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Abstract. This paper proposes an exact analytical formula for the topological sensitivity of the macro-
scopic response of elastic microstructures to the insertion of circular inclusions. The macroscopic re-
sponse is assumed to be predicted by a well-established multi-scale constitutive theory where the macro-
scopic strain and stress tensors are defined as volume averages of their microscopic counterpart fields
over a Representative Volume Element (RVE) of material. The proposed formula – a symmetric fourth
order tensor field over the RVE domain – is a topological derivative which measures how the macroscopic
elasticity tensor changes when an infinitesimal circular elastic inclusion is introduced within the RVE. In
the limits, when the inclusion/matrix phase contrast ratio tends to zero and infinity, the sensitivities to

the insertion of a hole and a rigid inclusion, respectively, are rigorously obtained. The derivation relies
on the topological asymptotic analysis of the predicted macroscopic elasticity and is presented in detail.
The derived fundamental formula is of interest to many areas of applied and computational mechan-
ics. To illustrate its potential applicability, a simple finite element-based example is presented where
the topological derivative information is used to automatically generate a bi-material microstructure to
meet pre-specified macroscopic properties.

1. Introduction

The ability to predict the macroscopic constitutive response of materials from the knowledge of their
microstructure has long been a subject of intensive research in applied and computational mechanics
circles. The large body of publications currently available in this field ranges from early fundamental
work (e.g. [11, 12, 15, 2, 21, 7, 28]) to more recent numerical simulations mainly based on the finite
element method ([17, 18, 29, 16, 27]).

Among the various applications of such so-called multi-scale constitutive theories, of particular interest
is the study of the sensitivity of the macroscopic response to changes in the microstructure. In this
context, the use of sensitivity information has been successfully applied in the topological optimisation
of microstructures, among others, by [22], [23], [14] and [13]. The approach adopted by these authors
relies essentially on the regularisation of the actual RVE topology optimisation problem by introducing a
ficticious density field of which the elastic material parameters are assumed to be a function. Throughout
the optimisation iterations, voids are assumed to be located wherever the ficticious density field (the design
variable in the regularised optimisation problem) falls below a given numerical tolerance. The sensitivity
of the macroscopic elastic parameters to topological changes of the RVE (the introduction of voids in this
case) is calculated only in an approximate sense. The approximate character of the sensitivity calculation
stem from the fact that procedures of this type are based on the conventional concept of derivative and
the introdution of topological changes such as voids are inherently singular and do not fit within the
conventional notion of differentiability.

In the present paper, we propose an exact analytical formula for the sensitivity of the macroscopic
elasticity tensor to topological microstructural changes. The macroscopic elasticity tensor is assumed to
be predicted by a well-established multi-scale constitutive theory based on the volume averaging of the
stress and strain tensors over the RVE. Within this constitutive framework upper and lower bounds for
the elastic behaviour can be obtained by assuming, respectively, linear RVE boundary displacements and
minimum RVE kinematical constraint compatible with the strain averaging assumption (and resulting in
uniform RVE boundary tractions). In addition, the widely used assumption of periodic RVE boundary
displacement fluctuations provides an estimate for the response of periodic media. The topological change
considered consists of the insertion of a circular isotropically elastic inclusion within the isotropically elas-
tic RVE matrix. The Young’s modulus of the inclusion is assumed to be a scalar multiple of the Young’s
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modulus of the matrix. In the limits when the scalar multiple (the phase contrast parameter) tends to
zero and infinity the proposed formula gives the exact topological sensitivity of the macroscopic elasticity
tensor to the insertion of a hole and a rigid inclusion, respectively. The derivation of the analytical sensi-
tivity is presented in detail. It relies on the concepts of topological asymptotic expansion and topological
derivative ([3, 24]) which provides the correct mathematical framework for the treatment of singularities
of the present type. The derived formula is of great potential use in applied and computational mechanics
and its final format is remarkably simple. Its potential applicability is illustrated in a finite element-based
example where the topological derivative information is used in a very simple algorithm to automatically
generate a bi-material microstucture to meet a pre-specified macroscopic behaviour.

The paper is organised as follows. The multi-scale constitutive framework adopted in the estimation
of the macroscopic elasticity tensor is briefly reviewed in Section 2. The main contribution of the paper is
presented in Section 3 with a detailed derivation of the proposed sensitivity formula. The application of
the topological derivative to the synthesis of microstructures is shown in Section 4 and some concluding
remarks are made in Section 5.

2. Multi-scale constitutive modelling

The family of constitutive theories upon which we rely for the estimation of the macroscopic elastic
properties has been formally presented in a rather general setting by [7] and later exploited, among
others, by [17] and [18] in the computational context. When applied to linearly elastic periodic media, it
coincides with the asymptotic expansion-based theory described by [2] and [21].

The fundamental idea here is the assumption that any point x of the macroscopic continuum is
associated to a local RVE whose domain Ωµ, with boundary ∂Ωµ, has characteristic length lµ, much
smaller than the characteristic length l of the macro-continuum domain, Ω. An axiomatic variational
framework for this family of constituive theories is presented in detail by [4]. Accordingly, the entire
theory can be derived from five basic principles: (i) The strain averaging relation; (ii) The requirement
that the chosen functional set of kinematically admissible displacement fluctuations of the RVE be a
subspace of the minimally constrained space of displacement fluctuations compatible with the strain
averaging hypothesis; (iii) The equilibrium of the RVE; (iv) The stress averaging relation, and; (v) The
Hill-Mandel Principle of Macro-Homogeneity ([12, 15]), ensuring the energy consistency between the two
scales.

