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Abstract. This paper proposes an algorithm for the synthesis/optimization of microstructures based on
an exact formula for the topological derivative of the macroscopic elasticity tensor and a level-set domain
representation. The macroscopic elasticity tensor is estimated by a standard multi-scale constitutive
theory where the strain and stress tensors are volume averages of their microscopic counterparts over a
Representative Volume Element (RVE). The algorithm is of simple computational implementation. In
particular, it does not require artificial algorithmic parameters or strategies. This is in sharp contrast
with existing microstructural optimization procedures and follows as a natural consequence of the use of
the topological derivative concept. This concept provides the correct mathematical framework to treat
topology changes such as those characterizing microstuctural optimization problems. The effectivenes
of the proposed methodology is illustrated in a set of finite element-based numerical examples.

1. Introduction

The accurate prediction of the constitutive behaviour of a continuum body under loading is of para-
mount importance in many areas of engineering and science. Until about a decade ago, this issue has
been addressed mainly by means of conventional phenomenological constitutive theories. More recently,
the increasing understanding of the microscopic mechanisms responsible for the macroscopic response,
allied to the industrial demand for more accurate predictive tools, led to the development and use of
so-called multi-scale constitutive theories. Such theories are currently a subject of intensive research
in applied mathematics and computational mechanics. Their starting point can be traced back to the
pioneering developments reported in [25, 26, 33, 11, 43, 48]. Early applications were concerned with
the description of relatively simple micro-scale phenomena often treated by analytical or semi-analytical
methods [6, 7, 24, 37, 38, 41]. More recent applications rely often on finite element-based computational
simulations [34, 35] and are frequently aplied to more complex material behaviour in areas such as the
modelling of human arterial tissue [47], bone [42], the plastic behavior of porous metals [21] and the
microstructural evolution and phase transition in the solidification of metals [13].

One interesting branching of such developments is the study of the sensitivity of the macroscopic
response to changes in the underlying microstucture. The sensitivity information becomes essential
in the analysis and potential purpose-design and optimization of heterogenoues media. For instance,
sensitivity information obtained by means of a relaxation-based technique has been successfully used in
[2, 30, 31] to design microstructural topologies with negative macroscopic Poisson’s ratio. Multi-scale
models have also been applied with success to the topology optimization of load bearing structures in the
context of the so-called homogenization approach to topology optimization (see, for instance, the review
paper by Eschenauer and Olhoff [17]) based on the fundamental papers by Bendsøe and Kikuchi [10]
and Zochowski [50]. In such cases, the microscale model acts as a regularization of the exact problem
posed by a material point turning into a hole [9]. The homogenization approach has also been applied
to microstructural topology optimization problems where the target is the design of topologies that yield
pre-specified or extreme macroscopic response [29, 44, 45]. One of the drawbacks of this methodology,
however, is that it often produces designs with large regions consisting of perforated material. To deal
with this problem, a penalization of intermediate densities is commonly introduced.

In contrast to the homogenization approach, we propose in this paper a microstructural synthe-
sis/optimization algorithm relying on the mathematical concept of topological derivative [46, 12, 16]
combined with a level-set domain representation. In this context, a (remarkably simple) exact formula
for the sensitivity of the macroscopic elasticity tensor to the insertion of inclusions at the micro-scale
is used. This analytical formula provides a rigorous first order approximation to the variation in the
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Figure 1. Macroscopic continuum with a locally attached microstructure.

macroscopic elasticity tensor resulting from the insertion of a circular inclusion of a given phase contrast.
It is derived by making use of the notions of topological asymptotic analysis and topological deriva-
tive within the variational formulation of well-established multi-scale constitutive theory [20, 34] where
the macroscopic strain and stress tensors are volume averages of their microscopic counterparts over a
Representative Volume Element (RVE) of material.

The relatively new concept of topological asymptotic expansion allows the exact calculation of the
sensitivity of a given shape functional with respect to infinitesimal domain perturbations such as the in-
sertion of voids, inclusions, source terms or even cracks. It has proved extremely useful in the treatment
of a wide range of problems, including the topology optimization of load-bearing structures [1, 4, 39],
inverse analysis [5, 18, 27] and image processing [8, 28, 32], and is currently a subject of great interest in
applied mathematics circles [3, 19, 36, 49]. In the present context, when combined with the ideas intro-
duced in [4], the use of the exact topological sensitivity formula results in a microstructural optimization
algorithm of simple computational implementation. In particular, the algorithm is free from artificial
algorithmic parameters and does not require extra post-processing strategies when new topologies are
generated throughout its iterations. This is only a natural consequence of the use of the notion of topo-
logical derivative which provides the correct mathematical framework for the treatment of the inherently
singular changes in topology that characterize microstructural optimization problems. The effectiveness
and robustness of the proposed algorithm is illustrated in a number of finite element-based numerical
examples of microstructural optimization.

The paper is organized as follows. The multi-scale constitutive framework adopted in the estimation of
the macroscopic elasticity tensor is briefly reviewed in Section 2. The concept of topological asymptotic
expansion and topological derivative – upon which the algorithm proposed in this paper relies – is briefly
reviewed in Section 3 where the closed formula for the topological derivative of the macroscopic elasticity
tensor is also presented. The proposed microstructural topology optimization algorithm is presented in
Section 4 and the numerical examples are shown in Section 5. The paper closes in Section 6 with some
concluding remarks.

2. Multi-scale modelling

The homogenisation-based multi-scale constitutive framework presented, among others, in [20, 34,
35], is adopted here in the estimation of the macroscopic elastic response from the knowledge of the
underlying microstructure. The main idea behind this well-established family of constitutive theories is
the assumption that any point x of the macroscopic continuum (refer to Fig. 1) is associated to a local
Representative Volume Element (RVE) whose domain Ωµ, with boundary ∂Ωµ, has characteristic length
Lµ, much smaller than the characteristic length L of the macro-continuum domain Ω.

