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Abstract. A recently proposed algorithm for micro-structural optimization, based on the concept of
topological derivative and a level-set domain representation, is applied to the synthesis of elastic and
heat conducting bi-material micro-structures. The macroscopic properties are estimated by means of a
family of multi-scale constitutive theories where the macroscopic strain and stress tensors (temperature
gradient and heat flux vector in the heat conducting case) are defined as volume averages of their
microscopic counterparts over a Representative Volume Element (RVE). Several finite element-based
examples of micro-structural optimization are presented. Three multi-scale models, providing an upper
and a lower bound for the macroscopic properties as well as the classical periodic medium solution, are

considered in the optimization process. These models differ only in the kinematical constraints (thermal
constraints in the heat conducting case) imposed on the RVE. The examples show that, in general, the
obtained optimum micro-structure topology depends on the particular model adopted.

1. Introduction

The prediction of macroscopic heat conduction and mechanical properties of materials from the knowl-
edge of their underlying microstructures has long been a subject of great interest in applied mechanics
([20, 21, 19, 8, 37, 13]). A particularly interesting branching of this field of research is the application of
homogenization-based theories for the prediction of macroscopic properties in the design of microstuctures
that produce in some sense an optimized macroscopic behaviour. The use of such theories in this context
is reported, among others, by [38, 39, 25, 24]. In the methodology employed by these authors – which
can now be regarded as conventional – the prediction of macroscopic properties is generally obtained
through the concept of periodic homogenization, whose mathematical roots are traced back to the work
of [8]. Of particular relevance here is the fact that the topology optimization algorithms in such cases rely
invariably on some form of regularization of the problem posed by the topology change that occurs when
a portion of the microscopic domain is replaced with either a void or a material whose properties differ
from those of the original matrix. Despite their success in many reported applications, the main drawback
of the regularization approach is probably the fact that it usually leads to relatively complex algorithms
featuring on a number of problem-dependent artificial parameters and post-processing procedures for
topology design.

In the present paper we adopt of a radically different approach that relies on exact formulae for
the sensitivity of the macroscopic elastic and heat conducting responses to topological changes of the
microscopic domain. These exact formulae have been proposed in [16] and [17] and rely on the concepts of
topological asymptotic analysis and topological derivative ([40]) – which provide the correct mathematical
framework for the calculation of sensitivities under singular topological changes typical of microstructural
optimization problems. This concept has been successfully used, for example, in the topology optimization
of load-bearing structures ([1, 3, 32]). Its main advantage lies in the fact that the sensitivities are obtained
in exact form and, hence, allow the use of much simpler optimization algorithms which in particular do
not rely on artificial algorithmic parameters. Here, the algorithm proposed by [3] is adapted for use in
the microstructural optimization context. A series of numerical examples is presented which show the
effectiveness of the approach. For comparison, three different homogenization-based models are used in
the estimation of the macroscopic properties in the optimization problem. These models differ solely in
the constraints imposed upon the possible displacement (or temperature) field of the microstructure and
provide: the conventional periodic media prediction; an upper bound and; a lower bound for the elasticity
(or conductivity) tensor.

Key words and phrases. Otimization of micro-structures, synthesis of micro-structures, multi-scale modelling, topological
derivative, sensitivity analysis.
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Figure 1. Macroscopic continuum with a locally attached microstructure.

The paper is organized as follows. The family of multi-scale constitutive theories used in the estimation
of the elastic and heat conduction macroscopic constitutive responce is briefly described in Section 2. In
Section 3 an overview of the topological derivative concept is given and the formulae for the topological
derivatives of the macroscopic elasticity and heat conductivity tensors relevant to the present context are
presented. The algorithm for topological optimization is briefly described in Section 3. The numerical
examples are presented in Section 5 and, finally, some concluding remarks are made in Section 6.

2. Multi-scale constitutive modelling

This section reviews the multi-scale constitutive framework used here to estimate the macroscopic
elasticity and thermal conductivity tensors from the knowledge of the underlying material microstructure.
The approach is based on the ideas introduced by [13] and applied in the computational context, among
others, by [28] and [29]. An axiomatic foundation for this class of models is discussed by [10]. The
starting point of the theory is the assumption that any point x of the macroscopic continuum (refer to
Fig.1) is associated to a local Representative Volume Element (RVE) whose domain Ωµ, with boundary
∂Ωµ, has characteristic length Lµ, much smaller than the characteristic length L of the macro-continuum
domain, Ω. For the present purposes it is convenient to consider RVE domains consisting of a matrix
Ωm

µ , containing inclusions of different materials occupying a domain Ωi
µ.

2.1. The elasticity case. Using the concept of homogenization the macroscopic strain tensor ε at a
point x of the macroscopic continuum is defined as the volume average of its microscopic counterpart εµ
over the domain of the RVE:

ε :=
1

Vµ

∫

Ωµ

εµ =
1

Vµ

∫

∂Ωµ

uµ ⊗s n, (2.1)

where Vµ is the volume of the RVE, uµ is the displacement field of the RVE, n is the outward unit normal
to ∂Ωµ, ⊗s denotes the symmetric tensor product and

εµ = ∇suµ. (2.2)

Likewise, the macroscopic stress tensor σ, is defined as the volume average of the microscopic stress
field σµ over the RVE, i.e.