The strain averaging assumption defines the macroscopic strain tensor E at a point x ∈ Ω as the
volume average of its microscopic counterpart Eµ over the RVE:

E :=
1

Vµ

∫

Ωµ

Eµ, (2.1)

where Vµ is a total volume of the RVE and Eµ := ∇suµ, with uµ denoting the microscopic displacement
field of the RVE.

For the purposes of the present paper, we consider RVEs whose domain consists of a matrix, Ωm
µ , with

inclusions of different materials occupying a domain Ωi
µ. Futher, we assume the behaviour of the matrix

and inclusion to be isotropic linear elastic. The microscopic stress tensor field Tµ is given by

Tµ = CµEµ, (2.2)

where Cµ is the fourth order isotropic elasticity tensor:

Cµ =
E

1− ν2
[(1− ν) I+ ν (I⊗ I)] , (2.3)

with I and I denoting respectively the second and fourth order identity tensors and E and ν the Young’s
modulus and the Poisson’s ratio, given by

E :=

{

Em if y ∈ Ωm
µ

Ei if y ∈ Ωi
µ

and ν :=

{

νm if y ∈ Ωm
µ

νi if y ∈ Ωi
µ.

(2.4)

Ei and νi are assumed constant within each inclusion but may in general vary from inclusion to inclusion.
Without loss of generality, uµ may be decomposed as a sum

uµ (y) = u+ ū (y) + ũµ (y) , (2.5)
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of a rigid displacement coinciding with the displacement u of x, a field ū (y) := Ey, linear in the local
RVE coordinate y (whose origin is assumed without loss of generality to be located at the centroid of
the RVE) and a displacement fluctuation field ũµ that, in general, varies with y. The above renders the
split of Eµ,

Eµ = E+ Ẽµ, (2.6)

as a sum of a homogeneous strain over the RVE equal to the macroscopic strain and a strain fluctuation,
Ẽµ := ∇sũ, about the average value. Similarly, we have

Tµ = T̄µ + T̃µ, (2.7)

where T̄µ := CµE is the stress field associated with the uniform strain and T̃µ := CµẼ is the stress
fluctuation field.

The above considerations, together with (2.1), (2.2), axioms (ii) and (iii) and the Hill-Mandel Principle
of Macro-Homogeneity ([12]) lead to the mechanical equilibrium problem for the RVE which consists
of finding, for a given macroscopic strain E, a kinematically admissible displacement fluctuation field
ũµ ∈ Vµ, such that

∫

Ωµ

T̃µ · ∇
sη = −

∫

Ωµ

T̄µ · ∇
sη ∀η ∈ Vµ, (2.8)

where the (as yet not defined) space Vµ of admissible displacement fluctuations (and virtual admissi-

ble displacements) of the RVE is a subspace of Ṽ∗
µ – the minimally constrained space of kinematically

admissible displacement fluctuation fields compatible with (2.1):

Ṽµ ⊂ Ṽ
∗

µ :=

{

v ∈
[

H1(Ωµ)
]2

:

∫

Ωµ

v = 0,

∫

∂Ωµ

v ⊗s n = 0, [[v]] = 0 on ∂Ωi
µ

}

, (2.9)

with n denoting the outward unit normal to the boundary ∂Ωµ, ⊗s the symmetric tensor product and
JvK the jump of v across the matrix/inclusion interface ∂Ωi

µ:

[[(·)]] := (·)|m − (·)|i . (2.10)

With the solution to problem (2.8) at hand, the macroscopic stress is obtained according to stress
averaging relation:

T :=
1

Vµ

∫

Ωµ

Tµ. (2.11)

2.1. Classes of multi-scale constitutive models. The characterisation of a multi-scale model of the
present type is completed with the choice of a suitable space of admissible displacement fluctuations
Vµ ⊂ Ṽ

∗
µ which defines the kinematical constraints assumed over the RVE. The three classical choices are

• Linear boundary displacements. For this class of models the choice is

Vµ = VL

µ :=
{

ũµ ∈ Ṽ
∗

µ : ũµ (y) = 0 ∀y ∈ ∂Ωµ

}

. (2.12)

• Periodic boundary fluctuations. This assumption is typical of periodic media. The geometry of the
RVE here must satisfy certain constraints not needed by the other two classes of models discussed.
For polygonal RVE geometries we have that the boundary ∂Ωµ is composed of a number of pairs
of equally-sized subsets {Γ+

i ,Γ
−

i } with normals n+
i = −n−

i . For each pair {Γ+
i ,Γ

−

i } of sides there
is a one-to-one correspondence between points y+ ∈ Γ+

i and y− ∈ Γ−

i . The periodicity of the
structure requires that the displacement fluctuation at any point y+ coincide with that of the
corresponding point y−. Hence, the space of displacement fluctuations is defined as

Vµ = VP

µ :=
{

ũµ ∈ Ṽ
∗

µ : ũµ(y
+) = ũµ(y

−) ∀ pairs (y+,y−) ∈ ∂Ωµ

}

. (2.13)

• Minimally constrained or Uniform boundary traction model. In this case,

Vµ = VU

µ := Ṽ∗

µ. (2.14)

It can be shown ([4]) that this assumption results in uniform RVE boundary tractions:

Tµ(y)n(y) = Tn(y) ∀y ∈ ∂Ωµ. (2.15)
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It should be noted that the following holds for the above definitions:

VL

µ ⊂ V
P

µ ⊂ V
U

µ . (2.16)

Then, in the RVE equilibrium problem (2.8) the assumption of linear boundary displacements (the most
kinematically constrained of the three) results in the least compliant solution while the assumption of
minimal kinematical constraint leads to the most compliant one. In this sense, the choices VL

µ and VU
µ

provide, respectively, an upper and a lower bound for the estimated macroscopic stiffness of the material.