The axiomatic structure of this family of theories is described in detail in [14, 15] Accordingly, the
entire theory can be formally derived on the basis of five basic assumptions: (i) the strain averaging
relation; (ii) the requirement that the chosen functional set of kinematically admissible displacement
fluctuations of the RVE be a subspace of the minimally constrained space compatible with the strain
averaging hypothesis; (iii) the mechanical equilibrium of the RVE; (iv) the stress averaging relation,
and; (v) the Hill-Mandel Principle of Macro-Homogeneity [26, 33], which ensures the energy consistency
between the so-called micro- and macro-scales.

Assumption (i) uses the concept of homogenization to define the macroscopic strain tensor ε at a point
x of the macroscopic continuum as the volume average of its microscopic counterpart εµ := ∇suµ over
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the corresponding RVE:

ε :=
1

Vµ

∫

Ωµ

∇suµ =
1

Vµ

∫

∂Ωµ

uµ ⊗s n , (2.1)

where Vµ denotes the total volume of the RVE, uµ is the microscopic displacement field of the RVE, n is
the outward unit normal to the boundary ∂Ωµ, ∇s is the symmetric gradient operator and ⊗s denotes
the symmetric tensor product between vectors.

For the purposes of the present paper, we shall consider RVEs whose domain consists of a matrix Ωm
µ ,

containing inclusions of different materials occupying a domain Ωi
µ (see Fig. 1). Further, we shall assume

the matrix and the inclusions to be modelled as isotropic homogeneous materials. Hence, the microscopic
stress tensor field σµ(ξ) satisfies

σµ(ξ) = Cµ∇
sξ , (2.2)

where Cµ is the fourth-order isotropic elasticity tensor field of the RVE:

Cµ :=
Eµ

1 − ν2µ
[(1 − νµ) I + νµ (I ⊗ I)] , (2.3)

with I and I denoting, respectively, the second- and fourth-order identity tensors and Eµ and νµ the
Young’s modulus and Poisson ratio fields of the RVE, given by

Eµ(y) :=

{
Em

µ if y ∈ Ωm
µ

Ei
µ if y ∈ Ωi

µ

and νµ(y) :=

{
νmµ if y ∈ Ωm

µ

νiµ if y ∈ Ωi
µ

. (2.4)

If the RVE has more than one inclusion, the parameters Ei
µ and νiµ are considered piecewise constant

over Ωi
µ.

Without loss of generality, uµ may be decomposed into a sum

uµ (y) = u+ uµ (y) + ũµ (y) , (2.5)

of a constant (rigid) RVE displacement coinciding with the macroscopic displacement u(x), a linear field
uµ (y) := εy, and a displacement fluctuation field ũµ(y). This, together with (2.1), (2.2) and the Hill-
Mandel Principle of Macro-Homogeneity [14, 15] leads to the RVE mechanical equilibrium problem which
consists of finding, for a given macroscopic strain ε, an admissible microscopic displacement fluctuation
field ũµ ∈ Uµ, such that

∫

Ωµ

σµ(uµ) · ∇sη +

∫

Ωµ

σµ(ũµ) · ∇sη = 0 ∀η ∈ Uµ , (2.6)

where

σµ(uµ) = Cµ∇
suµ; σµ(ũµ) = Cµ∇

sũµ, (2.7)

and the (yet to be defined) space Uµ of admissible displacement fluctuations (and virtual kinematically

admissible displacements) fields of the RVE is a subspace of Ũµ – the minimally constrained space of
kinematically displacements of the RVE compatible with (2.1):

Uµ ⊂ Ũµ :=

{
v ∈ [H1(Ωµ)]2 :

∫

Ωµ

v = 0,

∫

∂Ωµ

v ⊗s n = 0

}
. (2.8)

Once the problem (2.6) has been solved, the macroscopic stress tensor σ is obtained as the volume
average of the microscopic stress field σµ(uµ) = σµ(uµ) + σµ(ũµ) over the RVE, i.e.,

σ =
1

Vµ

∫

Ωµ

σµ(uµ) . (2.9)

The complete characterization of the multi-scale constitutive model is obtained by defining the subspace

Uµ ⊂ Ũµ of kinematically admissible displacement fluctuations. In general, different choices produce

different macroscopic responses for the same RVE. For example, the choice Uµ = Ũµ results in a lower
bound for the homogenised elastic properties. In the present paper, the analysis wil be focussed on
media with periodic microstructure. In this case, the geometry of the RVE cannot be arbitrary and
must represent a cell whose periodic repetition generates the macroscopic continuum. In addition, the
displacement fluctuations must satisfy periodicity on the boundary of the RVE. Accordingly, we have

Uµ :=
{
ũµ ∈ Ũµ : ũµ(y+) = ũµ(y−) ∀(y+, y−) ∈ P

}
, (2.10)
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where P is the set of pairs of points, defined by a one-to-one periodicity correspondence, lying on opposing
sides of the RVE boundary.

2.1. The homogenized elasticity tensor. Crucial to the developments presented in Section 3, is the
closed form of the homogenized elasticity tensor C for the multi-scale model defined in the above. This
can be obtained by means of the methodology suggested in [34], which is based on rewriting problem
(2.6) as a superposition of linear problems associated with the individual Cartesian components of the
macroscopic strain tensor. The components of the homogenized elasticity tensor C, in the orthonormal
basis {ei} of the Euclidean space, can be written as

(C)ijkl =
1

Vµ

∫

Ωµ

(σµ(uµkl
))ij . (2.11)

By virtue of (2.6), the canonical microscopic displacement field uµkl
associated with the tensors εkl =

ek ⊗ el is the solution of the equilibrium equation
∫

Ωµ

σµ(uµkl
) · ∇sη = 0 ∀η ∈ Uµ . (2.12)

Note that, in view of (2.5), we have

uµkl
− u− (ek ⊗ el)y = ũµkl

∈ Uµ , (2.13)

so that problem (2.12) is equivalent to finding the field ũµkl
∈ Uµ such that

∫

Ωµ

σµ(ũµkl
) · ∇sη +

∫

Ωµ

Cµ(ek ⊗s el) · ∇
sη = 0 ∀η ∈ Uµ . (2.14)

3. The topological sensitivity of the homogenized elasticity tensor

A closed formula for the sensitivity of the homogenized elasticity tensor of (2.11) to the nucleation
of a circular inclusion within the RVE is presented in this section. The presented formula is central to
the algorithm for microstructural synthesis/optimization proposed and applied in Sections 4 and 5 and
relies on the concepts of topological asymptotic expansion and topological derivative. These relatively
new mathematical concepts have been originally introduced by Soko lowski and Zochowski [46]. They
extend the conventional notion of differentiability and provide the correct mathematical framework for the
treatment of inherently singular topological domain changes such as those produced by the introduction
of an inclusion, as considered in the present context.

