
TOPOLOGICAL SENSITIVITY ANALYSIS OF A MULTI-SCALE CONSTITUTIVE

MODEL CONSIDERING A CRACKED MICROSTRUCTURE

A.A. NOVOTNY, J. SOKO LOWSKI, AND E.A. DE SOUZA NETO

Abstract. This paper deals with the sensitivity analysis of the macroscopic elasticity
tensor to topological microstructural changes of the underlying material. In particular,
the microstucture is topologicaly perturbed by the nucleation of a small circular inclusion.
The derivation of the proposed sensitivity relies on the concept of topological derivative,
applied within a variational multi-scale constitutive framework where the macroscopic strain
and stress at each point of the macroscopic continuum are defined as volume averages of
their microscopic counterparts over a Representative Volume Element (RVE) of material
associated with that point. We consider that the RVE can contain a number of voids,
inclusions and/or cracks. It is assumed that non-penetration conditions are imposed at the
crack faces which do not allow the opposite crack faces to penetrate each other. The derived
sensitivity leads to a symmetric fourth order tensor field over the unperturbed RVE domain,
which measures how the macroscopic elasticity parameters estimated within the multiscale
framework changes when a small circular inclusion is introduced at the micro-scale level.

1. Introduction

Composite materials have become one of the most important classes of engineering mate-
rials. Their macroscopic mechanical behavior is of paramount importance in the design of
load bearing components for a vast number of applications in civil, mechanical, aerospace,
biomedical and nuclear industries. In a broad sense, one can argue that much of material
science is about improving macroscopic material properties by means of topological and
shape changes at a microstructural level. For example, changes in shape of graphite inclu-
sions in a cast iron matrix may produce dramatic changes in the corresponding macroscopic
properties of this material. In this context, the ability to accurately predict the macroscopic
mechanical behavior from the corresponding microscopic properties as well as its sensitivity
to changes in microstructure becomes essential in the analysis and potential purpose-design
and optimisation of heterogeneous media. Such concepts have been successfully used, for
instance, in [2, 15, 16] by means of a relaxation-based technique in the design of microstruc-
tural topologies that produce negative macroscopic Poisson’s ratio. This type of approach
relies on the use of a fictitious material density field and mimics, in a regularised sense, the
introduction of localised topological microstructural changes (voids) wherever the artificial
density is sufficiently close to zero (refer, for instance, to the fundamental papers [5, 27]).

In contrast to the regularised approach, in [11] was proposed a general exact analytical
expression for the sensitivity of the two-dimensional macroscopic elasticity tensor to topo-
logical changes of the microstructure of the underlying material. The macroscopic linear
elastic response is estimated by means of a well-established homogenisation-based multi-
scale constitutive theory for elasticity problems [10, 18] where the macroscopic strain and
stress tensors at each point of the macroscopic continuum are defined as the volume av-
erages of their microscopic counterparts over a Representative Volume Element (RVE) of
material associated with that point. In this paper we extend the results presented in [11]
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by considering that the RVE can contain, besides voids and inclusions, a number of cracks.
It is assumed that non-penetration conditions are imposed at the crack faces which do not
allow the opposite crack faces to penetrate each other. Since the problem is non-linear, we
use the domain truncation technique together with the topological asymptotic expansion of
the Steklov-Poincaré operator as proposed in [25] to derive the final closed formula for the
topological derivative of the macroscopic specific energy. Then we consider two limit cases in
which the cracks are either completely open or closed under compression. For these extrema
situations, we obtain the topological derivative of the macroscopic homogenised elasticity
tensor. The proposed sensitivity is a symmetric fourth order tensor field over the RVE that
measures how the macroscopic elasticity constants estimated within the multi-scale frame-
work changes when a small circular inclusion is introduced at the micro-scale. Its analytical
formula is derived by making use of the concepts of topological asymptotic expansion and
topological derivative [6, 24] within a variational formulation of the adopted multi-scale the-
ory. The (relatively new) mathematical notions of topological asymptotic expansion and
topological derivative allow the closed form exact calculation of the sensitivity of a given
shape functional with respect to infinitesimal domain perturbations such as the insertion of
voids, inclusions or source terms. Their use in the context of solid mechanics, topological
optimisation of load bearing structures and inverse problems is reported in a number of
recent publications [1, 3, 4, 9, 14, 17, 21, 22]. Concerning the theoretical development of the
topological asymptotic analysis, the reader may refer to [20], for instance. In the present
context, the variational setting for the multi-scale modelling methodology as described in [7]
is found to be particularly well-suited for the application of the topological derivative for-
malism. The final format of the proposed analytical formula is strikingly simple and can be
potentially used in applications such as the synthesis and optimal design of microstructures
to meet a specified macroscopic behavior.

The work is organised as follows. We start by briefly describing the multi-scale constitu-
tive framework adopted in the estimation of the macroscopic elasticity tensor associated to
the cracked microstructure. The modelling approach is cast within the variational setting
described in [7]. Before presenting the main contribution of the paper (the closed formula
for the sensitivity of the macroscopic elasticity tensor to topological microstructural pertur-
bations taking into account a cracked microcell) an overview of the topological derivative
concept is given, followed by its application to the problem in question. This leads to the
identification of the required sensitivity tensor field, that represents the topological deriv-
ative of the macroscopic homogenised elasticity tensor with respect to the nucleation of a
small inclusion at the cracked microstructure.