2.2. The homogenised elasticity tensor. The assumed behaviour of the microscale implies that the
macroscopic response is linear elastic. That is, there is a homogenised elasticity tensor C such that

T = CE. (2.17)

A closed form for C can be derived, as in [17], based on the representation of (2.8) as a superposition of
linear problems associated with the cartesian components of E. The resulting formula can be expressed
as

C = C̄+ C̃, (2.18)

where C̄ is the volume average of the microscopic elasticity tensor, C̄ = 1

Vµ

∫

Ωµ
Cµ, and the C̃ (generally

dependent upon the choice of space Vµ) is given by

C̃ =

[

1

Vµ

∫

Ωµ

(T̃µkl
)ij

]

(ei ⊗ ej ⊗ ek ⊗ el) , (2.19)

where T̃µij
= Cµ∇

sũµij
is the fluctuation stress field associated with the fluctuation displacement field

ũµij
∈ Vµ that solves linear variational problem

∫

Ωµ

Cµ∇
sũµij

· ∇sη = −

∫

Ωµ

Cµ(ei ⊗ ej) · ∇
sη ∀η ∈ Vµ, (2.20)

for i, j = 1, 2 (in the two-dimensional case). In the above, {ei} denotes an orthonormal basis for the
two-dimensional Euclidean space.

3. The topological sensitivity of the homogenised elasticity tensor

In this section we present the main result of this paper – a closed formula for the sensitivity of the
homogenised elasticity tensor (2.18) to the introduction of an infinitesimal circular inclusion centered at
an arbitrary point of the RVE domain. The formula is obtained by following analogous steps to those
presented by [9] for the introduction a circular void, but contains fundamental differences that justify the
presentation of the details of its derivation in the following.

We start by providing a brief introduction to the relatively new mathematical concepts of topological
asymptotic expansion and topological derivative. To this end, let ψ be a functional whose value depends
on a given domain and let ψ have sufficient regularity so that the following expansion is possible

ψ (ε) = ψ (0) + f (ε)DTψ + o (f (ε)) , (3.1)

where ψ(0) is the value of the functional for an original (unperturbed) domain and ψ(ε) denotes the value
of the functional for a domain that differs from the original one by a topological perturbation of size ε.
Note that the original domain is retrieved when ε=0. In addition, f(ε) is a regularising function defined
such that f(ε)→ 0 with ε→ 0+ and o (f (ε)) contains all terms of higher order in f(ε). The right hand
side of (3.1) is named the asymptotic topological expansion of the functional ψ and the term DTψ is
defined as the topological derivative of ψ at the unperturbed RVE domain.

The concept of topological derivative was rigorously introduced by [24]. Since then, the notion of topo-
logical derivative has proved extremely useful in the treatment of a wide range of problems in mechanics,
optimisation, inverse analysis and image processing and has become a subject of intensive research (see
for instance, [1, 3, 6]).
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Figure 1. Microstructure perturbed with a inclusion Iε.

3.1. Application to the multi-scale elasticity model. To begin the topological sensitivity analysis
in the present context, it is appropriate to define the following functional

ψ(ε) := VµT
ε · E, ⇒ ψ(0) = VµT · E, (3.2)

where Tε denotes the macroscopic stress tensor associated with a RVE topologically perturbed by a small
inclusion of radius ε defined by Iε and T is the macroscopic stress tensor associated to the unperturbed
domain Ωµ. More precisely, the perturbed domain is obtained when a circular hole Hε of radius ε is
introduced at an arbitrary point ŷ ∈ Ωµ and, then, this region is replaced with the circular inclusion Iε
made of a different material. Then, the perturbed domain is defined as Ωµε

=
(

Ωµ\Hε

)

∪ Iε (refer to
Fig. 1). The asymptotic topological expansion of the functional (3.2)1 reads

Tε ·E = T · E+
1

Vµ
f (ε)DTψ + o (f (ε)) . (3.3)

3.2. Topological derivative calculation. Our purpose here is to derive the closed formula for the
topological sensitivity of the macroscopic elasticity tensor (2.18). Then, we start deriving a closed formula
for the associated topological derivative DTψ, which characterizes the asymptotic expansion (3.3). To
this end, we re-define the functional

ψ(ε) := JΩµε
(uµε

) =

∫

Ωµε

Tµε
· ∇suµε

, (3.4)

where Tµε
is the microscopic stress field of the perturbed domain Ωµε

. The microscopic stress field Tµε

is given by

Tµε
= C

∗
µEµε

, (3.5)

with Eµε
=∇suµε

denoting the microscopic strain field in Ωµε
and constitutive fourth order tensor C∗

µ

given by

C
∗

µ =

{

Cµ ∀y ∈ Ωµ\Hε

γCµ ∀y ∈ Iε.
(3.6)

where γ ∈ ℜ+ is the contrast parameter defining the ratio between the properties of the original and
new material at the location of the perturbation. Clearly, this type of perturbation corresponds to a
change only in the Young’s modulus of the phases. We remark that the particular shape functional (3.4)
subjected to the topological perturbation (3.6) has the sufficient degree of regularity for the existence of
the topological derivative. For further details on the existence of the topological derivative for energy
shape-functionals associated with elastic systems we refer to [24] and [19].

The microscopic displacement field uµε
∈Kµε

:= {v ∈ Kµ : [[v]] = 0 on ∂Iε} of the perturbed RVE is
decomposed as

uµε
= u+Ey + ũµε

, (3.7)

where the displacement fluctuation field ũµε
is the solution of the following variational problem in Ωµε

:
Find ũµε

∈ Vµε
:= {ξ ∈ Vµ : [[ξ]] = 0 on ∂Iε} such that

∫

Ωµε

T̃µε
· ∇sηε = −

∫

Ωµε

T̄∗

µ · ∇
sηε ∀ηε ∈ Vµε

, (3.8)

where Vµε
is the space of kinematically admissible displacement fluctuations of the perturbed RVE and

T̄∗
µ is the microscopic stress field, associated to Ωµε

, induced by the macroscopic strain E, i.e., T̄∗
µ = C∗

µE.