3.1. Topological asymptotic expansion. Preliminary concepts. Let φ be a shape functional whose
value depends on a given domain the topology of which is parametrized by a non-negative scalar ρ. A nil
value of ρ defines what we refer to as the original (or unperturbed) domain, so that φ(0) is the value taken
by the shape functional for such a domain. Any other value ρ > 0 defines a domain that differs from the
original one by a topological perturbation of size ρ. Let us assume that φ has sufficient regularity so that
the following expansion is possible

φ (ρ) = φ (0) + f (ρ)DTφ+ o (f (ρ)) , (3.1)

where φ(ρ) denotes the value of the functional for the topologically perturbed domain, f(ρ) is a non-
negative function such that f(ρ) → 0 when ρ→ 0 and o (f (ρ)) contains all terms of higher order in f(ρ).
Expression (3.1) is referred to as the topological asymptotic expansion of the functional φ and the term
DTφ of (3.1) is named the topological derivative of φ at the unperturbed domain.

3.2. Topological derivative of the homogenized elasticity tensor. To apply the concepts of topo-
logical asymptotic expansion and topological derivative in the present context of multi-scale linear elas-
ticity models, we begin by defining the so-called original domain as a given generic RVE of the type
described in Section 2. The topological perturbation of the original domain Ωµ consists of the nucleation
of a small inclusion of radius ρ denoted by Iρ. Formally, the perturbed RVE domain Ωµρ

is obtained by

first introducing a circular hole Hρ of radius ρ centred at an arbitrary point ŷ ∈ Ωµ and then replacing
the region of the hole by a circular inclusion Iρ of different material properties. That is, the perturbed

domain is defined as Ωµρ
=

(
Ωµ\Hρ

)
∪ Iρ (refer to Fig. 2).
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Figure 2. Topological perturbation at the microscopic level.

We shall assume that the microscopic elasticity tensor field of the perturbed RVE is given by

C
ρ
µ :=

{
Cµ in Ωµ \ Hρ

γCµ in Iρ,
(3.2)

where the parameter γ ≥ 0 defines the contrast between the elasticity tensor of the region of the original
domain Ωµ where the inclusion was inserted and the elasticity tensor of the inclusion material. We note
that this type of perturbation corresponds to a change only in Young’s modulus of the phases. Now, with
this definition at hand, we denote the effective microscopic stress in the domain Ωµρ

by

σρ
µ(ξ) = C

ρ
µ∇

sξ =

{
σµ(ξ) in Ωµ \ Hρ

γσµ(ξ) in Iρ.
(3.3)

From the above expression and (2.11) the components of the macroscopic elasticity tensor corresponding
to Ωµρ

can be obtained as

(Cρ)ijkl =
1

Vµ

∫

Ωµ

(σρ
µ(uρµkl

))ij , (3.4)

where the canonical microscopic displacement field uρµkl
associated to the topologically perturbed domain

satisfies ∫

Ωµ

σρ
µ(uρµkl

) · ∇sη = 0 ∀η ∈ Uµ (3.5)

and, analogously to (2.13), we have

uρµkl
− u− (ek ⊗ el)y = ũρµkl

∈ Uµ , (3.6)

where ũρµkl
is the displacement fluctuation field associated to the perturbed domain Ωµρ

and to the tensor
ek ⊗ el.

With the above definitions at hand, we may now specialize (3.1) by identifying the shape functional φ
with the homogenized elasticity tensor. The resulting topological asymptotic expansion of C reads

C
ρ = C + f(ρ)DTC + o(f(ρ)) . (3.7)

This expansion is indeed possible and its derivation for two-dimensional problems is addressed in the
appendix. The function f in this case is found to be

f(ρ) =
πρ2

Vµ
, (3.8)

i.e. it represents the volume fraction of the inserted inclusion. The topological derivative of the homoge-
nized elasticity tensor at the unperturbed RVE domain, denoted DTC, is a fourth-order tensor field over
Ωµ that provides a rigorous first order approximation (in ρ) to the change in C resulting from the insertion
of a circular inclusion of radius ρ within the RVE. Its closed form expression in Cartesian components
reads

(DTC)ijkl = Hγσµ(uµij
) · σµ(uµkl

) , (3.9)

where the fields uµij are the solutions to (2.12) for the unperturbed RVE domain and the fourth-order
tensor Hγ is defined as

Hγ := −
1

Eµ

(
1 − γ

1 + αγ

)[
4I−

1 − γ(α− 2β)

1 + βγ
(I ⊗ I)

]
. (3.10)

with

α =
1 + νµ
1 − νµ

, β =
3 − νµ
1 + νµ

. (3.11)
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Remark 1. The above analytical formula for the topological derivative field is particularly suitable for
implementation within finite element-based numerical frameworks. Its computation in this context (con-
sidered in Sections 4 and 5) is extremely simple: Once the finite element approximations to the vector
fields uµij

are obtained as solutions of the discretized version of problem (2.12) for the original domain,
the corresponding discretized version of the fourth-order tensor field DTC can be promptly calculated
according to (3.9).

