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Abstract. The topological asymptotic analysis provides the sensitivity of a given shape func-
tional with respect to an infinitesimal domain perturbation. Therefore, this sensitivity can
be naturally used as a descent direction in a structural topology design problem. However,
according to the literature concerning the topological derivative, only the classical approach
based on flexibility minimization for a given amount of material, without control on the stress
level supported by the structural device, has been considered. Yet, one of the most important
requirements in mechanical design is to find the lightest topology satisfying a material fail-
ure criterion. In this paper, therefore, we introduce a class of penalty functionals that mimic
a pointwise constraint on the Von Mises stress field. The associated topological derivative is
obtained for plane stress linear elasticity. Only the formal asymptotic expansion procedure is
presented, but full justifications can be easily deduced from existing works. Then, a topology
optimization algorithm based on these concepts is proposed, that allows for treating local stress
criteria. Finally, this feature is shown through some numerical examples.

1. Introduction

Structural topology optimization is an expanding research field of computational mechanics
which has been growing very rapidly in the last years. For a survey on topology optimization
methods, the reader may refer to the review paper [17], or to the monographs [2, 11, 23]. A
relatively new approach for this kind of problem is based on the concept of topological derivative
[15, 18, 33]. This derivative allows to quantify the sensitivity of a given shape functional with
respect to an infinitesimal topological domain perturbation, like typically the nucleation of a
hole. Thus, the topological derivative has been successfully applied in the context of topology
optimization [7, 13, 28], inverse problems [5, 12, 20, 29] and image processing [9, 25, 24, 26].
Concerning the theoretical development of the topological asymptotic analysis, the reader may
refer to [30], for instance. However, in the context of structural topology design, the topolog-
ical derivative has been used as a descent direction only for the classical approach based on
minimizing flexibility for a given amount of material. Although widely adopted, through this
formulation the stress level supported by the structural device cannot be controlled. This limi-
tation is not admissible in several applications, because one of the most important requirements
in mechanical design is to find the lightest topology satisfying a material failure criterion. Even
the methods based on relaxed formulations [1, 10, 11] have been traditionally applied to min-
imum compliance problems. In fact, only a few works dealing with local stress control can be
found in the literature (see, for instance, [3, 4, 14, 16, 19, 31]). This can be explained by the
mathematical and numerical difficulties introduced by the large number of highly non-linear
constraints associated to local stress criteria.

Following the original ideas presented in [8] for the Laplace equation, in this paper we intro-
duce a class of penalty functionals in order to approximate a pointwise constraint on the Von
Mises stress field. The associated topological derivative is then obtained for plane stress linear
elasticity. We show that the obtained topological asymptotic expansion can be used within a
topology optimization algorithm, which allows for treating local stress criteria. Finally, the effi-
ciency of this algorithm is verified through some numerical examples. In particular, the obtained
structures are free of geometrical singularity, unlike what occurs by the compliance minimization
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approach. We recall that such singularities lead to stress concentrations which are highly unde-
sirable in structural design. For a detailed description of the stress concentration phenomenon,
the reader may refer to [22, 32].

The paper is organized as follows. The plane stress linear elasticity problem and the proposed
class of Von Mises stress penalty functionals are presented in Section 2. The topological deriv-
ative associated to these functionals is calculated in Section 3. The proposed topology design
algorithm is described in Section 4. Finally, Section 5 is dedicated to the numerical experiments.

2. Problem statement

In this Section we introduce a class of Von Mises stress penalty functionals under plane stress
linear elasticity assumptions.

2.1. The constrained topology optimization problem. Let D be a bounded domain of R2

with Lipschitz boundary Γ. We assume that Γ is split into three disjoint parts ΓD, ΓN and Γ0,
where ΓD is of nonzero measure, and ΓN is of class C1. We consider the topology optimization
problem:

Minimize
Ω⊂D

IΩ(uΩ) (2.1)

subject to the state equations⎧⎪⎪⎨
⎪⎪⎩

−div(γΩσ(uΩ)) = 0 in D,
uΩ = 0 on ΓD,

γΩσ(uΩ)n = g on ΓN ,
σ(uΩ)n = 0 on Γ0,

(2.2)

and the constraint

σM (uΩ) ≤ σ̄M a.e. in Ω ∩ D̃. (2.3)

The notations used above are the following. The system (2.2) is understood in the weak sense,
as this will be the case throughout all the paper, and admits an unique solution

uΩ ∈ V = {u ∈ H1(D)2, u|ΓD
= 0}.

The material density γΩ is a piecewise constant function which takes two positive values:

γΩ =

{
γin in Ω,
γout in D \ Ω.