6

For the calculation of the topological derivative, we shall adopt the approach presented by [25] and
[20], whereby the topological derivative is obtained as

DTψ = lim
ε→0

1

f ′ (ε)

d

dε
JΩµε

(uµε
) . (3.9)

The derivative of the functional JΩµε
(uµε

) with respect to the perturbation parameter ε can be seen
as the sensitivity of JΩµε

, in the classical sense, to the change in shape produced by a uniform expansion
of the inclusion Iε.

Proposition 1. Let JΩµε
(uµε

) be the functional defined by (3.4). Then, the derivative of the functional
JΩµε

(uµε
) with respect to the small parameter ε is given by

d

dε
JΩµε

(uµε
) =

∫

Ωµε

Σµε
· ∇v, (3.10)

where v is the RVE shape-change velocity field defined in Ωµε
and Σµε

is a generalisation of the classical
Eshelby momentum-energy tensor ([5, 10]) of the RVE, given in the present case by

Σµε
= (Tµε

· Eµε
)I−2(∇ũµε

)T Tµε
. (3.11)

Proof. By making use of Reynolds’ transport theorem ([26]), we obtain the identity

d

dε
JΩµε

(uµε
) =

∫

Ωµε

d

dε
(Tµε

· Eµε
) +Tµε

· Eµε
divv. (3.12)

Next, by using the concept of material derivative of a spatial field, we find that the first term of the above
right hand side integral can be written as

d

dε
(Tµε

· Eµε
) = 2Tµε

· Ėµε
, (3.13)

where the superimposed dot denotes the (total) material derivative with respect to ε. Further, note that

Eµε
= E+∇sũµε

, ⇒ Ėµε
= ∇s ˙̃uµε

− (∇ũµε
∇v)

s
. (3.14)

Then, by introducing the above expression into (3.13) we obtain

d

dε
(Tµε

·Eµε
) = 2Tµε

· ∇s ˙̃uµε
− 2Tµε

· (∇ũµε
∇v)

s
, (3.15)

which, substituted in (3.12) gives

d

dε
JΩµε

(uµε
) =

∫

Ωµε

2Tµε
· ∇s ˙̃uµε

− 2Tµε
· (∇ũµε

∇v)
s
+ (Tµε

·Eµε
)I · ∇v, (3.16)

where we have made use of the identity div v = I · ∇v. Now, note that by definition of the spaces of
virtual displacements, we have ˙̃uµε

∈ Vµε
. This, together with the equilibrium equation (3.8), implies

that the first term of (3.16) vanishes. Then, a straightforward rearrangement of the above yields (3.10).
�

Proposition 2. Let JΩµε
(uµε

) be the functional defined by (3.4). Then, the derivative of the functional
JΩµε

(uµε
) with respect to the small parameter ε can be written as

d

dε
JΩµε

(uµε
) =

∫

∂Ωµ

Σµε
n · v +

∫

∂Ωi
µ

[[Σµε
]]n · v +

∫

∂Iε

[[Σµε
]]n · v, (3.17)

where v is the RVE shape-change velocity field and Σµε
is given by (3.11).

Proof. Let us compute the shape derivative of the functional JΩµε
using the following version for the

Reynolds’ transport theorem ([26]),

d

dε
JΩµε

(uµε
) =

∫

Ωµε

∂

∂ε
(Tµε

·Eµε
) +

∫

∂Ωµ

(Tµε
· Eµε

)n · v

+

∫

∂Ωi
µ

[[Tµε
·Eµε

]]n · v+

∫

∂Iε

[[Tµε
· Eµε

]]n · v. (3.18)
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Next, by using the concept of spatial derivative and (2.2), we find that the first term of the above right
hand side integral can be written as

∂

∂ε
(Tµε

·Eµε
) = 2Tµε

·E′

µε
, (3.19)

where the prime denotes the (partial) spatial derivative with respect to ε. Further, note that the relation
(3.14) gives

E′
µε

= ∇sũ′
µε

= ∇s( ˙̃uµε
−∇ũµε

v). (3.20)

Then, by introducing the above expression into (3.19) we obtain

∂

∂ε
(Tµε

· Eµε
) = 2Tµε

· ∇s ˙̃uµε
− 2Tµε

· ∇s(∇ũµε
v). (3.21)

With the above result, the sensitivity of the functional JΩµε
reads

d

dε
JΩµε

(uµε
) =

∫

Ωµε

2Tµε
· ∇s ˙̃uµε

− 2Tµε
· ∇s(∇ũµε

v) +

∫

∂Ωµ

(Tµε
· Eµε

)n · v

+

∫

∂Ωi
µ

[[Tµε
·Eµε

]]n · v+

∫

∂Iε

[[Tµε
·Eµε

]]n · v. (3.22)

Now, note that by definition of the spaces of virtual displacements we have ˙̃uµε
∈ Vµε

. This, together
with the equilibrium equation (3.8), implies that the first term of (3.22) vanishes. Then, we obtain

d

dε
JΩµε

(uµε
) = −

∫

Ωµε

2Tµε
· ∇s(∇ũµε

v) +

∫

∂Ωµ

(Tµε
· Eµε

)v · n

+

∫

∂Ωi
µ

[[Tµε
·Eµε

]]n · v+

∫

∂Iε

[[Tµε
·Eµε

]]n · v. (3.23)