Remark 2. Expression (3.9) allows the exact derivative of any differentiable function of C with respect
to the volume fraction of inclusion to be calculated through the direct application of the conventional rules
of differential calculus. That is, any such a function h(C) has exact topological derivative

DTh = 〈Dh(C), DTC〉 , (3.12)

with the brackets 〈·, ·〉 denoting the appropriate product between the two terms – the derivative of h
with respect to C and the topological derivative of C. Note, for example, that properties of interest such
as the homogenized Young’s, shear and bulk moduli as well as the Poisson ratio are all regular functions
of C. This observation together with Remark 1 point strongly to the suitability of the use of (3.7) in a
finite element-based framework for the synthesis and optimization of elastic micro-structures based on
the minimization/maximization of cost functions defined in terms of homogenized properties. This is the
main aim of the present paper and will be pursued in Sections 4 and 5.

Remark 3. The tensor Hγ has an explicit dependency on the phase contrast parameter γ. In the limiting
case with γ → ∞, corresponding to the insertion of a rigid inclusion, we have

H∞ =
1

Eµα

[
4I +

α− 2β

β
(I ⊗ I)

]
. (3.13)

The limit γ → 0, on the other hand, corresponds to the insertion of a hole in the RVE. In this case we
have

H0 = −
1

Eµ

[4I− (I ⊗ I)]. (3.14)

This last expression coincides with the result derived in [22].

4. A topological derivative-based micro-structure design algorithm

In this section we propose a microstucture topology design algorithm based on the topological asymp-
totic expansion (3.7) of the homogenized elasticity tensor. The RVE domain here represents a bi-material
microstructure whose constituents properties are defined by a given elasticity tensor C∗ and phase contrast
γ∗ so that, as in (3.2), we have

Cµ(y) =

{
C∗

µ ∀y ∈ Ω1
µ

γ∗C∗
µ ∀y ∈ Ω2

µ,
(4.1)

where Ω1
µ and Ω2

µ denote the domains occupied by materials 1 and 2, respectively. The sought topology
of the RVE is the solution of the general optimization problem stated as

Minimize
Ω1

µ⊂Ωµ

J(Ω1
µ) = h(C) + λ

∣∣Ω1
µ

∣∣
Vµ

, (4.2)

where the cost function J is a scalar-valued functional of the domain Ω1
µ, h is a generic (yet to be defined)

function of the homogenized elasticity tensor C and λ is a fixed Lagrange multiplier which imposes a
constraint on the volume ratio of material 1 (with volume denoted |Ω1

µ|).

It should be stressed that the design variable in problem (4.2) is the topology of the domain Ω1
µ.

Hence, the use of the exact topological sensitivity information provided by the topological derivative
(3.9) emerges as a natural alternative in the development of a numerical optimization algorithm to tackle
the problem. In this context, by taking into account the comments made in Remark 2, we see that
the topological derivative of the cost function, i.e. the exact derivative of J with respect to the volume
fraction of an inclusion of radius ρ centred at an arbitrary point y ∈ Ωµ is given by the simple general
formula

DTJ(y) = 〈Dh(C), DTC(y)〉 + λ . (4.3)

At this point, it is worth remarking that the inclusion referred to above is assumed to be made of material
2 at points y ∈ Ω1

µ and of material 1 at points y ∈ Ω2
µ so that (4.3) always measures the sensitivity of J
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when materials 1 and 2 are interchanged within the RVE. This allows the algorithm (described below)
to replace, for example, material 1 with material 2 and then replace material 2 back with material 1 and
so on at any given region of the RVE. Following this observation, the computation of (4.3) is carried out
using the expressions (3.9–3.11) with γ = γ∗ if y ∈ Ω1

µ and γ = 1/γ∗ if y ∈ Ω2
µ.

Having made the above considerations, the topological derivative-based optimization algorithm devised
in [4] stands out as a particularly well-suited choice to solve problem (4.2). The procedure relies on a level-
set domain representation [40] and the approximation of the topological optimality conditions by a fixed
point iteration. In particular, the algorithm displays a marked ability to produce general topological
domain changes uncommon to other methodologies based on a level-set representation and has been
successfully applied in [4] to topology optimization in the context of two-dimensional elasticity and flow
through porous media. For completeness, the algorithm is outlined in the following. For further details
we refer to [4].

With the adoption of a level-set domain representation, the current material 1 domain, Ω1
µ, is charac-

terized by a function ψ ∈ L2(Ωµ) such that

Ω1
µ = {y ∈ Ωµ, ψ(y) < 0}, (4.4)

whereas the material 2 domain is defined by

Ω2
µ = {y ∈ Ωµ, ψ(y) > 0}. (4.5)

Now, let us consider the topological derivative field DTJ of formula (4.3). According to [4], an obvious
sufficient condition of local optimality of problem (4.2) for the class of perturbations consisting of circular
inclusions is

DTJ(y) > 0 ∀y ∈ Ωµ. (4.6)

To devise a level-set-based algorithm whose aim is to produce a topology that satisfies (4.6) it is
convenient to define the function

g(y) =

{
−DTJ(Ω1

µ)(y) if y ∈ Ω1
µ

DTJ(Ω1
µ)(y) if y ∈ Ω2

µ.
(4.7)

With the above definition and (4.4,4.5) it can be easily established that the sufficient condition (4.6) is
satisfied if the following equivalence relation between g and the level-set function ψ holds

∃ τ > 0 s.t. g = τ ψ, (4.8)

or, equivalently,

θ := arccos

[
〈g, ψ〉

‖g‖L2 ‖ψ‖L2

]
= 0, (4.9)

where θ is the angle between the vectors g and ψ in L2(Ωµ).
Starting from a given level-set function ψ0 ∈ L2(Ωµ) which defines the chosen initial guess for the

optimum topology, the algorithm proposed in [4] produces a sequence (ψi)i∈N of level-set functions (cor-
responding to a sequence of RVE topologies) that provides successive approximations to the sufficient
condition for optimality (4.8). The sequence satisfies