In the applications, D \Ω is occupied by a weak phase that approximates an empty region, thus
we assume that

γout � γin. (2.4)

The stress tensor σ(uΩ), normalized to a unitary Young modulus, is related to the displacement
field uΩ through the Hooke law:

σ(u) = Ce(u),

where

e(u) =
∇u+∇uT

2
is the strain tensor, and

C = 2μII + λ(I ⊗ I)

is the elasticity tensor. Here, I and II are the second and fourth order identity tensors, respec-
tively, and the Lamé coefficients μ and λ are given in plane stress by

μ =
1

2(1 + ν)
, and λ =

ν

1− ν2
,
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where ν is the Poisson ratio. The Neumann data g is assumed to belong to L2(ΓN )
2. The Von

Mises stress σM (u) is given by

σM(u) =

√
1

2
B̃σ(u).σ(u) =

√
1

2
Bσ(u).e(u),

where
B̃ = 3II − (I ⊗ I) (2.5)

and
B = CB̃ = 6μII + (λ− 2μ)(I ⊗ I). (2.6)

The set D̃ is an open subset of D and σ̄M is a prescribed positive number. Finally, the objective
functional IΩ : V → R is assumed to admit a known topological derivative DT IΩ as defined in
Section 2.3.

2.2. Penalization of the constraint. Problem (2.1)-(2.3) is very difficult to address directly
because of the pointwise constraint. Therefore we propose an approximation based on the
introduction of a penalty functional. Let Φ : R+ → R+ be a nondecreasing function of class C2.
To enable proper justifications of the subsequent analysis, we assume further that the derivatives
Φ′ and Φ′′ are bounded. We consider the penalty functional:

JΩ(u) =

∫
D̃
γΩΦ(

1

2
Bσ(u).e(u))dx. (2.7)

Then, given a penalty coefficient α > 0, we define the penalized objective functional:

IαΩ(u) = IΩ(u) + αJΩ(u).

Henceforth we shall solve the problem:

Minimize
Ω⊂D

IαΩ(uΩ) subject to (2.2). (2.8)

We will see that solving (2.8) instead of (2.1)-(2.3) leads to feasible domains provided that α
and Φ are appropriately chosen, namely that the two following conditions are fulfilled:

• α is large enough,
• Φ′ admits a sharp variation around σ̄.

2.3. Topology perturbations. Given a point x0 ∈ D \ ∂Ω and a radius ε > 0, we consider a
circular inclusion ωε = B(x0, ε), and we define the perturbed domain (see Fig. 1):

Ωε =

{
Ω \ ωε if x0 ∈ Ω,
(Ω ∪ ωε) ∩D if x0 ∈ D \ Ω.

We denote for simplicity (uΩε
, γΩε

) by (uε, γε) and (uΩ, γΩ) by (u0, γ0). Then, for all ε ∈ [0, 1],
γε can be expressed as:

γε =

{
γ0 in D \ ωε,
γ1 in ωε.

We note that γ0 and γ1 are two positive functions defined in D and constant in a neighborhood
of x0. For all ε ≥ 0, the state equations can be rewritten:⎧⎪⎪⎨

⎪⎪⎩
−div (γεσ(uε)) = 0 in D,

uε = 0 on ΓD,
γεσ(uε)n = g on ΓN ,
σ(uε)n = 0 on Γ0.

(2.9)

In order to solve (2.8), we are looking for an asymptotic expansion, named as topological as-
ymptotic expansion, of the form

IαΩε
(uε)− IαΩ(u0) = f(ε)DT I

α
Ω(x0) + o(f(ε)),

where f : R+ → R+ is a function that goes to zero with ε, and DT I
α
Ω : D → R is the so-called

topological derivative of the functional IαΩ. Since such an expansion is assumed to be known for
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the objective functional IΩ, we subsequently focus on the penalty functional JΩ. We adopt the
simplified notation:

Jε(u) := JΩε
(u) =

∫
D̃
γεΦ(

1

2
Bσ(u).e(u))dx. (2.10)
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Figure 1. Sketch of the working domain.

3. Topological sensitivity analysis of the Von Mises stress penalty functional

In this section, the topological sensitivity analysis of the penalty functional JΩ is carried out.
We follow the approach described in [8] for the Laplace problem. Here, the calculations are
more technical, but the estimates of the remainders detached from the topological asymptotic
expansion are analogous. Hence we do not repeat these estimates. The reader interested in the
complete proofs may refer to [8].

Possibly shifting the origin of the coordinate system, we assume henceforth for simplicity that
x0 = 0.

3.1. A preliminary result. The reader interested in the proof of the proposition below may
refer to [6].

Proposition 3.1. Let V be a Hilbert space and ε0 > 0. For all ε ∈ [0, ε0), consider a vector

uε ∈ V solution of a variational problem of the form

aε(uε, v) = 
ε(v) ∀v ∈ V, (3.1)

where aε and 
ε are a bilinear form on V and a linear form on V, respectively. Consider also,

for all ε ∈ [0, ε0), a functional Jε : V → R and a linear form Lε(u0) ∈ V ′. Suppose that the

following hypotheses hold.