In view of the tensor relation

div
(

TT
µε

[(∇ũµε
)v]

)

= Tε · ∇
s [(∇ũµε

)v] + div (Tµε
) · (∇ũµε

)v, (3.24)

and the divergence theorem, expression (3.23) can be written as

d

dε
JΩµε

(uµε
) = 2

∫

Ωµε

divTµε
· (∇ũµε

)v +

∫

∂Ωµ

[(Tµε
· Eµε

) I− 2 (∇ũµε
)
T
Tµε

]n · v

+

∫

∂Ωi
µ

[[(Tµε
·Eµε

) I− 2 (∇ũµε
)
T
Tµε

]]n · v

+

∫

∂Iε

[[(Tµε
·Eµε

) I− 2 (∇ũµε
)
T
Tµε

]]n · v. (3.25)

Finally, since the stress field Tµε
is in equilibrium, we have that divTµε

= 0 in Ωµε
so that a straight-

forward rearrangement of the above yields (3.17). �

Corollary 3. By applying the divergence theorem to the right hand side of (3.10), we obtain

d

dε
JΩµε

(uµε
) =

∫

∂Ωµ

Σµε
n · v +

∫

∂Ωi
µ

[[Σµε
]]n · v +

∫

∂Iε

[[Σµε
]]n · v

−

∫

Ωµε

div (Σµε
) · vdΩµ. (3.26)

Since (3.17) and (3.26) remain valid for all velocity fields v ∈ Ωµε
, we have

∫

Ωµε

div (Σµε
) · vdΩµ = 0 ∀v ∈ Ωµε

⇒ div (Σµε
) = 0 in Ωµε

, (3.27)

i.e. Σµε
is a divergence-free field. �
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From the above corollary it follows that the shape derivative of the functional JΩµε
(uµε

), for the
particular case of an uniform expansion of the perturbation – circular inclusion – can be expressed
exclusively in terms of an integral over the boundary ∂Iε of the inclusion:

d

dε
JΩµε

(uµε
) = −

∫

∂Iε

JΣµε
Kn · n. (3.28)

In order to derive an explicit expression for the integrand on the right hand side of (3.28), we consider
a curvilinear coordinate system along ∂Iε, characterised by the orthonormal vectors n and t. Then, we
can decompose the stress tensor Tµε

and the strain tensor Eµε
on the boundary ∂Iε as follows

Tµε
|∂Iε

= Tnn
µε

(n⊗ n) + Tnt
µε

(n⊗ t) + Ttn
µε

(t⊗ n) + Ttt
µε

(t⊗ t) ,
Eµε
|∂Iε

= Enn
µε

(n⊗ n) + Ent
µε

(n⊗ t) + Etn
µε

(t⊗ n) + Ett
µε

(t⊗ t) .
(3.29)

The Neumann boundary condition along ∂Iε, together with (3.29)1, gives

[[T̃µε
]]n|∂Iε

= −[[T̄∗

µ]]n ⇒ [[Tµε
]]n|∂Iε

= 0,

⇒ Tnn
µε
|m = Tnn

µε
|i and Ttn

µε
|m = Ttn

µε
|i on ∂Iε. (3.30)

Similarly to eq. (3.29), the fluctuation displacement field ũµε
can be decomposed on ∂Iε as

ũµε
|∂Iε

= ũnµε
n+ ũtµε

t. (3.31)

As a consequence, the continuity condition of ũµε
along ∂Iε implies

[[ũµε
]]|∂Iε

= 0 ⇒
∂ũµε

∂t

∣

∣

∣

∣

m

=
∂ũµε

∂t

∣

∣

∣

∣

i

on ∂Iε. (3.32)

Alternatively, the above condition can be written in terms of the components of the fluctuation strain
tensor Ẽµε

in the basis {n, t} as follows

Ẽtt
µε
|m = Ẽtt

µε
|i. (3.33)

In addition, in view of the additive split (2.6), condition (3.33) establishes the continuity of component
tt of the strain tensor Eµε, i.e.,

Ett
µε
|m = Ett

µε
|i. (3.34)

By taking into account the decompositions (3.29) and (3.31) and the continuity condition (3.30),
(3.32) and (3.34), the jump of the Eshelby tensor flux in the normal direction to the boundary of the
perturbation Iε can be written as

[[Σµε
]]n · n =

q
Ttt

µε

y
Ett
µε
|i −

q
Ẽnn
µε

y
Tnn

µε
|i −

s
∂ũtµε

∂n

{
Tnt

µε
|i. (3.35)

Note that, by using the constitutive law (3.5), the jump terms on the right hand side of the above
expression satisfy

q
Ttt

µε

y
= E(1− γ)Ett

µε
|i, (3.36)

q
Ẽnn
µε

y
=

1− ν2

E

(

γ − 1

γ
T̃nn

µε
|i −

q
T̄nn

µ

y)
, (3.37)

s
∂ũtµε

∂n

{
= 2

1− ν

E

(

γ − 1

γ
T̃tn

µε
|i −

q
T̄tn

µ

y)
, (3.38)

where T̄nn
µ , T̄tn

µ , T̃nn
µε

and T̃tn
µε

are the constant and fluctuation part of components Tnn
µε

and Ttn
µε

of the
stress tensor Tµε

|∂Iε
given by (3.29)1.