σ :=
1

Vµ

∫

Ωµ

σµ(uµ). (2.3)

Without loss of generality, the field uµ may be split into a sum

uµ (y) = u+ uµ (y) + ũµ (y) , (2.4)

of a constant (rigid) RVE displacement coinciding with the macroscopic displacement u(x), a field

uµ (y) := εy (2.5)

and a displacement fluctuation field ũµ(y) which, for convenience, is made to satisfy
∫

∂Ωµ

ũµ = 0. (2.6)

With the split (2.4), the microscopic strain field can be written as a sum

εµ = ε+∇sũµ , (2.7)
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of a homogeneous strain (uniform over the RVE) coinciding with the macroscopic strain and a field ∇sũµ
corresponding to a fluctuation of the microscopic strain about the homogenized (average) value.

In the present paper we focus on RVEs consisting of a matrix Ωm
µ , containing inclusions occupying a

domain Ωi
µ made of materials modelled as isotropic linear elastic. Hence, we have the constitutive law

σµ(uµ) = Cµ∇
suµ. (2.8)

where Cµ is the fourth-order isotropic elasticity tensor

Cµ =
Eµ

1− ν2µ
[(1− νµ) I+ νµ (I⊗ I)] , (2.9)

with I and I denoting the second- and fourth-order identity tensors, respectively, and Eµ and νµ the
Young’s modulus and Poisson ratio fields, here assumed to be given by

Eµ :=

{
Em

µ if y ∈ Ωm
µ

Ei
µ if y ∈ Ωi

µ

and νµ :=

{
νmµ if y ∈ Ωm

µ

νiµ if y ∈ Ωi
µ.

(2.10)

The combination of (2.1), (2.4) and (2.8) together with theHill-Mandel Principle of Macro-Homogeneity
([21, 27]) in the virtual work statement of equilibrium of the RVE, yields the RVE mechanical Equilib-
rium Problem which consists in finding, for a given macroscopic strain ε, an admissible displacement
fluctuation field ũµ ∈ Uµ such that

∫

Ωµ

σµ(ũµ) · ∇
sη = −

∫

Ωµ

σµ(uµ) · ∇
sη ∀η ∈ Uµ, (2.11)

where the (as yet not defined) space Uµ of kinematically admissible displacement fluctuation (and virtual
displacement) fields of the RVE is a subspace of U∗

µ – the minimally constrained space of kinematically
admissible displacement fluctuations compatible with the strain averaging assumption (2.1):

Uµ ⊂ U∗
µ :=

{
v ∈ [H1(Ωµ)]

2 :

∫

Ωµ

v = 0 ,

∫

∂Ωµ

v ⊗s n = 0

}
. (2.12)

The macroscopic stress response is obtained by solving problem (2.11) for the given ε first and then using
(2.4), (2.8) and (2.3) to calculate σ.

The characterization of a multi-scale model of the present type is completed with the choice of a
suitable space Uµ of kinematically admissible displacement fluctuations. The adopted space defines the
kinematical constraints to be imposed upon the RVE and the resulting macroscopic constitutive response
is generally dependent on this choice. Three commonly adopted choices are

• Linear RVE boundary displacements or simply linear model. For this class of models the choice
is

Uµ = UL
µ :=

{
ũµ ∈ U∗

µ : ũµ (y) = 0 ∀y ∈ ∂Ωµ

}
. (2.13)

The displacements on ∂Ωµ are uµ = u+ εy.
• Periodic RVE boundary fluctuations model or simply periodic model. This is typically associated
with the modelling of periodic media. The RVE domain in this case has to satisfy geometrical
constraints as the macroscopic continuum is generated by the periodic repetition of the RVE
– here usually referred to as the unit cell. The space of kinematically admissible displacement
fluctuations is defined as

Uµ = UP
µ :=

{
ũµ ∈ U∗

µ : ũµ(y
+) = ũµ(y

−) ∀(y+, y−) ∈ P
}
, (2.14)

where P is the set of pairs of points on opposing sides of the boundary ∂Ωµ (fig. 2 illustrates a
rectangular and a hexagonal RVE) defined to satisfy the periodicity constraint.
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Figure 2. Typical RVE geometries for periodic media. Square and hexagonal cells.

• Minimally constrained or uniform RVE boundary traction model. In this case we impose the
minimum kinematical constraint compatible with the strain averaging assumption:

Uµ = UU
µ := U∗

µ. (2.15)

It can be shown ([10]) that this choice of constraint produces a uniform traction field on ∂Ωµ, i.e.

σµ(y)n(y) = σn(y) ∀y ∈ ∂Ωµ, (2.16)

where σ is the macroscopic stress tensor.

Remark 1. Note that the spaces of displacement fluctuations (and virtual displacement) listed above
satisfy

UL
µ ⊂ UP

µ ⊂ UU
µ . (2.17)

Then, in general, in the solution of the equilibrium problem (2.11) the choice of the linear boundary
displacement constraint produces the stiffest solution whereas the minimaly constrained kinematics as-
sumption produces the most compliant one. In this sense, within this multi-scale framework the use of the
linear and the minimum constraint provide, respectively, an upper and a lower bound for the response of
the material. The use of these bounds as well as the (generally intermediate) prediction obtained under
the periodicity assumption in the synthesis of microstructures will be discussed in section 5.