(1) There exist two numbers δa and δ
 and a function ε ∈ R+ �→ f(ε) ∈ R such that, when

ε goes to zero,

(aε − a0)(u0, vε) = f(ε)δa + o(f(ε)), (3.2)

(
ε − 
0)(vε) = f(ε)δ
 + o(f(ε)), (3.3)

lim
ε→0

f(ε) = 0, (3.4)

where vε ∈ V is an adjoint state satisfying

aε(ϕ, vε) = −〈Lε(u0), ϕ〉 ∀ϕ ∈ V. (3.5)

(2) There exist two numbers δJ1 and δJ2 such that

Jε(uε) = Jε(u0) + 〈Lε(u0), uε − u0〉+ f(ε)δJ1 + o(f(ε)), (3.6)

Jε(u0) = J0(u0) + f(ε)δJ2 + o(f(ε)). (3.7)

Then we have

Jε(uε)− J0(u0) = f(ε)(δa − δ
+ δJ1 + δJ2) + o(f(ε)).
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3.2. Adjoint state. The bilinear and linear forms associated with Problem (2.9) are classically
defined in the space V = {u ∈ H1(D)2, u|ΓD

= 0} by:

aε(u, v) =

∫
D
γεσ(u).e(v) dx ∀u, v ∈ V, (3.8)


ε(v) =

∫
ΓN

g.v ds ∀v ∈ V. (3.9)

At the point u0 (unperturbed solution), the penalty functional admits the tangent linear ap-
proximation Lε(u0) given by:

〈Lε(u0), ϕ〉 =

∫
D̃
γεΦ

′(
1

2
Bσ(u0).e(u0))Bσ(u0).e(ϕ)dx ∀ϕ ∈ V.

We define the function

k1 = Φ′(
1

2
Bσ(u0).e(u0))χD̃, (3.10)

where χD̃ is the characteristic function of D̃. Then the adjoint state is (a weak) solution of the
boundary value problem:⎧⎨

⎩
−div (γεσ(vε)) = +div (γεk1Bσ(u0)) in D,

vε = 0 on ΓD,
γεσ(vε)n = −γεk1Bσ(u0)n on ΓN ∪ Γ0.

(3.11)

3.3. Regularity assumptions. We make the following assumptions.

(1) For any r1 > 0 there exists r2 ∈ (0, r1) such that every function u ∈ H1(D \B(x0, r2))
2

satisfying ⎧⎨
⎩

−div (γ0σ(u)) = 0 in D \B(x0, r2),
u = 0 on ΓD,

γ0σ(uε)n = 0 on ΓN ∪ Γ0

belongs to W 1,4(D̃ \B(x0, r1))
2.

(2) The load g is such that u0 ∈W 1,4(D̃)2.

Note that, by elliptic regularity, u0 and v0 are automatically of class C1,β, β > 0, in the vicinity
of x0 provided that x0 ∈ D \ ∂Ω \ ∂D̃.

Remark 3.2. The above assumption is satisfied in many situations, including nonsmooth do-
mains, like for instance in the following case:

• D is a Lipschitz polygon,
• ΓN ∩ ∂D̃ = ∅ and ΓD ∩ ∂D̃ = ∅,
• the interface ∂Ω \ ∂D is the disjoint union of smooth simple arcs,

• if a junction point between the interface and ∂D belongs to ∂D̃, then the Young modulus
distribution around this point is quasi-monotone (see the definition in [27]); in particular,
if only one arc touches ∂D at this point, it is sufficient that the angle defined by these
curves in D \ Ω is less than π.

We refer to [27] and the references therein for justifications and extensions.

3.4. Variation of the bilinear form. In order to apply Proposition 3.1, we need to obtain a
closed form for the leading term of the quantity:

(aε − a0)(u0, vε) =

∫
ωε

(γ1 − γ0)σ(u0).e(vε)dx. (3.12)

In the course of the analysis, the remainders detached from this expression will be denoted by
Ei(ε), i = 1, 2, ... By setting ṽε = vε − v0 and assuming that ε is sufficiently small so that γε is
constant in ωε, we obtain:

(aε − a0)(u0, vε) = (γ1 − γ0)(x0)

(∫
ωε

σ(u0).e(v0)dx+

∫
ωε

σ(u0).e(ṽε)dx

)
.
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For the reader’s convenience, the values of γ0(x0) and γ1(x0) are reported in Table 1 (see also
Fig. 1). Since u0 and v0 are smooth in the vicinity of x0, we approximate σ(u0) and e(v0) in

x0 γ0(x0) γ1(x0)

Ω γin γout
D \ Ω γout γin

Table 1. Coefficients γ0(x0) and γ1(x0) according to the location of x0.

the first integral by their values at the point x0, and write:

(aε − a0)(u0, vε) = (γ1 − γ0)(x0)

(
πε2σ(u0)(x0).e(v0)(x0) +

∫
ωε

σ(u0).e(ṽε)dx+ E1(ε)

)
.