ψ0 ∈ L2(Ωµ) ,
ψn+1 ∈ co(ψn, gn) ∀n ∈ N,

(4.10)

where co(ψn, gn) is the convex hull of {ψn, gn}. In the actual algorithm the initial guess ψ0 is normalized.
With S denoting the unit sphere in L2(Ωµ), the algorithm is explicitly given by

ψ0 ∈ S ,

ψn+1 =
1

sin θn

[
sin((1 − κn)θn)ψn + sin(κnθn) gn

‖gn‖L2

]
∀n ∈ N,

(4.11)

where κn ∈ [0, 1] is a step size determined by a line-search in order to decrease the value of the cost
functional J and, by construction of (4.11)2, we have that ψn+1 ∈ S ∀n ∈ N. The iterative process is
stopped when for some iteration the obtained decrease in J is smaller than a given numerical tolerance.
If, at this stage, the optimality condition (4.8,4.9) is not satisfied to the desired degree of accuracy, i.e. if

θn+1 > ǫθ, (4.12)

where ǫθ is a pre-specified convergence tolerance, then a uniform mesh refinement of the RVE is carried
out and the procedure is continued.
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4.1. Finite element implementation. In the computation of C according to (2.11–2.14), we obtain
the fields ũkl by a finite element discretization of (2.14). In particular, the periodicity of the boundary
displacement fluctuations is enforced by a direct approach according to the implementation described in
[21]. In the computation of DTJ with (4.3), a finite element approximation to the topological gradient
field DTC is used. The approximation is obtained by first using the finite element solutions uµkl

in (3.9)
and then smoothing each component field (DTC)ijkl in a standard fashion. That is, the final discretised
version of the tensor field DTC is generated by the finite element shape functions with smoothed nodal
values of (DTC)ijkl . The level-set functions ψn are generated by the same shape functions used in the
finite element approximation of problem (2.14). In this context, the following approximation is used for
the bi-material micro-structure. The material property associated with Ω1

µ (Ω2
µ) is assigned to the nodes

with negative (positive) level-set function ψn. The material property within the element is obtained by a
standard interpolation using the element shape functions. Obviously, the resolution of the RVE domain
topology depends directly on the fineness of the adopted mesh.

Remark 4. The present algorithm is of simple implementation. The updated level-set function ψn+1

obtained at iteration n+1 according to (4.11) is only a linear combination between the known function
ψn and the corresponding function gn, which depends on the topological gradient DTJ for the known
topology of iteration n. The computation of these quantities is straightforward. Note, in particular, that
no artificial algorithmic parameters or post-processing strategies are required throughout the iterations.
This is in sharp contrast with existing microstructural optimization strategies and follows as a natural
consequence of the use of the concept of topological derivative. This concept provides the correct mathe-
matical framework for the rigorous treatment of topology changes of the type present in microstructural
optimization problems.

5. Numerical examples

The application of the above optimization algorithm to the synthesis of microstructures is illustrated
in this section by means of a series of numerical examples.

Following the usual convention we write the homogenized two-dimensional elasticity tensor C in matrix
form:

C =




(C)
1111

(C)
1122

(C)
1112

(C)
1122

(C)
2222

(C)
2212

(C)
1112

(C)
2212

(C)
1212


 . (5.1)

For the case orthotropic symmetry, the effective material properties – the Young’s, bulk and shear moduli
as well as the Poisson’s ratios – are related explicitly to the components of the compliance tensor C−1,
whose matrix representation reads

C−1 =




(C−1)
1111

(C−1)
1122

0
(C−1)

1122
(C−1)

2222
0

0 0 (C−1)
1212


 =




1

E1

− ν12
E1

0

− ν21
E2

1

E2

0

0 0 1

G


 , (5.2)

where E1, E2 are the effective Young’s moduli along the orthotropy directions e1 and e2, respectively, G
is the effective in-plane shear modulus and ν12 and ν21 are the effective Poisson’s ratios satisfying

ν21
E2

=
ν12
E1

. (5.3)

In the examples that follow we shall use the algorithm of Section 4 to sinthesize microstructures with
optimized effective properties. To this end, it is convenient to define the following types of functions
h(C):

• The first type of functions is defined as

h(C) = C
−1ϕ1 · ϕ2 , (5.4)

where ϕ1 and ϕ2 are second order tensors to be defined later. The topological derivative of the
associated cost function J of (4.2) in this case reads

DTJ = −(C−1(DTC)C−1)ϕ1 · ϕ2 + λ . (5.5)

• The second type is defined as

h(C) =
C−1ϕ1 · ϕ2

C−1ϕ1 · ϕ1

+
C−1ϕ2 · ϕ1

C−1ϕ2 · ϕ2

. (5.6)
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(a) (b)

Figure 3. Microstructural synthesis examples. (a) Initial guess for the optimum topol-
ogy, and; (b) Initial finite element mesh adopted.

The corresponding topological derivative of J here is

DTJ = −
(C−1(DTC)C−1)ϕ1 · [(C−1ϕ1 · ϕ1)ϕ2 − (C−1ϕ1 · ϕ2)ϕ1]

(C−1ϕ1 · ϕ1)2

−
(C−1(DTC)C−1)ϕ2 · [(C−1ϕ2 · ϕ2)ϕ1 − (C−1ϕ2 · ϕ1)ϕ2]

(C−1ϕ2 · ϕ2)2
+ λ . (5.7)

In all examples the RVE domain is taken as the the unit square Ωµ = (0, 1) × (0, 1). The Young’s
modulus and the Poisson ratio of materials 1 and 2 are, respectively, E1

µ = 1, E2
µ = 0.01 and ν1µ = ν2µ = 0.3.

