack lips. To that extend, the topological
derivation has not brought significant insight to the issue of crack nucleation.

However it results that from the notion of topological derivative, the principle of maximal
dissipation or, equivalently, of minimal topological derivative, provides a crack nucleation crite-
rion. In fact, (83) provides an explicit criterion for the determination of the weakest zones in Ω
with respect to crack initiation, in the sense that optimal nucleation points x⋆ and orientation
e(ϕ⋆) may be sought to satisfy:

NUCLEATION CRITERION DTψ(x⋆, e(ϕ⋆)) = min
x∈Ω,ϕ∈[0;2π[

DTψ(x, e(ϕ)), (86)

where ϕ is the angle between e and e1, with {e1, e2} a local base at x.

The above criterion (86) is only apparently based on a double minimization. It will eventually
result in a sole minimization in x, since the optimal crack direction will be shown to obey a
universal property of homogeneous linear elastic materials. In fact, the nucleation criterion only
amounts to the minimization of the scalar field DTψ(x, e(ϕ⋆)) over x ∈ Ω because there exist a
law providing optimal fracture direction (i.e., the angle ϕ⋆).

It can be observed that the nucleation optimality criterion (86) is, by (13) and (82), equivalent
to the maximization of Gε/ε, where Gε is the Griffith’s energy release rate of a crack of length
ε (this is sometimes called the Irwin’s criterion). However, while the latter criterion appears
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as a postulate (and is often referred to as a principle) in the classical literature on brittle frac-
ture [27,46,50,52], it is here given a precise mathematical meaning, and proven.

Let us remark that the introduction of a precise notion of derivation for crack nucleation is
justified also by the fact that from the sole Griffith’s critical relation:

Gε = 2πε
K2

I +K2
II

E
= Gcrit, (87)

where Gcrit is a material dependent crack growth threshold, one would deduce that the critical
KI and KII are of the order of 1/

√
ε, and hence would be unbounded (i.e., unphysical) as ε→ 0.

Moreover, it should be precised that while the maximal dissipation principle is sometimes
used to predict crack evolution, by providing a method for finding the optimal direction e [52],
it is not specifically dedicated for crack nucleation predictions. Let us finally remark that such
a criterion, possibly combined with other methods, may provide a useful tool for numerical sim-
ulation of brittle crack quasi-static evolution [2].

In the following section, a geometric property for linear elastic cracked bodies will be proved.

5.1. Case 1: bulk crack initiation. Let us fix x̂ inΩ, and take α = 2 in order to account for
the crack symmetry property. According to the classical expressions of the SIF as given by (49),
it results that the topological derivative writes

DTψ = − ̺

2E

[

(σ(u)e⊥ · e⊥)2 + (σ(u)e · e⊥)2
]

, (88)

where ̺ = 1 in plane stresses, ̺ = 1 − ν2 in plane strains.
The crack will nucleate according to the above criterion (86) in a direction which minimizes

the topological derivative. Hence, by writing

e = (cosϕ, sinϕ) and e⊥ = (− sinϕ, cosϕ) , (89)

where ϕ denotes the angle between the crack direction e and the local basis {e1, e2} located at
x (cf. Fig. 4), it suffices to find ϕ⋆ such that

ϕ⋆ := arg

{

max
0≤ϕ<2π

[

σ211 + 2σ212 + σ222 + (σ222 − σ211) cos(2ϕ) − 2σ12(σ11 + σ22) sin(2ϕ)
]

}

, (90)

which results in

ϕ⋆ = ±1

2
arccos

(

±
√

(σ11 − σ22)2

(σ11 − σ22)2 + 4σ212

)

(91)

where σij are the components of the stress tensor σ(u) in the local system {e1, e2} and ϕ⋆ de-
notes the angle that maximizes the energy release rate.

Therefore, according to the above topological minimization framework, the so-called “local
symmetry principle” (see the pioneering works [16,29,37] and the recent discussion [25], otherwise
called “KII = 0 nucleation criterion”, instead of being simply postulated, can now be proved.

Proposition 9 (KII = 0 nucleation criterion). In homogeneous LEFM, the KII = 0 crack
nucleation criterion satisfies the property of minimal topological derivative, i.e., of maximal
decrease of the total potential energy (10).