As vε is solution of the adjoint equation (3.11), then the function ṽε solves⎧⎪⎪⎨
⎪⎪⎩

−div(γεσ(ṽε)) = 0 in ωε ∪ (D \ ωε),
[γεσ(ṽε)n] = −(γ1 − γ0) (k1Bσ(u0)n+ σ(v0)n) on ∂ωε,

ṽε = 0 on ΓD,
σ(ṽε)n = 0 on ΓN ∪ Γ0,

(3.13)

where [γεσ(ṽε)n] ∈ H−1/2(∂ωε)
2 denotes the jump of the normal stress through the interface

∂ωε. We recall that, as before, the boundary value problem (3.13) is to be understood in the
weak sense for ṽε ∈ H1(D)2. We set S = S1 + S2, with

S1 = k1(x0)Bσ(u0)(x0) and S2 = σ(v0)(x0).

We approximate σ(ṽε) by σ(h
S
ε ) solution of the auxiliary problem:⎧⎨

⎩
−div σ(hSε ) = 0 in ωε ∪ (R2 \ ωε),
[γεσ(h

S
ε )n] = −(γ1 − γ0)(x0)Sn on ∂ωε,

σ(hSε ) → 0 at ∞.
(3.14)

In the present case of a circular inclusion, the tensor σ(hSε ) admits the following expression in a
polar coordinate system (r, θ):

• for r ≥ ε

σr(r, θ) = − (α1 + α2)
1− γ

1 + ξγ

ε2

r2
−

1− γ

1 + ηγ

(
4
ε2

r2
− 3

ε4

r4

)
(β1 cos 2θ + β2 cos 2(θ + δ)) ,(3.15)

σθ(r, θ) = (α1 + α2)
1− γ

1 + ξγ

ε2

r2
− 3

1− γ

1 + ηγ

ε4

r4
(β1 cos 2θ + β2 cos 2(θ + δ)) , (3.16)

σrθ(r, θ) = −
1− γ

1 + ηγ

(
2
ε2

r2
− 3

ε4

r4

)
(β1 sin 2θ + β2 sin 2(θ + δ)) , (3.17)

• for 0 < r < ε

σr(r, θ) = (α1 + α2) ξ
1− γ

1 + ξγ
+ η

1− γ

1 + ηγ
(β1 cos 2θ + β2 cos 2(θ + δ)) , (3.18)

σθ(r, θ) = (α1 + α2) ξ
1− γ

1 + ξγ
− η

1− γ

1 + ηγ
(β1 cos 2θ + β2 cos 2(θ + δ)) , (3.19)

σrθ(r, θ) = −η
1− γ

1 + ηγ
(β1 sin 2θ + β2 sin 2(θ + δ)) , (3.20)

Some terms in the above formulas require explanation. The parameter δ denotes the angle
between the eigenvectors of tensors S1 and S2,

αi =
1

2
(siI + siII) and βi =

1

2
(siI − siII), i = 1, 2,
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where siI and siII are the eigenvalues of tensors Si for i = 1, 2. In addition, the constants ξ and
η are respectively given by

ξ =
1 + ν

1− ν
, η =

3− ν

1 + ν
,

and γ is the contrast, that is, γ = γ1(x0)/γ0(x0).
From these elements, we obtain successively:∫

ωε

σ(u0).e(ṽε)dx =

∫
ωε

σ(ṽε).e(u0)dx =

∫
ωε

σ(hSε ).e(u0)dx+ E2(ε).

Then approximating e(u0) in ωε by its value at x0 and calculating the resulting integral with
the help of the expressions (3.18)-(3.20) yields:∫

ωε

σ(u0).e(ṽε)dx =

∫
ωε

σ(hSε ).e(u0)(x0)dx+ E2(ε) + E3(ε)

= −πε2ρ (k1TBσ(u0).e(u0) + Tσ(u0).e(v0)) (x0) + E2(ε) + E3(ε),

with

ρ =
γ1 − γ0
ηγ1 + γ0

(x0) and T = ηII +
1

2

ξ − η

1 + γξ
I ⊗ I. (3.21)

Finally, the variation of the bilinear form can be written in the form:

(aε − a0)(u0, vε) = −πε2(γ1 − γ0)(x0)ρ

(
k1ηBσ(u0).e(u0) +

1

2
k1

ξ − η

1 + γξ
trBσ(u0)tre(u0)

−
η + 1

γ − 1
σ(u0).e(v0) +

1

2

ξ − η

1 + γξ
trσ(u0)tre(v0)

)
(x0) + (γ1 − γ0)(x0)

3∑
i=1

Ei(ε). (3.22)

3.5. Variation of the linear form. Since here 
ε is independent of ε, it follows trivially that

(
ε − 
0)(vε) = 0. (3.23)

3.6. Partial variation of the penalty functional with respect to the state. We now
study the variation:

VJ1(ε) := Jε(uε)− Jε(u0)− 〈Lε(u0), uε − u0〉

=

∫
D̃
γε

[
Φ(

1

2
Bσ(uε).e(uε))− Φ(

1

2
Bσ(u0).e(u0))− Φ′(

1

2
Bσ(u0).e(u0))Bσ(u0).e(uε − u0)

]
dx.