That is, we consider a phase contrast parameter γ∗ = 0.01. The specified convergence tolerance for the
angle θ is ǫθ = 1◦. We remark that our numerical experience shows that this choice provides a particularly
stringent criterion producing solutions that satisfy the sufficient condition (4.8) for optimality very closely.
The adopted initial guess for the optimum topology in all cases is defined by the level-set function

ψ0 =
1

N

[
cos2(π(x − x0)) cos2(π(y − y0)) − 0.5

]
, (5.8)

where N is the normalizing constant that ensures that ‖ψ‖L2 = 1. Unless otherwise stated, we choose
(x0, y0) = (0.5, 0.5). The topology of the RVE domain in this case is illustrated in fig. 3(a), where the
dark- and light-coloured areas denote respectively materials 1 and 2. Also depicted in fig. 3 is the initial
(regular) mesh discretizing the RVE. It consists of 6400 three-noded linear triangles and a total of 3281
nodes.

5.1. Basic cases. In this section we consider only functions h(C) of the type (5.4). In each case the
algorithm converges with the initial mesh to the prescribed accuracy of ǫθ = 1◦. Despite the good
accuracy attained with the initial mesh alone, we perform one uniform mesh refinement step to further
improve the accuracy of the results and the resolution of the optimized RVE topology. The final meshes
have 25,600 elements and 12,961 nodes.

5.1.1. Horizontal rigidity maximization. This is a trivial case where we choose ϕ1 = ϕ2 = e1 ⊗ e1, with
e1 denoting the unit vector in the horizontal direction. Then, the corresponding function h(C) is given
by

h(C) := (C−1)
1111

=
1

E1

. (5.9)

Note that the minimization of h(C) in this case corresponds to the maximization of the longitudinal
Young’s modulus E1. In addition we choose λ = 10. The obtained optimized RVE topology is shown in
fig. 4(a). The corresponding periodic microstructure is illustrated in fig. 4(b). The evolution of the cost
function and angle θ throughout the iterations of (4.11)2 are shown in fig. 5. Here the mesh refinement
step has been performed at iteration 9, at which the residual angle θ is sufficiently small. Following the
refinement, there is a small increase in θ (iteration 10), followed by a sharp decrease at iteration 11, at
which final convergence is attained.
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(a) (b)

Figure 4. Horizontal rigidity maximization: (a) Optimum RVE topology, and; (b)
Periodic microstructure.

1

(a) (b)

Figure 5. Horizontal rigidity maximization. Convergence history: (a) Cost function,
and; (b) Angle θ.

5.1.2. Bulk modulus maximization. In this case, we choose ϕ1 = ϕ2 = e1⊗e1+e2⊗e2. The corresponding
function h(C) is

h(C) := (C−1)
1111

+ 2(C−1)
1122

+ (C−1)
2222

=
1

E1

(1 − ν12) +
1

E2

(1 − ν21). (5.10)

We choose λ = 20. The optimum RVE topology obtained is depicted in fig. 6 alongside an illustration of
the corresponding periodic microstructure. The total number of iterations needed to reach the optimum
topology in the presente case was 21 (including the interations after the mesh refinement step).
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(a) (b)

Figure 7. Shear modulus maximization. (a) Optimized RVE, and; (b) Corresponding
periodic microstructure.

(a) (b)

Figure 6. Bulk modulus maximization. (a) Optimized RVE topology, and; (b) Corre-
sponding periodic microstructure.

5.1.3. Shear modulus maximization. Here we take ϕ1 = ϕ2 = e1 ⊗ e2 + e2 ⊗ e1 so that h(C) is simply

h(C) = 4(C−1)
1212

. (5.11)

The minimization of the present function h corresponds to the maximization of the effective shear modulus
G. The Lagrange multiplier is chosen as λ = 50. The final optimized topology obtained is shown in fig.
7. A total of 10 interations were required to achieve convergence.

5.2. Poisson’s ratio optimization. In this section we present four examples associated with the op-
timization of the Poisson’s ratio. In the first two cases we consider functions h(C) of the form (5.4)
and, in the last two cases, functions of the type (5.6). In all four examples, we perform two steps of
uniform mesh refinement during the optimization process. The final meshes contain a total of 102, 400
three-noded elements and 51, 521 nodes. The Lagrange multiplier is set to λ = 0 so that no constraints
are imposed on the volume ratio of the phases.

5.2.1. Minimization of a modified Poisson ratio. In this first case, we set ϕ1 = e1⊗ e1 and ϕ2 = −e2⊗ e2
in (5.4). The corresponding function h(C) is

h(C) := −(C−1)
1122

=
ν12
E1

=
ν21
E2

. (5.12)

The final topology, obtained here in 45 iterations, is shown in fig. 8. The corresponding homogenized
elasticity tensor, in matrix representation, is found to be

C =




0.0825 −0.0308 0
−0.0308 0.0825 0

0 0 0.0105


 , (5.13)
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which yields a negative Poisson ratio, ν = −0.3740.

(a) (b)

Figure 8. Minimization of a modified Poisson ratio: (a) Optimized RVE, and; (b)
Corresponding periodic microstructure.

5.2.2. Maximization of a modified Poisson ratio. Here we set ϕ1 = e1 ⊗ e1 and ϕ2 = e2 ⊗ e2 so that

h(C) := (C−1)
1122

= −
ν12
E1

= −
ν21
E2

. (5.14)

The final topology, obtained in 32 iterations is depicted in fig. 9(a) alogside the resulting periodic
microstructure. The matrix form of the corresponding homogenized elasticity is

C =




0.0469 0.0368 0
0.0368 0.0469 0

0 0 0.0098


 , (5.15)

with a resulting Poisson’s ratio ν = 0.7847.

(a) (b)

Figure 9. Maximization of a modified Poisson’s ratio: (a) Optimized RVE, and; (b)
Corresponding periodic microstructure.