A closed formula for the macroscopic elasticity tensor C can be easily obtained by conveniently re-
writing (2.11) as a superposition of linear problems associated with the individual Cartesian components
of the macroscopic strain tensor ([28]). The final formula reads

C = C+ C̃, (2.18)

where C is the volume average elasticity tensor:

C =
1

Vµ

∫

Ωµ

Cµ, (2.19)

and C̃ is a contribution that depends generally on the choice of space Uµ:

C̃ :=

[
1

Vµ

∫

Ωµ

(σµ(ũµkl
))ij

]
(ei ⊗ ej ⊗ ek ⊗ el) , (2.20)

where {ei} is the orthonormal basis of the Euclidean space and (σµ(ũµkl
))ij denotes the ij-component of

the fluctuation stress associated with the displacement fluctuation field ũµkl
∈ Uµ that solves the linear

variational equation
∫

Ωµ

σµ(ũµkl
) · ∇sη = −

∫

Ωµ

Cµ(ek ⊗ el) · ∇
sη ∀η ∈ Uµ , (2.21)

for k, l = 1, 2 (in the two-dimensional case).



5

2.2. The heat conduction case. Multi-scale constitutive theories to predict the heat conductivity
properties of materials whose constituents are modelled by the Fourier Law can be obtained within a
framework completely analogous to that of linear elastic materials described in the above. In the heat
conduction case, the fundamental macroscopic quantities taken as volume averages of the microscopic
counterpart fieds can be chosen as the temperature gradient and the heat flux:

∇xθ :=
1

Vµ

∫

Ωµ

∇θµ (2.22)

and

q :=
1

Vµ

∫

Ωµ

qµ (2.23)

where θ and q denote, respectively, macroscopic temperature and heat flux and θµ and qµ are the corre-
sponding microscopic fields of the RVE. This approach follows closely that of [13] and has been recently
employed by [34] and [18].

Similarly to (2.4), without loss of generality, the microscopic temperature field θµ can be split into a
sum

θµ(y) = θ + θµ(y) + θ̃µ(y), (2.24)

of a constant temperature field (coinciding with the macrosopic temperature θ(x)), a homogeneous gra-

dient temperature field, θµ(y) := ∇xθ · y, and a temperature fluctuation field, θ̃µ(y). In addition, we also
assume that

θ =
1

Vµ

∫

Ωµ

θµ. (2.25)

Following the split (2.24), the microscopic temperature gradient can be expressed as a sum

∇θµ = ∇xθ +∇θ̃µ, (2.26)

of a homogeneous gradient (uniform over the RVE) coinciding with the macroscopic temperature gradi-

ent and a field ∇θ̃µ corresponding to a fluctuation of the microscopic temperature gradient about the
homogenised value.

Crucial to the theory is a heat conduction version of the classical Hill-Mandel Principle of Macro-
Homogeneity for solids ([21, 27]). Here we postulate the following analogous relation ([18]):

q · ∇xθ =
1

Vµ

∫

Ωµ

qµ · ∇θµ, (2.27)

which must hold for any admissible microscopic temperature field.

Remark 2. Equation (2.27) is at variance with Germain et al. [13] who postulated the following micro-
macro dissipation equivalence relation:

q ·
∇xθ

θ
=

1

Vµ

∫

Ωµ

qµ ·
∇θµ
θµ

, (2.28)

as the heat conduction counterpart of the original mechanical Hill-Mandel Macro-homogeneity Principle.
We remark, however, that the use of (2.27) can be justified as follows. Firstly, recall that the basic require-
ment of positive thermal dissipation at the macro-scale, imposed by the second law of thermodynamics, is
expressed by

−q ·
∇xθ

θ
≥ 0. (2.29)

Analogously, at the micro-scale, the inequality

−qµ ·
∇θµ
θµ

≥ 0, (2.30)

must hold point-wise. If (2.30) indeed holds point-wise at the RVE level, then, trivially, since θµ is
positive,

−qµ · ∇θµ ≥ 0. (2.31)

The use of (2.27) ensures, in turn, that

−q · ∇xθ ≥ 0, (2.32)
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so that the macroscopic dissipation inequality (2.29) holds at the corresponding macro-continuum point.
In summary, if positive dissipation is assured point-wise at the RVE level, then version (2.27) of the
Hill-Mandel Principle of Macro-homogeneity for heat conduction problems ensures positive dissipation at
the macroscopic level.

In the present work, we focus on microstructures whose constituents’ heat conduction behaviour is
modelled by the classical Fourier Law:

qµ(θµ) = −Kµ∇θµ, (2.33)

where Kµ is the microscopic heat conductivity tensor field. In particular, we shall model the matrix and
inclusions as two distinct homogeneous isotropic materials, so that

Kµ = kµ I :=

{
kmµ I if y ∈ Ωm

µ

kiµ I if y ∈ Ωi
µ,

(2.34)

where kmµ and kiµ denote, respectively, the thermal conductivity coefficients of the matrix and inclusions
materials.