By introducing the above results into (3.35) and taking into account the additive decomposition of the
components of the microscopic stress field Tµε

we find that the jump of the Eshelby tensor flux in the
normal direction to the boundary ∂Iε has the following representation in terms of the solution inside the
perturbation Iε:

[[Σµε
]]n · n =

1− γ

γ2E

[

(

Ttt
µε
|i − νT

nn
µε
|i
)2

+ γ(1− ν2)Tnn
µε
|2i + 2γ(1 + ν)Ttn

µε
|2i

]

. (3.39)



9

In order to obtain an analytical formula for the boundary integral (3.28) we make use of the clas-
sical asymptotic analysis for two-dimensional elasticity problems (see 5). Thus, the distribution of the
microscopic stress field on boundary ∂Iε can be written as

Tµε
|∂Iε

= LT̄µ + ST̃µ +O(ε), (3.40)

with O(ε)→ 0 as ε→ 0 and the fourth order tensors L and S given by

L = γ
1− γ

1 + αγ

[

1 + α

1− γ
I+

β − α

2(1 + βγ)
(I⊗ I)

]

, (3.41)

S =
γ

(1 + αγ)(1 + ν)

{

4I+

[

β(1 + αγ)

1 + βγ
− 2

]

(I⊗ I)

}

, (3.42)

where the constants α and β are defined as

α :=
3− ν

1 + ν
and β :=

1 + ν

1− ν
. (3.43)

With the stress distribution along the boundary ∂Iε shown in eq. (3.40) and the result (3.39), we can
obtain the topological derivative by evaluating the boundary integral (3.28) analytically. This gives

∫

∂Iε

[[Σµε
]]n · n =

2πε

E

(

1− γ

1 + αγ

)[

4Tµ ·Tµ +
γ(α− 2β)− 1

1 + βγ
(trTµ)

2

]

+ o(ε). (3.44)

Finally, by substituting the above in (3.9) and adopting the function f(ε) as the size (area) of the circular
perturbation, we obtain the explicit closed form expression for the topological derivative of ψ:

DTψ = −HTµ ·Tµ. (3.45)

where the fourth order tensor H is defined as

H :=
1

E

(

1− γ

1 + αγ

)[

4I+
γ(α− 2β)− 1

1 + βγ
(I⊗ I)

]

. (3.46)

3.3. The sensitivity of the macroscopic elasticity tensor. Expressions (3.3) and (3.45) promptly
lead to the explicit formula for the topological asymptotic expansion of ψ:

Tε ·E = T ·E− v(ε)HTµ ·Tµ + o(v(ε)), (3.47)

where v(ε) := πε2/Vµ is the RVE volume fraction of perturbation.
The approach used in Section 2(2.2) to obtain a closed form expression for the macroscopic elasticity

tensor C can be easily extended to derive an analytical formula for its topological sensitivity – the main
result of this paper. Accordingly, we write Eµ as a linear combination of the Cartesian components of E:

Eµ = Eij

(

ei ⊗ ej + Ẽµij

)

= EijEµij
. (3.48)

With the introduction of the above expression in (2.2), the microscopic stress tensor Tµ can be written
as

Tµ = EijCµEµij
= (Tµij

⊗ ei ⊗ ej)E, (3.49)

where Tµij
denotes the microscopic stress field associated with each displacement fluctuation field ũµij

that solves the variational equation (2.20). Then, by combining (3.45) and (3.49) we obtain the following
alternative formula for the topological derivative of ψ

DTψ = −DTµE ·E, (3.50)

where DTµ is the fourth order symmetric tensor field over Ωµ defined by

DTµ = HTµij
·Tµkl

(ei ⊗ ej ⊗ ek ⊗ el), i, j, k, l = 1, 2. (3.51)

Our main result – the asymptotic expansion of the macroscopic elasticity tensor and the corresponding
sensitivity formula – is presented in the following. From (3.45), (3.47) and (3.50) and by making use of
the fact that the macroscopic constitutive response is linear elastic, we obtain

Cε E · E = CE ·E− v(ε)DTµE ·E+ o(v(ε)), (3.52)

where Cε is the macroscopic elasticity tensor of the topologically perturbed microstructure, i.e.

Tε = Cε E. (3.53)
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Finally, since (3.52) is valid for any E we arrive at explicit expression for the topological expansion of
the macroscopic elasticity tensor:

Cε = C− v(ε)DTµ + o(v(ε)). (3.54)

Remark: The topological sensitivity tensor DTµ field over Ωµ, whose explicit expression is given by
(3.51), provides a first order accurate measure of how the macroscopic elasticity tensor varies when a
topological perturbation (a circular inclusion) is added to the RVE. The value of each Cartesian component
(DTµ)ijkl at an arbitrary point y ∈ Ωµ represents the derivative of the component ijkl of the macroscopic
elasticity tensor with respect to the volume fraction v(ε) of a circular inclusion of radius ε inserted at y.
The remarkable simplicity of the closed form sensitivity given by (3.51) is to be noted. Once the vector
fields ũµij

have been obtained as solutions of (2.20) for the original RVE domain, the sensitivity tensor
DTµ can be trivially assembled.
Remark: The topological derivative tensor DTµ is dependent upon the contrast parameter γ. This
dependency is made explicit in definition (3.46) of the tensor H. Note that the limiting cases γ → 0 and
γ → ∞ correspond, respectively, to the insertion of a hole (infinitely compliant material) and a rigid
inclusion (infinitely stiff material). In such cases, the sensitivity tensor is calculated by means of (3.51)
respectively with

H =
1

E
[4I− (I⊗ I)], (3.55)

and

H = −
1

Eα

[

4I+
α− 2β

β
(I⊗ I)

]

. (3.56)

Expression (3.55) coincides with the result derived in [9] for the sensitivity to the insertion of holes.

4. Example of application. Micro-structure topology synthesis

The explicit formula for the macroscopic elasticity sensitivity derived above is a fundamental result
with potential application in different areas of interest. In this section we show what is probably its most
intuitive and straightforward application – the finite element-based automatic synthesis of a microstruc-
ture to meet a pre-specified macroscopic response.