5.2.3. Poisson’s ratio minimization. Here we use ϕ1 = e1 ⊗ e1 and ϕ2 = −e2 ⊗ e2 in (5.6). The resulting
function h(C) is

h(C) := −
(C−1)1122
(C−1)1111

−
(C−1)1122
(C−1)2222

= ν12 + ν21. (5.16)

The obtained optimized topology is shown in fig. 10(a). The matrix representation of the corresponding
C is

C =




0.1939 −0.0669 0
−0.0669 0.1939 0

0 0 0.0311


 , (5.17)
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Figure 10. Minimization of the Poisson ratio.

which results in the negative Poisson ratio ν = −0.3452. In this case, the algorithm does not converge
well initially (the value of J stops decreasing significantly with θ ≈ 7o). This is probably due to an
ill-conditioning of the problem. However, by performing another step of uniform mesh refinement we
obtain a better convergence with a final topology having θ < 5o and a Poisson ratio ν = −0.4118. The
final resulting topology is depicted in fig. 11 together with the convergence history of the cost function
h(C). A total number of 73 iterations where required to achieve convergence with ǫθ = 5◦.

(a)

0 10 20 30 40 50 60 70 80
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b)

Figure 11. Minimization of the Poisson ratio: (a) Final topology, and; (b) Convergence
history of the cost function.

5.2.4. Poisson ratio maximization. In this last example we set ϕ1 = e1 ⊗ e1 and ϕ2 = e2 ⊗ e2 and the
resultind function h(C) is

h(C) :=
(C−1)1122
(C−1)1111

+
(C−1)1122
(C−1)2222

= −ν12 − ν21. (5.18)

The converged optimzed topology of the RVE, attained in 35 iterations, is shown in fig. 12(a). The
associated homogenized elasticity tensor is given by

C =




0.1565 0.1363 0
0.1363 0.1565 0

0 0 0.1162


 , (5.19)

which gives a Poisson’s ratio ν = 0.8711.

6. Conclusion

An algorithm for the topological design of periodic microstructures has been proposed. The algorithm
relies crucially on an exact formula for the topological derivative of the homogenized elasticity tensor and
a level-set domain representation. The homogenized elasticity tensor is estimated by a well-established
multi-scale constitutive theory in which the macroscopic stress and strain tensors are volume averages of
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(a) (b)

Figure 12. Maximization of the Poisson ratio: (a) Optimized RVE topology, and; (b)
Corresponding periodic microstructure.

their microscopic counterparts over a Representative Volume Element (RVE). Its analytical topological
derivative is a fourth order tensor field over the RVE that provides a rigorous first order approximation
(in the volume fraction of inclusion) to the change in the homogenozed elasticity tensor resulting from
the insertion of a circular inclusion of a given phase contrast parameter. The proposed algorithm was
successfully and efficiently used in several numerical examples of optimum topology design of bi-material
periodic microstructures. We remark that the algorithm is of simple implementation and, in sharp con-
trast to existing microstructural optimization methods, does not require the use of artificial algorithmic
parameters or strategies. This is only a natural consequence of the use of the concept of topological deriv-
ative, which provides the correct mathematical framework to treat problems involving singular changes
of topology such as those present in microstructural optimization problems. The application of the pro-
posed methodology to other types of multi-scale models is currently in progress and will be reported in
forthcoming publications.
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[12] J. Céa, S. Garreau, Ph. Guillaume, and M. Masmoudi. The shape and topological optimizations connection. Comput.

Methods Appl. Mech. Eng., 188(4):713–726, 2000.
[13] D. J. Celentano, P. M. Dardati, L. A. Godoy, and R. E. Boeri. Computational simulation of microstructure evolution

during solidification of ductile cast iron. Int. J. Cast Met. Res., 21(6):416–426, 2008.
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Topological derivative calculation

For completeness we present here the main steps of the derivation of the topological asymptotic expan-
sion of the homogenized elasticity tensor for topological perturbations in the form of circular inclusions.
The derivation presented here offers an alternative to that recently reported in [23] and the final result
is an extension of the formula derived in [22] where perturbations in the form of voids were considered
instead.

In view of expressions (2.11) and (3.4) we have that the difference between the ijkl-components of the
tensors Cρ and C is given by:

(Cρ − C)ijkl =
1

Vµ

∫

Ωµ

σρ
µ(uρµkl

) · (ei ⊗ ej) −
1

Vµ

∫

Ωµ

σµ(uµkl
) · (ei ⊗ ej) , (.1)

or, by making use of some simple tensorial relations,

(Cρ − C)ijkl =
1

Vµ

∫

Ωµ

σρ
µ(uρµkl

) · ∇s[(ei ⊗ ej)y] −
1

Vµ

∫

Ωµ

σµ(uµkl
) · ∇s[(ei ⊗ ej)y] . (.2)

In view of the additive decomposition (2.13) and (3.6) of the displacement fluctuation fields we have the
identities

∇s[(ei ⊗ ej)y] = ∇s(uµij
− ũµij

) = ∇s(uρµij
− ũρµij

) , (.3)

which replaced back into (.2) yield

(Cρ − C)ijkl =
1

Vµ

∫

Ωµ

σρ
µ(uρµkl

) · ∇s(uµij
− ũµij

) −
1

Vµ

∫

Ωµ

σµ(uµkl
) · ∇s(uρµij

− ũρµij
) . (.4)

By taking into account that both ũµij
and ũρµij

belong to Uµ and making use of the equilibrium equations

(2.12) and (3.5) together with the constitutive relations (2.2) and (3.3), expression (.4) reduces to

(Cρ − C)ijkl =
1

Vµ

∫

Ωµ

C
ρ
µ∇

suρµkl
· ∇suµij

−
1

Vµ

∫

Ωµ

Cµ∇
suµkl

· ∇suρµij
, (.5)

or, equivalently, by using the symmetry relation Cρ
µ∇

suρµkl
· ∇suµij

= Cρ
µ∇

suµij
· ∇suρµkl

, or (C)ijkl =
(C)klij ,

(Cρ − C)ijkl =
1

Vµ

∫

Ωµ

[σρ
µ(uµij

) − σµ(uµij
)] · ∇suρµkl

. (.6)

Finally, by taking into account the definitions of the original and perturbed microscopic domains and
their corresponding constitutive relations, the above expression can be equivalently written in terms of
an integral over the perturbation Iρ:

(Cρ − C)ijkl =
γ − 1

Vµ

∫

Iρ

σµ(uµij
) · ∇suρµkl

. (.7)