The additive decomposition of θµ together with Fourier Law gives

qµ(θµ) = qµ(θµ) + qµ(θ̃µ) , (2.35)

where qµ(θµ) is a uniform thermal flux field and qµ(θ̃µ) is a thermal flux fluctuation field associated with

the temperature fluctuation θ̃µ.
In a manner completely analogous to that of linear elastic microstuctures, by combining the classical

variational statement of thermal equilibrium with postulate (2.27) and the additive split (2.26), we obtain
([18]) the RVE thermal equilibrium problem which consists of finding, for a given macroscopic temperature

gradient ∇θ, an admissible temperature fluctuation field θ̃µ ∈ Vµ such that
∫

Ωµ

qµ(θ̃µ) · ∇η = −

∫

Ωµ

qµ(θµ) · ∇η ∀η ∈ Vµ, (2.36)

where Vµ denotes the (yet to be chosen) functional space of admissible temperature fluctuation fields
(and virtual temperatures) that define the thermal constraint assumed within the RVE. The space Vµ

must be a subspace of the minimally constrained space V∗
µ of temperature fluctuations compatible with

the temperature gradient averaging assumption (2.22):

Vµ ⊂ V∗
µ :=

{
v ∈ H1(Ωµ) :

∫

Ωµ

v = 0,

∫

∂Ωµ

v n = 0

}
. (2.37)

Possible definitions of Vµ analogous to (2.13–2.15) used in the mechanical multi-scale model are

• Linear RVE boundary temperature model or simply linear model. The choice here is

Vµ = VL
µ :=

{
θ̃µ ∈ W̃∗

µ : θ̃µ(y) = 0 ∀y ∈ ∂Ωµ

}
. (2.38)

• Periodic RVE boundary fluctuations model or simply periodic model. In this case,

Vµ = VP
µ :=

{
θ̃µ ∈ W̃∗

µ : θ̃µ(y
+) = θ̃µ(y

−) ∀(y+, y−) ∈ P
}
. (2.39)

• Minimally constrained or Uniform normal RVE boundary heat flux model. In this case, the choice
is

Vµ = VU
µ := V∗

µ. (2.40)

It can be shown ([18]) that this definition implies a uniform normal flux on the boundary of the
RVE:

qµ(y) · n(y) = q · n(y) ∀y ∈ ∂Ωµ. (2.41)

where q is the macroscopic heat flux vector.

Remark 3. Similarly to the comments made in Remark 1, we have

VL
µ ⊂ VP

µ ⊂ VU
µ . (2.42)

It has been shown by [33] that the linear boundary temperature and uniform boundary flux models lead,
respectively, to an upper and a lower bound for the macroscopic conductivity tensor.
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Finally, a closed form for the macroscopic heat conductivity tensor can be obtained in a completely
analogous manner to that of the elasticity case. The final formula is

K = K+ K̃, (2.43)

where

K =
1

Vµ

∫

Ωµ

Kµ (2.44)

is the volume average conductivity tensor and K̃ is the contribution associated to the choice of space Vµ,
given by

K̃ :=

[
1

Vµ

∫

Ωµ

(qµ(θ̃µj
))i

]
ei ⊗ ej , (2.45)

where (qµ(θ̃µj
))i is the i-component of the microscopic flux fluctuation field associated with the temper-

ature fluctuation θ̃µj
∈ Vµ that solves

∫

Ωµ

qµ(θ̃µj
) · ∇η = −

∫

Ωµ

Kµej · ∇η ∀η ∈ Vµ. (2.46)

for j = 1, 2.

3. Topology sensitivity of the homogenized elasticity and conductivity tensors

Crucial to the algorithm used here in the topology optimization of microstructures are the mathemat-
ical concepts of topological asymptotic analysis and topological derivative. These concepts have been
originally introduced by [40] and provide the correct mathematical framework whereby exact expressions
may be derived for the sensitivity of functionals whose value depend on a given domain to singular topo-
logical changes of the domain. The notion of topological derivative has proved extremely useful in the
treatment of a wide range of problems in mechanics, optimization, inverse analysis and image processing
(see for instance, [4, 9, 12, 22, 23, 31, 32]). Here, we apply this concept to problems of microstructural
optimization where the underlying cost functions are defined in terms of the homogenized elasticity and
heat conductivity tensors discussed in the previous section.

The topological derivative is an extension of the conventional notion of derivative. The main idea is
briefly reviewed in the following. Let ψ be a generic functional whose value depends on a given domain
and let it have sufficient regularity so that the following expansion is possible

ψ (ρ) = ψ (0) + f (ρ)DTψ + o (f (ρ)) , (3.1)

where ψ(0) is the value of the functional for a domain Ω and ψ(ρ) is the value of the functional for a domain
Ωρ that differs from Ω by a topological perturbation of size ρ. The non-negative scalar ρ parametrizes
the domain so that the original domain Ω is retrieved when ρ=0. In addition, f(ρ) is a function such
that f(ρ) → 0 with ρ → 0+ and o (f (ρ)) contains all terms of higher order in f(ρ). Expression (3.1) is
the topological asymptotic expansion of ψ and DTψ is defined as the topological derivative of ψ at the
unperturbed (or original) domain Ω. For the study of asymptotic expansion of inclusion of finite size, we
refer the reader to [35, 11] and [45].

In the present context, the domain of interest is the RVE doman and the primary functionals whose
topological derivatives are needed are the two-dimensional macroscopic elasticity and heat conductivity
tensors, C and K. The dependence of these functionals on the domain of the RVE is defined through
relations (2.18–2.21) and (2.43–2.46), respectively. The topological perturbation to be considered consists
of the introduction of a circular inclusion of radius ρ centred at an arbitrary point ŷ ∈ Ωµ. More precisely,
the perturbed domain is obtained by first introducing a circular holeHρ of radius ρ centred at ŷ ∈ Ωµ and,
then, replacing this region with a circular inclusion Iρ of a different material property. The topologically
perturbed domain is defined as (see to Fig. 3)
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Figure 3. Topological perturbation at the microscopic level.