By setting ũε = uε − u0, we can write:

VJ1(ε) =

∫
D̃
γε

[
Φ(

1

2
Bσ(u0).e(u0) +Bσ(u0).e(ũε) +

1

2
Bσ(ũε).e(ũε))−Φ(

1

2
Bσ(u0).e(u0))

− Φ′(
1

2
Bσ(u0).e(u0))Bσ(u0).e(ũε)

]
dx. (3.24)

Since uε is solution of the state equation (2.9), then by difference we find that ũε solves:⎧⎪⎪⎨
⎪⎪⎩

−div(γεσ(ũε)) = 0 in ωε ∪ (D \ ωε),
[γεσ(ũε)n] = −(γ1 − γ0)σ(u0)n on ∂ωε,

ũε = 0 on ΓD,
σ(ũε)n = 0 on ΓN ∪ Γ0.

(3.25)

By setting now S = σ(u0)(x0), we approximate ũε by h
S
ε solution of the auxiliary problem (3.14).

It comes:

VJ1(ε) =

∫
D̃
γε

[
Φ(

1

2
Bσ(u0).e(u0) +Bσ(u0).e(h

S
ε ) +

1

2
Bσ(hSε ).e(h

S
ε ))− Φ(

1

2
Bσ(u0).e(u0))

− Φ′(
1

2
Bσ(u0).e(u0))Bσ(u0).e(h

S
ε )

]
dx+ E4(ε). (3.26)
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If x0 ∈ D\D̃, we obtain easily, using a Taylor expansion of Φ and the estimate |σ(hSε )(x)| = O(ε2)
which holds uniformly with respect to x a fixed distance away from x0, that VJ1(ε) = o(ε2).

Thus we assume that x0 ∈ D̃ (the special case where x0 ∈ ∂D̃ is not treated). In view of the
decay of σ(hSε ) at infinity and the regularity of u0 near x0, we write

VJ1(ε) =

∫
R2

γ∗ε

[
Φ(

1

2
Bσ(u0)(x0).e(u0)(x0) +Bσ(u0)(x0).e(h

S
ε ) +

1

2
Bσ(hSε ).e(h

S
ε ))

−Φ(
1

2
Bσ(u0)(x0).e(u0)(x0))−Φ′(

1

2
Bσ(u0)(x0).e(u0)(x0))Bσ(u0)(x0).e(h

S
ε )

]
dx+E4(ε)+E5(ε),

with γ∗ε (x) = γ1(x0) if x ∈ ωε, γ
∗
ε (x) = γ0(x0) otherwise. The above expression can be rewritten

as

VJ1(ε) =

∫
R2

γ∗ε

[
Φ(

1

2
B̃S.S + B̃S.σ(hSε ) +

1

2
B̃σ(hSε ).σ(h

S
ε ))− Φ(

1

2
B̃S.S)

− Φ′(
1

2
B̃S.S)B̃S.σ(hSε )

]
dx+ E4(ε) + E5(ε).

We denote by VJ11(ε) and VJ12(ε) the parts of the above integral computed over ωε and R
2 \ωε,

respectively. Using the expressions (3.18)-(3.20), we find

VJ11(ε) = πε2γ1(x0)

[
Φ(

1

2
B̃S.S − ρT B̃S.S + ρ2

1

2
TB̃TS.S)−Φ(

1

2
B̃S.S) + ρΦ′(

1

2
B̃S.S)TB̃S.S

]
.

Next, we define the function independent of ε

ΣSρ (x) = σ(hSε )(εx). (3.27)

A change of variable yields

VJ12(ε) = ε2
∫
R2\ω

γ0(x0)

[
Φ(

1

2
B̃S.S+B̃S.ΣSρ +

1

2
B̃ΣSρ .Σ

S
ρ )−Φ(

1

2
B̃S.S)−Φ′(

1

2
B̃S.S)B̃S.ΣSρ

]
dx.

We set

Ψρ(S) =

∫
R2\ω

[
Φ(

1

2
B̃S.S+B̃S.ΣSρ+

1

2
B̃ΣSρ .Σ

S
ρ )−Φ(

1

2
B̃S.S)−Φ′(

1

2
B̃S.S)(B̃S.ΣSρ+

1

2
B̃ΣSρ .Σ

S
ρ )

]
dx.

(3.28)

The extra term 1
2B̃ΣSρ .Σ

S
ρ has been added so that Ψρ(S) vanishes whenever Φ is linear. Thus

we have

VJ12(ε) = ε2γ0(x0)

[
Ψρ(S) +

1

2
Φ′(

1

2
B̃S.S)

∫
R2\ω

B̃ΣSρ .Σ
S
ρdx

]
.