The first order asymptotic expansion of the above quantity for an arbitrarily shaped inclusion can be
obtained in a similar way as in [3]. The present problem, however, differs from that of [3] in the functional
spaces and boundary conditions involved. Thus we briefly present in what follows the main steps of the
derivation. For simplicity we restrict ourselves to circular inclusions. We start by re-writting (.7) in the
equivalent form

(Cρ − C)ijkl =
γ − 1

Vµ

[∫

Iρ

σµ(uµij
) · ∇suµkl

+

∫

Iρ

σµ(uµij
) · ∇s(uρµkl

− uµkl
)

]
, (.8)
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and then replace the first integral with an approximation to obtain

(Cρ − C)ijkl =
γ − 1

Vµ

[
πρ2σµ(uµij

)(ŷ) · ∇suµkl
(ŷ) + E1(ρ) +

∫

Iρ

σµ(uµij
) · ∇s(uρµkl

− uµkl
)

]
. (.9)

Here and in what follows Ei(ρ) denotes remainders whose behavior will be discussed later. Now we
consider the solution σρ

µ(wρ
kl) of the exterior problem defined by





−div (σρ
µ(wρ

kl)) = 0 in Iρ ∪ (R2 \ Hρ) ,
[[σρ

µ(wρ
kl)]]n = −(1 − γ)σµ(uµkl

)(ŷ)n on ∂Iρ ,
σρ
µ(wρ

kl) → 0 at ∞ ,
(.10)

where J(·)K denotes the jump of the function (·) across the matrix/inclusion interface ∂Iρ:

[[(·)]] := (·)|m − (·)|i , (.11)

with subscripts m and i associated with quantities evaluated on the matrix and inclusion boundaries,
respectively. Then, by considering the symmetry of the constitutive tensor in (2.2) and taking the solution
of (.10) as an esimate for the variation σρ

µ(uρµkl
−uµkl

), we obtain the following for the rightmost integral
in (.8)

∫

Iρ

σµ(uµij
) · ∇s(uρµkl

− uµkl
) =

∫

Iρ

∇suµij
· σµ(uρµkl

− uµkl
)

=

∫

Iρ

∇suµij
· σµ(wρ

µkl
) + E2(ρ)

= ∇suµij
(ŷ) ·

∫

Iρ

σµ(wρ
kl) + E2(ρ) + E3(ρ), (.12)

where an extra approximation involving ∇suµij
has been introduced to arrive at the third right hand

side.
In the present case of a circular inclusion, the nominal stress tensor σµ(wρ

kl) has the following repre-
sentation in a polar coordinate system (r, θ) with origin at the center ŷ of the inclusion:

• for r ≥ ρ

σr
µ(r, θ) = −

1

2
(σI

µ + σII
µ )

1 − γ

1 + αγ

ρ2

r2
−

1

2
(σI

µ − σII
µ )

1 − γ

1 + βγ

(
4
ρ2

r2
− 3

ρ4

r4

)
cos 2θ , (.13)

σθ
µ(r, θ) =

1

2
(σI

µ + σII
µ )

1 − γ

1 + αγ

ρ2

r2
−

3

2
(σI

µ − σII
µ )

1 − γ

1 + βγ

ρ4

r4
cos 2θ , (.14)

σrθ
µ (r, θ) = −

1

2
(σI

µ − σII
µ )

1 − γ

1 + βγ

(
2
ρ2

r2
− 3

ρ4

r4

)
sin 2θ ; (.15)

• for 0 < r < ρ

σr
µ(r, θ) =

1

2
(σI

µ + σII
µ )

1 − γ

1 + αγ
α+

1

2
(σI

µ − σII
µ )

1 − γ

1 + βγ
β cos 2θ , (.16)

σθ
µ(r, θ) =

1

2
(σI

µ + σII
µ )

1 − γ

1 + αγ
α−

1

2
(σI

µ − σII
µ )

1 − γ

1 + βγ
β cos 2θ , (.17)

σrθ
µ (r, θ) = −

1

2
(σI

µ − σII
µ )

1 − γ

1 + βγ
β sin 2θ , (.18)

where σI
µ and σII

µ are the eigenvalues of the tensor σµ(ukl)(ŷ). In addition, the constants α and β are
given respectively by

α =
1 + νµ
1 − νµ

, β =
3 − νµ
1 + νµ

. (.19)

Representation (.13)–(.18) for the nominal stress σµ(wρ
kl) allows the integral term in (.12) to be ana-

lytically calculated and resuts in
∫

Iρ

σµ(wρ
kl) = −πρ2ζTσµ(uµkl

)(ŷ) , (.20)
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with the scalar value ζ and the fourth order tensor T given by

ζ = −
1 − γ

1 + βγ
and T = βI +

1

2

α− β

1 + γα
I ⊗ I . (.21)

By replacing (.20) in (.12) and then substituting the result into (.9), we finally arrive at the following
estimate for the difference between the ijkl-components of the homogenized elasticity tensors Cρ and C

of the perturbed and original RVEs:

(Cρ − C)ijkl =
πρ2

Vµ
(1 − γ)ζ

{
1 + β

1 − γ
σµ(uµkl

) · ∇suµij
+

1

2

α− β

1 + γα
tr[σµ(uµkl

)]tr(∇suµij
)

}
(ŷ)

+(γ − 1)

3∑

i=1

Ei(ρ) . (.22)

By following analogous steps to those of [3] it can be shown that

3∑

i=1

Ei(ρ) = o(ρ2). (.23)

Then, by comparing (.22,.23) with the topological asymptotic expansion (3.7) we identify the function f
according to (3.8) and the topological derivative of the tensor C as

(DTC)ijkl = (1 − γ)ζ

(
1 + β

1 − γ
σµ(uµkl

) · ∇suµij
+

1

2

α− β

1 + γα
tr(σµ(uµkl

))tr(∇suµij
)

)
(.24)

with α and β given by (3.11). The topological derivative of C can be expressed in compact form by (3.9).
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