Ωρ
µ =

(
Ωµ\Hρ

)
∪ Iρ, (3.2)

with the corresponding microscopic constitutive tensor fields given by

C
ρ
µ =

{
Cµ in Ωµ \ Hρ

γCCµ in Iρ,
and Kρ

µ =

{
Kµ in Ωµ \ Hρ

γKKµ in Iρ,
(3.3)

where the (given) scalar parameters γC, γK ∈ ℜ+ define the contrast between the constitutive responses
of matrix and inclusion.

The topological derivatives of C and K with respect to perturbations of the above type are given in
the following theorems.

Theorem 4. The topological asymptotic expansion of the macroscopic elasticity tensor in the present
context is given by

C
ρ = C+

πρ2

Vµ
DTC+ o(ρ2), (3.4)

where Cρ denotes the macroscopic elasticity tensor associated with the topologically perturbed RVE domain
Ωρ

µ and the fourth order tensor field DTC over Ωµ is the topological derivative of C at the unpertubed
domain Ωµ. Its explicit formula is

DTC = Hσµ(uµij
) · σµ(uµkl

) (ei ⊗ ej ⊗ ek ⊗ el), (3.5)

with the canonical stress tensors σµ(uµij
) given by

σµ(uµij
) = Cµ(ei ⊗ ej) + σµ(ũµij

) (3.6)

where ũµij
are the solutions to the set of canonical variational problems (2.21). The isotropic fourth-order

tensor H is defined as

H = −
1

Eµ

(
1− γC
1 + αγC

)[
4I−

1− γC(α − 2β)

1 + βγC
(I⊗ I)

]
, (3.7)

with

α =
1 + νµ
1− νµ

and β =
3− νµ
1 + νµ

. (3.8)

Proof. A complete proof of this theorem is given in [15]. �

Theorem 5. The topological asymptotic expansion of the macroscopic thermal conductivity tensor in the
present context reads

Kρ = K+
πρ2

Vµ
DTK+ o(ρ2) , (3.9)

where Kρ is the macroscopic heat conductivity tensor for the perturbed domain Ωρ
µ and the second-order

tensor field DTK is the topological derivative of K at the unperturbed domain Ωµ:

DTK = −2kµ
1− γK
1 + γK

∇θµi
· ∇θµj

(ei ⊗ ej) , (3.10)

with ∇θµi
the canonical microscopic temperature gradient fields given by

∇θµi
= ∇xθ · ei + θ̃µi

, (3.11)

where the scalars θ̃µi
are the solutions of the canonical variational problems (2.46).

Proof. A proof of this theorem is given in [18]. �
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Remark 6. The value of the topological derivative of the macroscopic elasticity (heat conductivity) tensor
at an arbitrary point ŷ ∈ Ωµ is a rigorous first-order approximation in the volume fraction of inclusion
to the change in the macroscopic elasticity (heat conductivity) tensor resulting from the insertion of an
inclusion of given contrast γC (γK) centred at ŷ.

4. Topological derivative-based microstucture optimization algorithm

The information provided by the topological derivative (see Remark 6) is of an obvious appeal in the
derivation of topology optimization procedures. Such a concept has been recently used with success, for
example, in the topology optimization of load-bearing structures ([1, 3, 32, 43]). Since a rigorous first-
order accurate measure of the variation of the cost function due to domain topology changes is available
in closed form, algorithms based on this concept are remarkably simpler than procedures based on the
regularization of the problem posed by the singular change of a material point (or region) into a different
material or a hole ([39, 25, 7, 6]). In particular, they do not require the use of artificial algorithmic
parameters or post-processing strategies common to regularized approaches.

In the present paper, we apply these ideas to the topology optimization/synthesis of bi-material elastic
and heat conducting microstructures consisting of the materials we refer to as matrix and inclusion. The
basic problems considered are of the following types:

Minimize
Ωm

µ ⊂Ωµ

J(Ωm
µ ) = h(K) + λ

V m
µ

Vµ
, (4.1)

in the optimization of the macroscopic elastic properties, and

Minimize
Ωm

µ ⊂Ωµ

J(Ωm
µ ) = h(C) + λ

V m
µ

Vµ
, (4.2)

in the optimization of the macroscopic heat conduction properties. Here, J is a cost functional whose
argument is the domain Ωm

µ occupied by the matrix material, h is a scalar-valued function of either the
macroscopic elasticity tensor or the macrosopic heat conductivity tensor which, in turn, are functionals of
the domain Ωm

µ defined respectively through relations (2.18–2.21) and (2.43–2.46). The fixed parameter
λ is a Lagrange multiplier used to impose a constraint on the volume fraction V m

µ /Vµ of matrix material
in the RVE.

In the above defined problems, function h effectively defines what overall property is to be optimized.
With DTC (or DTK) at hand, the exact topological derivative field of h – the derivative of of h with
respect to the volume fraction of a newly inserted inclusion of given contrast – can be obtained by a
straightforward application of the conventional rules of differential calculus. Accordingly, the topological
derivative of the cost functional J is given by

DT J = 〈Dh,DT (K)〉+ λ . (4.3)

in the problem of optimization of elastic properties, and

DTJ = 〈Dh,DT (C)〉+ λ . (4.4)

in the optimization of heat conductivity properties, where Dh denotes the (conventional) derivative of h
with respect to its argument and 〈·, ·〉 the appropriate product.