Proof. If {e1, e2} are the principal direction at x, then the stress σ(u) is diagonal,

σ(u) =
2
∑

i=1

σi(u)(ei ⊗ ei) ,

where ei are the eigen-vectors associated to the eigen-values σi(u) (with σ1 > σ2) of tensor σ(u)
evaluated at x, and equation (91) results in ϕ⋆ = 0 or π/2. Clearly, since e⊥2 = e1, the lowest
value of the topological derivative is attained for ϕ⋆ = π/2. �
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The local symmetry principle is sometimes called KII = 0 criterion because locally the crack
lips are in pure mode I, in the sense that the principal tractions apply on their faces. Strictly
speaking, the above law holds for infinitesimal cracks only, whereas for cracks of finite length,
other physical mechanisms should be taken into account [21,33]. Let us also mention that, unless
the presence of impurities, brittle crack initiation in the sense of Griffith always implies cracks
of finite length, as discussed in [21] or [26], and hence at nucleation points, no infinitesimal crack
will ever appear. This latter property will also appear clear and be proven within our setting in
section 6.

As a matter of fact, Proposition 9 also contributes to the debate between the validity of
Irwin’s maximal dissipation criterion versus the local symmetry principle. In fact, Proposition
9 states that relying on Irwin’s principle, a precise notion of nucleation is introduced via the
topological derivative, whose minimal value coincides with the KII = 0 criterion and with the
principle of maximal traction.

5.2. Case 2: boundary crack initiation. In this case, x̂ ∈ ∂Ω, there is one crack extremity
at the boundary while the other is located inside the body, i.e. α = 1. Moreover, since the
domain boundary was assumed smooth, the canonical problem results in a semi-infinite crack
with endpoint x∗ in a semi-infinite plane. Let us consider (47) and (48) as developed in a
neighborhood of x∗ as functions of the SIF [65]:

φ′I(Z) + iφ′II(Z) = (K∗
I − iK∗

II)
exp (−iΘ/2)√

2π
√
R

(92)

φI(Z) + iφII(Z) = (K∗
I − iK∗

II)

√

2

π

√
R exp (iΘ/2) + C. (93)

In the rescaled domain where the boundary crack has length ε, the displacement are given by
(56)-(59) provided KI and KII are replaced by K∗

I and K∗
II, respectively, with

(

K∗
I

K∗
II

)

=

(

FS
I F T

I
FS
II F T

II

)

(β)

(

σ(u)(x∗)e⊥ · e⊥
σ(u)(x∗)e · e⊥

)

, (94)

where coefficients FS
I , F

T
I and FS

II , F
T
II depend on the angle β between the crack and the normal

n to the boundary ∂Ω (approximate analytical expressions of these coefficients are given in [17]).
Let us remark that for the simple case β = π/2 the SIF have been given in [64] as

K∗
I − iK∗

II = 1.1215
(

σ(u)(x∗)e⊥ · e⊥ − iσ(u)(x∗)e · e⊥
)

.

According to the above general expression of the SIF, the topological derivative at x̂ ∈ ∂Ω
reads

DTψ(x̂) = − ̺

4E

[

(FS
I σe

⊥ · e⊥ + F T
I σe · e⊥)2 + (FS

IIσe
⊥ · e⊥ + F T

II σe · e⊥)2
]

(u)(x̂),

where ̺ = 1 in plane stresses, ̺ = 1 − ν2 in plane strains.

Provided the approximate analytical expressions as found in [17], the calculation of the optimal
angles ϕ⋆ can be done by following exactly the same steps as presented in the previous case.

5.3. Case 3: kinking. The case of kinking can in principle be addressed by our method. Let
us consider an elastic body with a pre-existing crack γ with tip x̂∗ and an extension γε of that
crack at x̂∗ whose tip is denoted x∗∗ and which forms an angle ζ with the direction tangent to γ
at x̂∗. It was shown in [4] that for small kinking angles the displacement are given by (56)-(59)
provided KI and KII are replaced by K∗∗

I and K∗∗
II , respectively, with

(

K∗∗
I

K∗∗
II

)

= G(ζ)

(

K∗
I

K∗
II

)

,

where K∗
I and K∗

II are the SIF of γ at x̂∗. Several exact expressions of the matrix G are given
in [5] for particular kink configurations.
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However, it should be remarked that theses formulae are based on the postulate that kinking
occurs according to the principle of local symmetry. Here we have proved that bulk crack
nucleates according to that principle, but have not extended that property to general crack
growth. As a matter of fact, it should be verified that minimizing the topological derivative in
the case of kinking is equivalent to the local symmetry principle. Since arguments are found
in [25] to believe in a negative answer to that latter assertion, our method of minimal topolgical
derivative as applied to kinking remains questionable.