Using the expressions (3.15)-(3.17), a symbolic calculation of the above integral provides

VJ12(ε) = ε2γ0(x0)

[
Ψρ(S) +

1

4
πρ2k1(x0)

(
5(2S.S − tr2S) + 3

(
1 + ηγ

1 + ξγ

)2

tr2S

)]
.

Besides, after a change of variable and rearrangements, Ψρ(S) reduces to

Ψρ(S) =

∫ 1

0

∫ π

0

1

t2
[Φ(s2M +Δ(t, θ))− Φ(s2M )− Φ′(s2M )Δ(t, θ)]dθdt, (3.29)

where

Δ(t, θ) = ρ
t

2

[
(s2I − s2II)(2 + 3

1 + ηγ

1 + ξγ
) cos θ + 3(sI − sII)

2(2− 3t) cos 2θ

]

+ρ2
t2

4

[
3(sI + sII)

2(
1 + ηγ

1 + ξγ
)2 + (sI − sII)

2(3(2 − 3t)2 + 4cos2 θ) + 6
1 + ηγ

1 + ξγ
(s2I − s2II)(2 − 3t) cos θ

]
,

s2M =
1

2
B̃S.S.
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Finally we obtain:

V J1(ε) = πγ1(x0)

[
Φ(

1

2
B̃S.S − ρT B̃S.S + ρ2

1

2
TB̃TS.S)− Φ(

1

2
B̃S.S) + ρΦ′(

1

2
B̃S.S)TB̃S.S

]

+ γ0(x0)

[
Ψρ(S) +

1

4
πρ2k1(x0)

(
5(2S.S − tr2S) + 3

(
1 + ηγ

1 + ξγ

)2

tr2S

)]
+ E4(ε) + E5(ε).

(3.30)

3.7. Partial variation of the penalty functional with respect to the domain. The last
term is treated as follows:

V J2(ε) := Jε(u0)− J0(u0)

=

∫
ωε∩D̃

(γ1 − γ0)Φ(
1

2
Bσ(u0).e(u0))dx

= πε2χD̃(x0)(γ1 − γ0)(x0)Φ(
1

2
Bσ(u0)(x0).e(u0)(x0)) + E6(ε).

3.8. Topological derivative. Like in [8] for the Laplace equation, we can prove that the re-
minders Ei(ε), i = 1, ..., 6 behave like o(ε2). Therefore, after summation of the different terms
according to Proposition 3.1 and a few simplifications, we arrive at the final formula for the
topological asymptotic expansion of the penalty functional. It is given by

Jε(uε)− J0(u0) = ε2DTJΩ(x0) + o(ε2)

with the topological derivative

DTJΩ = −π(γ1 − γ0) [ρk1TBS.E + (ρT − II)S.Ea]

+ πγ1χD̃

[
Φ(

1

2
B̃S.S − ρT B̃S.S + ρ2

1

2
TB̃TS.S) + ρk1TB̃S.S

]

+ γ0χD̃

[
Ψρ(S) +

1

4
πρ2k1

(
5(2S.S − tr2S) + 3

(
1 + ηγ

1 + ξγ

)2

tr2S

)]
− πχD̃γ0Φ(

1

2
B̃S.S). (3.31)

Formula (3.31) is valid for all x0 ∈ D \ ∂D̃ \ ∂Ω. We recall that ρ and T are given by (3.21); B̃,
B, k1 and Ψρ(S) are respectively given by (2.5), (2.6), (3.10), (3.29) and

S = σ(u0), E = e(u0), Ea = e(v0).

The coefficients γ0 and γ1 are given by Table 1. Moreover, u0 = uΩ is the solution of the state
equation (2.2) and v0 = vΩ is the solution of the adjoint equation (3.11) for ε = 0, that is,⎧⎨

⎩
−div (γ0σ(v0)) = +div (γ0k1Bσ(u0)) in D,

v0 = 0 on ΓD,
γ0σ(v0)n = −γ0k1Bσ(u0)n on ΓN ∪ Γ0.

(3.32)

Remark 3.3. For the particular case in which ν = 1/3, Formula (3.31) admits the simpler
expression:

DTJΩ = −π(γ1 − γ0)
[
4ρk1s

2
M − (1− 2ρ)S.Ea

]
+ πγ1χD̃

[
Φ((1− 2ρ)2s2M ) + 4ρk1s

2
M

]

+ γ0χD̃

[
Ψρ(S) +

1

2
πρ2k1(5S.S − tr2S)

]
− πγ0χD̃Φ(s

2
M ),

where Ψρ(S) is given by (3.29) with

Δ(t, θ) = ρ
t

2

[
5(s2I − s2II) cos θ + 3(sI − sII)

2(2− 3t) cos 2θ
]

+ ρ2
t2

4

[
3(sI + sII)

2 + (sI − sII)
2(3(2 − 3t)2 + 4cos2 θ) + 6(s2I − s2II)(2 − 3t) cos θ

]
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and

ρ =
γ1 − γ0
2γ1 + γ0

(x0).