4.1. The algorithm. The algorithm used in Section 5 in the solution of problems of type (4.1) and (4.2)
has been originally proposed and applied by [3] to topology optimization in the context of two-dimensional
elasticity and flow through porous media. The procedure relies crucially on the use of the topological
derivative of the cost function to define a feasible descent direction together with a level-set domain
representation. Of particular relevance is the fact that the algorithm is of very simple computational
implementation and, in addition, shows a remarkable ability to produce general topological domain
changes rather uncommon in this context.

With the adoption of a level-set domain representation, the current domain Ωm
µ is defined by a level-set

function ψ ∈ L2(Ωµ) such that

Ωm
µ = {y ∈ Ωµ |ψ(y) < 0}, (4.5)

whereas the domain occupied by the inclusion material is defined as

Ωi
µ = {y ∈ Ωµ |ψ(y) > 0}. (4.6)
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A sufficient condition for local optimality in the present case ([3]) is that the following equivalence
relation holds:

∃ τ > 0 such that g = τ ψ, (4.7)

where the field g over the RVE domain is defined as

g :=

{
−DTJ(Ω

m
µ )(y) if y ∈ Ωm

µ

DTJ(Ω
m
µ )(y) if y ∈ Ωi

µ.
(4.8)

Starting from a given initial guess ψ0 for the level-set function (correponding to an initial guess to
the topology of the RVE) the algorithm generates a sequence of level-set functions (a sequence of RVE
topologies) whose aim is to satisfy (4.7) or, equivalently,

θ := arccos

[
〈g, ψ〉

‖g‖L2 ‖ψ‖L2

]
= 0, (4.9)

approximately, where θ is the angle between the vectors g and ψ in L2(Ωµ). Without loss of generality,
ψ0 is chosen as a unit vector of L2(Ωµ). The algorithmic iterations are defined by the update formula

ψn+1 =
1

sin θn

{
sin[(1 − kn)θn]ψn + sin(knθn)

gn
‖gn‖L2

}
, n = 0, 1, 2, · · · , (4.10)

where kn ∈ [0, 1] is a step size determined by a simple line-search procedure in order to decrease the value
of the cost function. By construction, (4.10) produces a sequence of level-set functions of unit L2 norm.

A standard finite element approximation is used in the calculation of C (or K). Details of implemen-
tation of the RVE constraints are given in [14]. The topological derivatives (3.5) or (3.10) are computed
first within each element and then extrapolated/smoothed in a standard fashion to the nodes of the mesh.
The same global finite element shape functions are used to define the level-set functions. The material
properties are also assigned to nodes. Hence, nodes for which ψ < 0 are assigned the properties of the
matrix material and nodes with ψ > 0 the properties of the inclusion material. The iterations (4.10) are
assumed to have converged when, for some n, the angle θn is smaller than a pre-specified tolerance.

5. Examples. Topological optimization of micro-structures

Numerical examples of optimization of macroscopic elastic and heat conduction properties are pre-
sented in this section. The algorithm outlined in the preceeding section is used. For comparison, in all
examples the optimization procedure is carried out having the linear, periodic and minimally constrained
models as the underlying theories whereby the macroscopic properties to be optimized are estimated. As
we shall see, different multi-scale models lead in general to different optimized microstructures.

In all cases the RVE geometry is a unity square Ωµ = (0, 1)× (0, 1). The initial guess for the level-set
function corresponds to a uniform matrix containing a circular disc of inclusion material with radius
r = 0.25 centred at the centre of the RVE (see fig. 4(a)). The dark- and light-coloured areas correspond
respectively to the matrix and inclusion domains. For the heat conduction cases the heat conductivities
of the phases of the microstructure are kmµ = 1 and kiµ = 0.01. For the elasticity cases, the Young’s

moduli and Poisson ratios are given by Em
µ = 1, Ei

µ = 0.01 and νmµ = νiµ = 0.3. That is, in both types
of problems a contrast parameter of 0.01 is used. In all examples, a coarser uniform mesh (fig. 4(b))
with 3281 nodes and 6400 three-noded triangular elements is used first. When convergence is achieved,
a uniform mesh refinement step is perfomed and the algorithm executed again to convergence taking the
topology of the coarser mesh as the initial guess. This process is repeated until convergence is achieved
with a final mesh of high resolution containing 205441 nodes and 409600 elements. The convergence
criterion adopted is θ ≤ 1◦.
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(a) (b)

Figure 4. (a) Initial guess for optimum topology, and; (b) Inital mesh.

5.1. Horizontal heat conductivity maximization. In this first example, we wish to maximize the
macroscopic heat conductivity in the horizontal direction. Accordingly we define simply

h(K) := (K−1)11. (5.1)

The Lagrange multiplier is taken as λ = 45. The resulting optimized topologies are shown in fig. 5 and
the evolution of the cost function during the iterations is shown in fig. 6.

(a) linear model (b) periodic model (c) uniform model

Figure 5. Maximization of the horizontal heat conductivity. Optimized RVE topologies
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Figure 6. Horizontal heat conductivity maximization. Convergence history.