Crucial to the proposed application is the definition of a measure of distance d(A,B) between two
generic symmetric fourth-order tensors A and B. Here we shall adopt simply the square of the Euclidean
norm of the difference between the two tensors, i.e.

d(A,B) := ‖A− B‖2 = ‖A‖2 − 2A · B+ ‖B‖2 . (4.1)

Then, for a pre-specified target constitutive tensor C⋆, we conveniently define the functions φ(ε) and
φ(0), respectively, as

φ(ε) := d(Cε,C
⋆) and φ(0) := d(C,C⋆). (4.2)

Next, note that by taking into account the asymptotic expansion (3.54) of the homogenized elasticity
tensor and definitions (4.1) and (4.2) we obtain the following asymptotic topological expansion of the
function φ(ε):

φ(ε) = ‖Cε − C
⋆‖2 = ‖[C− v(ε)DTµ + o(v(ε))]−C⋆‖

2

= ‖C− C
⋆‖

2
− 2v(ε)DTµ · (C− C

⋆) + o(v(ε)) (4.3)

= φ(0) +DTφ+ o(v(ε)),

where we have identified the topological derivative of the function φ as

DTφ = −2DTµ · (C− C
⋆). (4.4)

Remark: Note that the topological derivative of φ has been derived here without the need for a full
topological asymptotic analysis. The derivation has been based on simply introducing (3.54) into (4.2)1
and then collecting the terms of same power of ε. This can be done for any function of the C with the
required degree of regularity.
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4.1. A simple microstructural synthesis algorithm. With the above at hand, we are now ready
to devise a simple algorithm to synthesise a bi-material microstructure whose macroscopic response is
characterised by C⋆. Our task here is to produce a sequence of changes to a given initial microstructure
topology in order to achieve a final topology for which the value of φ (a non-negative function) is as close
as possible to zero (the zero value corresponds to a perfect match between the target and actual predicted
response). A very simple procedure consists in requiring at each iteration of the algorithm that a small
inclusion be introduced at points ŷ of the RVE where the field DTφ is most negative. That is, we use the
sensitivity information provided by the topological derivative field to obtain a feasible descent direction.
This approach has been successfully used in the context of topological optimization of elastic structures.
For further details we refer to [8]. The algorithm is summarized below:

• Provide a complete description of the initial guess (initial topology) of the RVE with domain
Ωµ and the parameter γ defining the phase contrast; a target macroscopic constitutive response
C⋆; the maximum number of iterations allowed N and a numerical convergence tolerance ǫ.
• While φ > ǫ and j ≤ N , do:

– Compute C
j , Dj

Tµ and Dj
Tµφ in the domain Ωj

µ.

– Change the material properties of the elements for which Dj
Tµφ is most negative. The

maximum number ne of elements whose properties are allowed to change at each iteration
is a user-specified fixed parameter.

– Set Ωj+1
µ = Ωj

µ and j ← j + 1.

In the above, Ωj
µ is the RVE domain at iteration j; and Cj , Dj

Tµ and Dj
Tµφ are the corresponding

quantities evaluated for Ωj
µ. The maximum volume fraction of material that may be changed in each

iteration is limited by ne and the size of the elements, but changes may occur simultaneously at different
RVE locations.

4.2. Application. Automatic synthesis of a bi-material microstructure. The above algorithm is
used here to generate a two-dimensional bi-material microstructure under plane stress conditions. The
(normalised) Young’s modulus of the matrix and inclusion materials are, respectively, Em

µ = 0.01 and

Ei
µ = 1.0 (corresponding to a phase contrast γ=100), both having Poisson’s ratio ν = 0.3. The target

two-dimensional elasticity tensor is chosen as

C
⋆ =





0.165 0.049 0
0.049 0.165 0
0 0 0.013



 . (4.5)

The starting topology of the RVE consists of a unit square homogeneous matrix with a circular inclusion of
diameter 0.50 at the centre of the RVE. In this particular example the widely used periodicity assumption
(2.13) is adopted in the prediction of the macroscopic behaviour. The corresponding macroscopic elasticity
is

C
0 =





0.015 0.004 0
0.004 0.015 0
0 0 0.005



 . (4.6)

To solve the set of linear variational problems required in the computation of C and its topological deriv-
ative field, we use a standard finite element strategy. A fine structured finite element mesh consisting of
93,080 three-noded (linear) triangles is used to discretise the RVE. The mesh is kept constant and only
the Young’s modulus of the elements are changed (being assigned the values Em

µ or Ei
µ) throughout the

iterations according to the criterion set out above in the definition of the algorithm. The algorithmic
parameter ne has been chosen here as 1% of the total number of elements in the mesh. Figure 2 illustrates
the evolution of the topology during the automatic synthesis procedure. It shows the initial, an interme-
diate and the final topology. The dark areas correspond to inclusion material and the light coloured areas
to matrix material. Figure 3 shows the periodic assemble of the final microstructure topology and the
corresponding evolution of the distance function φ. The final topology has macroscopic elasticity tensor

C =





0.165 0.048 0
0.048 0.165 0
0 0 0.016



 (4.7)
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(a) (b) (c)

Figure 2. RVE topology evolution. (a) Given initial topology; (b) Intermediate topol-
ogy at iteration 20, and; (c) Final topology (iteration 100).
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(b)

Figure 3. Final results. (a) Periodic microstructures; (b) Evolution of the relative value
of function φ.

with corresponding normalised value of the distance function φ ≈ 0.013. We remark that due to the
simplicity of the derived topological derivative formula, the calculations required by the algorithm are
straightforward and of easy computational implementation.