Remark 3.4. Formula (3.31) has some similarity with results proved in [30], where a theory
is developed for a broad class of elliptic state equations and shape functionals in three space
dimensions, then it is applied to the linear elasticity case. However, the shape functionals
addressed in this context are linear or quadratic in σ(u), and there is no background material
(the inclusions are Neumann holes).

4. A topology design algorithm

Given a real parameter p ≥ 1, we consider the penalty function (see Fig. 2):

Φp(t) = Θp(
t

σ̄2M
)

with
Θp : R+ → R+,

t �→ (1 + tp)1/p − 1.

It is clear that this function satisfies the required assumptions (see Section 2.2). The penalized

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2. Function Θpn for pn = 2n, n = 0, ..., 6.

problem that we shall solve reads:

Minimize
Ω⊂D

IαΩ(uΩ) = IΩ(uΩ) + α

∫
D̃
γΩΦp(σM (uΩ)

2)dx subject to (2.2). (4.1)

In practice, p must be chosen as large as possible, provided that the resolution of (4.1) can
accommodate with the sharp variation of Θ′

p around 1. In all the numerical examples, we take
the value p = 32 which, after several trials, proved to be a good compromise. In order to reduce
the computer time, the function Ψρ has been tabulated (see Fig. 3).

The unconstrained minimization problem (4.1) is solved by using the algorithm devised in [7].
We briefly describe this algorithm here. It relies on a level-set domain representation and the
approximation of topological optimality conditions by a fixed point method. Thus, the current
domain Ω is characterized by a function ψ ∈ L2(D) such that Ω = {x ∈ D,ψ(x) < 0} andD\Ω̄ =
{x ∈ D,ψ(x) > 0}. We compute the topological derivative DT I

α(Ω) = DT I(Ω) + αDTJ(Ω)
where DTJ(Ω) is given by formula (3.31) with γ0 and γ1 chosen according to Table 1. Then
we set G(x) = DT I

α(Ω)(x) if x ∈ D \ Ω̄ and G(x) = −DT I
α(Ω)(x) if x ∈ Ω. We define the

equivalence relation on L2(D):

ϕ ∼ ψ ⇐⇒ ∃λ > 0, ϕ = λψ.
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Figure 3. Function Ψρ for ρ = −1 (hole creation), p = 8 and ν = 0.3, with
sI + sII in abscissa and sI − sII in ordinate.

Clearly, the relation G ∼ ψ is a sufficient optimality condition for the class of perturbations
under consideration. We construct successive approximations of this condition by means of a
sequence (ψn)n∈N verifying

ψ0 ∈ L2(D),
ψn+1 ∈ co(ψn, Gn) ∀n ∈ N.

Above, the convex hull co(ψn, Gn) applies to the equivalence classes, namely half-lines. Choosing
representatives of unitary norm for ψn, ψn+1 and Gn, we obtain the algorithm:

ψ0 ∈ S,

ψn+1 =
1

sin θn
[sin((1− κn)θn)ψn + sin(κnθn)Gn] ∀n ∈ N.

The notations are the following: S is the unit sphere of L2(D), θn = arccos 〈Gn,ψn〉
‖Gn‖‖ψn‖

is the angle

between the vectors Gn and ψn, and κn ∈ [0, 1] is a step which is determined by a line search
in order to decrease the penalized objective functional. The iterations are stopped when this
decrease becomes too small. At this stage, if the optimality condition is not approximated in
a satisfactory manner (namely the angle θn is too large), an adaptive mesh refinement using a
residual based a posteriori error estimate on the solution uΩn

is performed and the algorithm is
continued.

5. Numerical Experiments

Given a fixed multiplier β > 0, we consider the objective functional

IΩ(uΩ) = |Ω|+ βK(uΩ),

with |Ω| the area of Ω and the compliance

K(uΩ) =

∫
ΓN

g.uΩds.

Unless otherwise specified, the domain D̃ is equal to the whole computational domain D. The
material densities are γin = 1 and γout = 10−3. The Poisson ratio is ν = 0.3. The topological
derivative of the area is obvious, and that of the compliance is known (see [6, 21]). In each case,
the initial guess is the full domain Ω0 = D.
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5.1. Bar. Our first example is a bar under traction (see Fig. 4). The computational domain
is the unit square and the load is uniformly distributed along two line segments of length 0.4.
For comparison, we first address the unconstrained situation (i.e. α = 0). We choose β = 1,
so that the theoretical optimal domain is known as the horizontal central band of width 0.4.
Next, we want to retrieve this domain with the local stress constraint σM (uΩ) ≤ σ̄M = 1, and
β comprised between 0 and 1. We choose β = 0.2 and α = 1, then α = 10. We observe that
the obtained domains satisfy the constraint, but they are slightly bigger than the theoretical
optimum. This is a consequence of the fact that Θp(s) is slightly positive for s < 1. For those
three computations, the CPU time used on a PC with 2.4 GHz processor is equal to 90s, 110s
and 114s, respectively, for a mesh containing 12961 nodes.