The topologies presented in figs. 5(a) 5(b) coincide with the classical topologies proposed by [44]
and [36] in the context of linear elastic microstructures. To derive the well-established lower and upper



12

bounds for overall elastic constants, these authors considered the microcell composed of strips of two
different materials. In the present context of heat conductivity, the upper (lower) bound is obtained
when the strips are aligned with (orthogonal to) the direction of the heat flux. The present result
obviously corresponds to the upper bound. It is worth noting that the microstructure generated under
the minimal RVE constraint assumption, shown in fig. 6(c), is of much greater complexity than the ones
obtained under the the more constraining periodicity and linear boundary temperature assumptions.

5.2. Orthotropic heat conductivity maximization. The aim here is to maximize the heat conduc-
tivity in the horizontal and vertical directions simultaneously. Here the volume fraction of the inclusion
phase is fixed as 0.422 and the parameter λ is obtained accordingly. The function h(K) is defined as

h(K) := 1

2
[(K−1)11 + (K−1)22]. (5.2)

The optimized topologies obtained in this case are shown in fig. 7 and the convergence history in fig.
8. The topologies obtained for the periodic and uniform boundary flux models, shown respectively in
figs. 7(b) and 7(c), are similar to that analyzed by [20] in the context of linear elasticity. These authors
obtained microstructures known as coated spheres assemblages or Hashin-Shtrikman micro-structures
that provide lower and upper bounds for the elastic properties of bi-material composites. In the present
context of heat conducting materials, the upper bound corresponds to a microstructure consisting of disks
of the lower conductivity phase coated by a layer (ring) of the higher conductivity material. For the lower
bound, the disks and rings are made respectively of the higher and lower conductivity materials. In the
present example, the upper bound is retrieved.

(a) linear model (b) periodic model (c) uniform model

Figure 7. Orthotroic heat conductivity maximization.
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topology homogenization model for computation of h
generated with linear periodic uniform
linear 3.24 4.54 7.03
periodic 3.54 3.61 6.11
uniform 3.63 3.64 3.66

Table 1. Orthotropic heat conduction maximization. Value of function h using different
homogenization models for the obtained optimized topologies.
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Figure 8. Orthotropic heat conductivity maximization.

A further insight into the influence of the choice of homogenization model on the properties of the
obtained optimized topologies can be gained from Table 1. For each of the three optimized topologies
obtained (corresponding to the rows of the table), the value of the function h (that measures the property
to be minimized) are computed according to the linear, periodic and uniform flux boundary conditions.
The columns shows that the minimum value of h computed according to a particular model corresponds
to the topology optimized having the same model as the estimator of the macroscopic properties. That is,
as one should expect, the algorithm synthesizes topologies that are closer to the optimum in the particular
metric defined by the chosen homogenization model. Another interesting fact is that very little difference
among the values of h computed according to the three models is observed for the more complex topology
generated using the uniform boundary flux model (the last row of the table). As the homogenization
process using the linear (uniform) model provides an upper (lower) bound for the conductivity tensor
components (upon which h depends), this tight variation in the bounds of h suggests a higher degree of
reliability of the predicted optimized property obtained by the algorithm with the uniform model in this
case (note that large variations in the predicted h occur for the other topologies).

5.3. Horizontal rigidity maximization. In this first numerical example of elastic microstructure op-
timization, we consider the function h(C) given by

h(C) := (C−1)1111. (5.3)

Its minimization corresponds to the maximization of the longitudinal elastic modulus. The Lagrange
multiplier is chosen as λ = 30. The optimized topologies for each multi-scale model considered are shown
in fig. 9 and the convergence history of the cost function can be seen in fig. 10.
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(a) linear model (b) periodic model (c) uniform model

Figure 9. Horizontal rigidity maximization.

The topologies presented in figs. 9(a) and 9(b) coincide with the classical topology proposed by [44]
and [36] as an upper bound for the overall elastic modulus, where the stiffer material is aligned with
the direction along which the maximization of the elastic modulus is sought (refer to comments made in
example 5.1). Again, it should be noted that the topology obtained under the uniform boundary traction
assumption (minimal kinematical constraint) is far more complex than the ones generated under the more
kinematically constrained assumptions.
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Figure 10. Horizontal rigidity maximization. Convergence history.

5.4. Bulk modulus maximization. To maximize the bulk modulus, we define

h(C) := (C−1)1111 + 2(C−1)1122 + (C−1)2222. (5.4)

The volume fraction of inclusion material is fixed as 0.32 and the parameter λ determined accordingly.
The corresponding optimized topologies are shown in fig. 11 and the convergence history of the cost
function is depicted in fig. 12.
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(a) linear model (b) periodic model (c) uniform model

Figure 11. Bulk modulus maximization.

The topologies obtained for the linear and periodic models are very similar to the one analyzed by
[20].
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Figure 12. Bulk modulus maximization. Convergence history.