5. Conclusions

A fundamental analytical formula for the sensitivity of the two-dimensional macroscopic elasticity
tensor to the insertion of circular inclusions has been derived by applying the concept of topological
derivative within a well-established multi-scale constitutive modelling framework for linear elasticity.
The multi-scale constitutive framework is based on the assumption that the macroscopic strain and
stress tensors are defined as volume averages of their microscopic counterparts over an RVE. It allows
different predictions of macroscopic behaviour – including an upper and a lower bound for stiffness –
to be obtained according to the chosen kinematical constraints imposed upon the RVE. The derived
sensitivity – a symmetric fourth order tensor field over the RVE domain – measures how the estimated
macroscopic elasticity tensor changes when a small circular inclusion is introduced at the micro-scale.
This result is fundamental and has potential application in different areas of interest. To illustrate its
potential applicability, a very simple algorithm based on the proposed formula and relying on the finite
element approximation of the RVE equilibrium problem has been devised to synthesise a microstructure
to a pre-specified macroscopic response. The numerical results have shown the successful use of the
proposed expression in this context. Further use of the present formula in the context of microstructural
optimisation is currently under investigation and will be the subject of a forthcoming publication.
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Asymptotic analysis
This appendix presents the derivation of the asymptotic formula used in the topological sensitivity

analysis developed in Section 3(3.2). We start by considering the following expansion of the stress
fluctuation field associated with the solution ũµε

to problem (3.8) (see [24]):

T̃µε
= T̃∞

µε
+ o(ε), (.1)

where T̃∞
µε

denotes the solution of the elasticity system (3.8) in the infinite domain ℜ2\Hε, such that the

stresses T̃∞
µε

tend to a constant value when ‖y‖ → ∞. Then, the exterior problem can be written as















divT̃∞
µε

= 0 in ℜ2\Hε

divT̃∞
µε

= 0 in Iε
T̃∞

µε
→ T̃µ at ∞

[[T̃∞
µε
]]n = −[[T̄µ]]n on ∂Iε,

(.2)

where n denotes the outward unit normal to the boundary ∂Iε, T̃µ is the solution of the unperturbed
problem (2.8) and T̄µ is defined in (2.7).

In a polar coordinate system (r, θ) having its origin at the centre of the hole Hε and with the angle

θ measured with respect to one of the principal directions of T̃µ, the components of the solution of the
partial differential equation (.2) are given by

• Exterior solution (r ≥ ε)

(T̃∞
µε
)rr = S̄ 1

1+βγ
ε2

r2
+ D̄ 1

1+αγ
ε2

r2

(

4− 3 ε2

r2

)

cos 2(θ + ϕ)

+S̃
(

1− 1−γ
1+βγ

ε2

r2

)

+ D̃
[

1− 1−γ
1+αγ

ε2

r2

(

4− 3 ε2

r2

)]

cos 2θ,

(T̃∞
µε
)θθ = −S̄ 1

1+βγ
ε2

r2
+ D̄ 3

1+αγ
ε4

r4
cos 2(θ + ϕ)

+S̃
(

1 + 1−γ
1+βγ

ε2

r2

)

− D̃
(

1 + 3 1−γ
1+αγ

ε4

r4

)

cos 2θ,

(T̃∞
µε
)θr = D̄ 1

1+αγ
ε2

r2

(

2− 3 ε2

r2

)

sin 2(θ + ϕ)

−D̃
[

1 + 1−γ
1+αγ

ε2

r2

(

2− 3 ε2

r2

)]

cos 2θ;

(.3)

• Interior solution (0 < r < ε)

(T̃∞
µε
)rr = − βγ

1+βγ

[

S̄ − 2

1+νm
S̃
]

− αγ
1+αγ

[

D̄ cos 2(θ + ϕ)− 4

3−νm
D̃ cos 2θ

]

,

(T̃∞
µε
)θθ = − βγ

1+βγ

[

S̄ − 2

1+νm
S̃
]

+ αγ
1+αγ

[

D̄ cos 2(θ + ϕ)− 4

3−νm
D̃ cos 2θ

]

,

(T̃∞
µε
)θr = αγ

1+αγ

[

D̄ sin 2(θ + ϕ)− 4

3−νm
D̃ sin 2θ

]

,

(.4)

where ϕ indicates the angle between principal stress directions associated to the stress fields T̄µ and T̃µ.
In addition, we denote

S̄ = −(1− γ)
σ̄µ1

+ σ̄µ2

2
, S̃ =

σ̃µ1
+ σ̃µ2

2
, (.5)

D̄ = −(1− γ)
σ̄µ1
− σ̄µ2

2
, D̃ =

σ̃µ1
− σ̃µ2

2
, (.6)

with σ̄µ1,2
and σ̃µ1,2

representing the principal stresses associated with the displacement fields ū and ũµ

of the original (unperturbed) domain Ωµ. The constants α and β used in eqs. (.3) and (.4) are given by

α =
3− νm
1 + νm

and β =
1 + νm
1− νm

. (.7)
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Petrópolis, Brazil.

[5] Eshelby, J. 1975 The elastic energy-momentum tensor. Journal of Elasticity, 5(3-4), 321–335.
[6] Garreau, S., Guillaume, P. & Masmoudi, M. 2001 The topological asymptotic for pde systems: the elasticity case.

SIAM Journal on Control and Optimization, 39(6), 1756–1778.
[7] Germain, P., Nguyen, Q. & Suquet, P. 1983 Continuum thermodynamics. Journal of Applied Mechanics, Transactions

of the ASME, 50(4), 1010–1020.
[8] Giusti, S., Novotny, A. & Padra, C. 2008 Topological sensitivity analysis of inclusion in two-dimensional linear elasticity.

Engineering Analysis with Boundary Elements, 32(11), 926–935.
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