Figure 4. Bar: boundary conditions and obtained domains for (α, β) = (0, 1),
(α, β) = (1, 0.2) and (α, β) = (10, 0.2), respectively.

5.2. Michell’s structure. We study a variant of Michell’s structure constructed in order to
avoid any stress singularity at the initial stage. The working domain is a rectangle of size 65×80
perforated by two circular holes (see Fig. 5, left). On the left one a Dirichlet boundary condition
is prescribed. On the right one a surface load of density g = (0,−1)T is applied. We address the
unconstrained and constrained cases successively (see Fig. 5 and Fig. 6). In the second case,
we take σ̄M = 6, β = 0.04 and α = 100 then α = 500. In the first case, we take β = 0.078 so
as to obtain a structure with similar area to the previous case (α = 100). Some numerical data
are reported in Table 2 for comparison. The last column indicates the number of nodes in the
final mesh.

Figure 5. Michell’s structure: boundary conditions and unconstrained solution
with the corresponding Von Mises stress distribution.
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Figure 6. Michell’s structure: optimal domain for α = 100 (left) and Von Mises
stress distribution, optimal domain for α = 500 (right).

α β Area Compliance IΩ(uΩ) maxΩ
σM (uΩ)
σ̄M

CPU time (s) Mesh

0 0.078 1007 11453 1901 1.68 188 13599
100 0.04 1007 11979 1486 1.02 319 17124
500 0.04 1062 11616 1527 0.97 176 13599

Table 2. Michell’s structure.

5.3. Eyebar. In this example, the working domain is a rectangle of size 16 × 8 deprived of a
circular hole of radius 1.5. On the border of this hole, a horizontal load of density g(x, y) =
((y2 − 1.52)χx≤0, 0) is applied, where (x, y) denotes a local coordinate system whose origin is at
the center of the hole. On the right side, the structure is clamped along a segment of length 2 (see

Fig. 7). Here and in the subsequent examples, the subdomain D̃ is represented in gray. Again,
we show results obtained in the unconstrained (α = 0) and constrained (α = 500, σ̄M = 5)
cases, with β adjusted in order to obtain similar areas (see Fig. 7 and Table 3).

Figure 7. Eyebar: boundary conditions and obtained domains for α = 0 and
α = 500.

α β Area Compliance maxΩ
σM (uΩ)
σ̄M

CPU time (s) Mesh

0 0.25 46.3 187 1.31 169 13520
500 0.2 46.4 193 0.99 206 13520

Table 3. Eyebar.

5.4. L-beam. We now turn to a classical problem containing a geometrical singularity, namely
the L-shaped beam (see Fig. 8 and 9 and Table 4). The length of the two branches is 2.5. The
structure is clamped at the top, and a unitary pointwise force is applied at the middle of the
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right tip. We first show a result obtained in the unconstrained case (α = 0, β = 0.01). Then
we take the parameters α = 104, β = 0.01 and three different values for σ̄M : 40, 30 and 25. We
observe that, in these last three cases, the reentrant corner is rounded, unlike what occurs in
the first case, when minimizing the compliance without stress constraint.

Figure 8. L-beam: boundary conditions and obtained design in the uncon-
strained case (top), obtained designs with the penalization for σ̄M = 40, σ̄M = 30
and σ̄M = 25 (bottom, from left to right).
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Figure 9. L-beam with σ̄M = 30: convergence history for the area, the compli-
ance and the area of the region in which the constraint is violated (from left to
right).

α β σ̄M Area Compliance maxΩ
σM (uΩ)
σ̄M

CPU time (s) Mesh

104 10−2 40 1.74 186 1.01 891 26693
104 10−2 30 1.93 203 0.99 672 26708
104 10−2 25 2.05 181 1.01 536 26678

Table 4. L-beam.

5.5. U-beam. This last example consists in an U-shaped structure included in a box of size
3 × 2.5 (see Fig. 10). We show a result obtained with the parameters β = 0.3, σ̄M = 4 and

α = 104. We get maxΩ
σM (uΩ)
σ̄M

= 1.02 on a mesh of 28385 nodes, in 363s of CPU time.
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Figure 10. U-beam: boundary conditions, obtained design and zoom near a
reentrant corner.

5.6. Conclusion. In the above examples, we have minimized a linear combination of the area
and the compliance of an elastic structure while prescribing an upper bound on the Von Mises
stress at each point. The two basic ingredients of our approach are the use of the topological
derivative as a descent direction and of a penalty method for the constraint imposition. This is
in contrast with the existing literature on the topic, where either dual methods are implemented
[14, 16, 19, 31], with the well-known difficulties related to the irregularity of the Lagrange
multiplier, or a simple power law penalization is considered [3, 4], generally leading to unfeasible
domains. Furthermore, the topological derivative does not rely on any relaxation, which is
a quite delicate issue for local criteria. Finally, the computational cost of this algorithm is
remarkably low.
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