6. CRACK NUCLEATION UNDER A SIMPLE BULK AND SURFACE ENERGY
COMPETITION

It has been mentioned that physically an energy contribution consisting of a line integral over
the crack should be added to the elastic (bulk) energy of the cracked body. In order to show
how our axiomatic approach can be applied to other types of energy-based shape functionals,
let us consider the Griffith’s-type surface energy of the form

Ξ(Ωε) = ψ(Ωε) + C(γε) , (95)

with

C(γε) =

∫

γε

κ(ε) , (96)

whose simplest expression is taken as

C(γε) = κ̃ε , (97)

where κ̃ > 0 is the specific (material dependent) surface energy. The solutions to the associated
elastic problem, obtained by a global minimization approach [21], here satisfy (9).

From (97) it follows that the derivative w.r.t. ε of C(γε) is given by

Ċ(γε) = κ̃ > 0 . (98)

whereby from (85) and (98) it results that Ξ(Ωε) admits the following total derivative w.r.t. ε:

Ξ̇(Ωε) = κ̃+O(ε) , (99)

From this latter result we have fΞ(ε) = ε and the expression of the topological derivative of Ξ
reads

DT Ξ = lim
ε→0

(

1

f ′Ξ(ε)
Ξ̇(Ωε)

)

= κ̃ > 0 . (100)

Since the topological derivative of Ξ is always non negative, the surface energy contribution
C(γε) = κ̃ε will always prohibit nucleation.

Proposition 10. In homogeneous LEFM, according to the topological derivative criterion (86)
as applied to (95) and (97), there will be no infinitesimal crack nucleation.

The above property appears as another proof of a result found in [21] and stating that in the
Griffith setting nucleation at defect-free points can only occur brutally, i.e., not infinitesimally.

In addition, considering only the case associated with bulk crack nucleation (α = 2), the finite
critical crack sizes ε⋆ can be explicitly bounded from below. In fact, the topological asymptotic
expansion of the shape functional (95) reads

Ξ(Ωε) = Ξ(Ω) + εκ̃+ πε2DTψ + o(ε2) . (101)

where DTψ can be obtained from (85). Hence, as a result of the balance between potential and
surface energy contributions, the following thresholds are found:

ε⋆ >
2κ̃E

π̺K2
I

, (102)

where ̺ = 1 in plane stresses, ̺ = 1 − ν2 in plane strains. In fact, it suffices to observe that
according to Proposition 9 ϕ⋆ = π/2 and KII = 0.
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7. CONCLUSIONS

In this paper, we mainly provide a simple tool justified by a rigorous mathematical approach,
aimed at analysing variational brittle crack nucleation within the class of linear elastic bodies.
The proposed crack nucleation criterion is based on the notion of topological asymptotic ex-
pansion as applied to a shape functional recognized as the total potential energy of an elastic
cracked body. The case of bulk and surface energy energy contributions of Griffith-type has also
been addressed.

Most of the result of this paper were previously known by other approaches. However the
methodology introduced in this paper is original and permits to prove results which were previ-
ously only referred to as postulates, or principles.

As main results we have mathematically formulated a crack nucleation criterion based on the
notion of topological derivative and a criterion for determining the direction of crack growth
based on the topological gradient, and showed how these criteria coincide with the principle of
maximal dissipation. In particular we have proved that in order to maximize dissipation at a
bulk point of the solid the crack will nucleate in pure mode II. Moreover, for Griffith’s model
where a competition between a volume and a surface energy is considered, crack nucleation is
proven to occur brutally.

In addition, the proposed methodology leads to an axiomatic approach which can be used
for further analysis of crack growth. In addition, it has the advantage of (i) being rigorously
defined, (ii) easily tractable, and (iii) not restricted to a given physical model of brittle fracture.
As a matter of fact, provided the solution to a modified primal perturbed problem (9) is given as
an asymptotic expression in terms of the small crack length ε, then the proposed framework can
be applied, resulting in appropriate nucleation criteria. Moreover, it is clear that other shape
functional than the potential or Griffith energy can freely be chosen within our setting, provided
they admit a topological derivative.

As a consequence, our methodology provides a family of nucleation criteria – according to
the chosen model of brittle fracture, which can be further tested and compared by laboratory
or numerical experiments.
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