The upper bound topologies synthesized is these cases are of the coated spheres assemblage type
or Hashin-Shtrikman micro-structure ([5, 30]). They consist of disks of the most compliant material
coated with rings of stiffer material. The optimized RVE obtained under the uniform boundary traction
assumption is of particular resemblance to the coated spheres assemblage of [20]. The result suggests a
fractal nature of the optimum microstructure whose details are captured with higher resolution in the
optimization process as the mesh is refined. Similarly to the analysis conducted in the orthotropic heat
conductivity example (refer to Table 1), we plot in Table 2 the values of the function h using the three
homogenization models for each of the optimized microstructures obtained. The conclusions here are
analogous to those of the heat conduction counterpart example. In particular, here we also find that the
the use of the uniform boundary traction model in the optimization algorithm yields a microstructural
topology whose lower and upper bounds (related to the last row of Table 2) for the predicted optimized
property (the bulk modulus in the present case) are very close and, hence, appears to provide a more
reliable indication of the actual optimal topology.
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topology homogenization model for computation of h
generated with linear periodic uniform
linear 8.01 10.58 26.70
periodic 9.16 9.30 18.27
uniform 9.32 9.34 9.46

Table 2. Bulk modulus maximization. Value of function h using different homogeniza-
tion models for the obtained optimized topologies.

5.5. Shear modulus maximization. For the maximization of the shear modulus, we define simply

h(C) := 4(C−1)1212. (5.5)

The volume fraction of inclusion is fixed as 0.70. The optimized topologies obtained for each multi-scale
model are shown in fig. 13 and the convergence history of the correponding cost function is plotted in
fig. 14.

(a) linear model (b) periodic model (c) uniform model

Figure 13. Shear modulus maximization.
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Figure 14. Shear modulus maximization. Convergence history.
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Again, the topology obtained for the minimally constrained model are of a far greater complexity than
the ones obtained with the less kinematically constrained models. It is worth mentioning that here we
also observed that, similarly to the results reported in Tables 1 and 2, the smallest difference between
the upper and lower bounds for the shear modulus (a difference of 6%) occurs for the optimized topology
obtained under the minimally constrained (uniform boundary traction) assumption.

5.6. Poisson’s ratio minimization. Here we consider the definition

h(C) := −(C−1)1122, (5.6)

and take λ = 0.5. The optimized topologies are shown in fig. 15 and the convergence behaviour of the
cost function can be seen in fig. 16.

(a) linear model (b) periodic model (c) uniform model

Figure 15. Poisson’s ratio minimization.

The corresponding homogenized elasticity tensors in matrix representation are

CL =

(
0.0663 −0.0243 0

−0.0243 0.0663 0

0 0 0.0127

)
,

CP =

(
0.0718 −0.0302 0

−0.0302 0.07018 0

0 0 0.0084

)
, (5.7)

CU =

(
0.0698 −0.0250 0

−0.0250 0.0698 0

0 0 0.0123

)
,

respectively, for the linear, periodic and minimally constrained models. The associated Poisson’s ratios
are negative in al cases:

νL = −0.366, νP = −0.421 and νU = −0.359. (5.8)
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Figure 16. Poisson’s ratio minimization. Convergence history.

The results show that, regardless of the particular class of multi-scale model used to predict the
macroscopic response, the optimized microstrucre features the auxetic behavior of the star-shaped en-
capsulated inclusions, analyzed by, among others, by [2, 26, 42, 41]. This type of micro-cell is known as
nonconvex-shaped or re-entrant corner microstructures.

5.7. Poisson’s ratio maximization. The target in this last example is the maximization of the Pois-
son’r ratio. In the corresponding cost function we define

h(C) :=
(C−1)1122
(C−1)1111

+
(C−1)1122
(C−1)2222

. (5.9)

Again, we choose λ = 0.5. The results for all multi-scale models adopted are shown in fig. 17. The
history of the cost function throughout the optimization iterations is plotted in the graph of fig. 18. The
matrix representation of the corresponding homogenized elasticity tensor at the end of the optimization
process is given by

CL =

(
0.0734 0.0599 0

0.0599 0.0734 0

0 0 0.0364

)
,

CP =

(
0.0849 0.0714 0

0.0714 0.0849 0

0 0 0.0265

)
, (5.10)

CU =

(
0.1233 0.1072 0

0.1072 0.1233 0

0 0 0.0453

)
.

which results in the Poisson’s ratios:

νL = 0.816, νP = 0.841 and νU = 0.870. (5.11)
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(a) linear model (b) periodic model (c) uniform model

Figure 17. Poisson’s ratio maximization.
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Figure 18. Poisson’s ratio maximization. Convergence history.

We observe here that for the three multi-scale models considered exhibit, the synthesized microstruc-
ture at the end of the optimization procedure has a pantograph-like topology. This type of microstructure
allows a maximum transfer of strain energy from one direction to the direction orthogonal to it.

6. Conclusions

A microstructural optimization algorithm based on the concept of topological derivative and a level-
set domain representation has been applied to the synthesis of elastic and heat conducting bi-material
microstructures. For comparison, different multi-scale constitutive models have been used in the esti-
mation of the macroscopic material properties of interest to the optimization process: (a) the classical
periodic boundary constraint model, typical of the description of periodic media; (b) the linear boundary
constraint model which provides an upper bound for the macroscopic heat conductivity and elasticity
tensors; and (c) the minimum constraint model which, in turn, provides a lower bound for these tensors.
The study has shown that the final optimized topology synthesized by the algorithm depends (sometimes
strongly) on the particular model adopted. In particular, the use of the minimally constrained model
generally leads to more complex optimized topologies. Interestingly, the results also appear to suggest
that the optimized macroscopic properties for such more complex topologies lie within tighter bounds
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than those obtained with the the linear and periodic boundary constraint models. Further investigation
is currently under way to establish the extent of such a tendency.
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