2. Multi-scale constitutive modelling

This section describes a homogenisation-based variational multi-scale framework for clas-
sical elasticity problems which allows estimating the macroscopic elasticity tensor to be
obtained from the given geometrical and elastic properties of a local Representative Vol-
ume Element (RVE) of material. This constitutive modelling approach follows closely the
methodology of [10] . It is analogous to the multi-scale strategy presented, among others,
by [19] and [18] – and whose variational structure is described in detail in [7].

The starting point of the multi-scale constitutive theory is the assumption that any point
x of the macroscopic continuum (refer to Fig. 1) is associated to a local RVE whose domain
Ωµ has characteristic length Lµ, much smaller than the characteristic length L of the macro-
continuum domain, Ω. The RVE domain consist of an elastic body containing a number
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of cracks γc. To simplify the formulation we shall consider here only cracks that do not
intersect the boundary of the RVE.

x
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Figure 1. Macroscopic continuum with a locally attached microstructure.

As mentioned in the previous section, the macroscopic strain tensor ε at a point x of
the macroscopic continuum is the volume average of its microscopic counterpart εµ over the
domain of the RVE:

ε ≡
1

Vµ

∫

Ωµ

∇suµ , (2.1)

where Vµ is the total volume of the RVE and uµ denoting the microscopic displacement field
of the RVE. The use of Green’s Theorem in definition (2.1) gives the following equivalent
expression for ε

ε =
1

Vµ

∫

∂Ωµ

uµ ⊗s n , (2.2)

where n is the outward unit normal to the boundary ∂Ωµ and ⊗s denotes the symmetric
tensor product.

Without loss of generality, it is possible split uµ into a sum

uµ (y) = u+ u (y) + ũµ (y) , (2.3)

of a constant (rigid) RVE displacement coinciding with the macro displacement u = u(x), a
field u (y) ≡ ε y, linear in y and a fluctuation displacement field ũµ(y) that, in general, varies
with y. Following (2.3) the microscopic strain field (2.1) can be expressed as a sum

∇suµ = ε+∇sũµ , (2.4)

of a homogeneous strain (uniform over the RVE) coinciding with the macroscopic strain, and
a field ∇sũµ corresponding to a fluctuation of the microscopic strain about the homogenised
(average) value.

2.1. Admissible and virtual microscopic displacement fields. Assumption (2.1) places
a constraint on the admissible displacement fields of the RVE. That is, only fields uµ that
satisfy (2.1) can be said to be kinematically admissible. This condition can be formally
expressed by requiring the set Vµ of kinematically admissible displacements of the RVE to
satisfy

Vµ ⊂ V∗
µ ≡

{
v ∈

[
H1(Ωµ)

]2
:

∫

Ωµ

v = Vµu ,

∫

∂Ωµ

v ⊗s n = Vµ ε

}
, (2.5)

where V∗
µ is named the minimally constrained set of kinematically admissible RVE displace-

ment fields.
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In view of (2.3), constraint (2.5) can, without loss of generality, be made equivalent to

requiring that the space Ṽµ of admissible displacement fluctuations of the RVE be a subspace

of the minimally constrained space of displacement fluctuations, Ṽ∗
µ:

Ṽµ ⊂ Ṽ∗

µ ≡

{
v ∈

[
H1(Ωµ)

]2
:

∫

Ωµ

v = 0,

∫

∂Ωµ

v ⊗s n = 0

}
. (2.6)

Trivially, we have that the space of virtual displacement of the RVE, defined as

Uµ ≡
{
η ∈

[
H1(Ωµ)

]2
: η = v1 − v2; ∀v1, v2 ∈ Vµ

}
, (2.7)

coincides with the space of microscopic displacement fluctuations, i.e., Uµ = Ṽµ. Since we
are dealing with a cracked microstructure, we need to introduce the convex sets

Kµ = {v ∈ Vµ : [[v]]γc · n ≥ 0 on γc} and K̃µ = {v ∈ Ṽµ : [[v]]γc · n ≥ 0 on γc} , (2.8)

where [[v]]γc denotes the jump of function v on γc, that is

[[·]]γc := (·)|γ+
c
− (·)|γ−

c
(2.9)

and ± fit positive and negative crack faces γ±c with respect to n.

2.2. Macroscopic stress. Similarly to the macroscopic strain tensor (2.1), the macroscopic
stress tensor, σ, is defined as the volume average of the microscopic stress field σµ, over the
RVE:

σ ≡
1

Vµ

∫

Ωµ

σµ(uµ) . (2.10)

In the present analysis, we shall assume the materials of the RVE matrix and inclusions to
satisfy the classical linear elastic constitutive law:

σµ(ξ) = Cµ∇
sξ , (2.11)

where Cµ is the fourth order elasticity tensor, for the isotropic and homogeneous materials,
defined as:

Cµ =
E

1− ν2
[(1− ν) II + ν (I⊗ I)] , (2.12)

with E and ν denoting, respectively, the Young’s modulus and the Poisson’s ratio of the
domain Ωµ. In addition, we use I and II to denote the second and fourth order identity
tensors, respectively.

2.3. The RVE equilibrium problem. Let us consider that the RVE is in equilibrium if
and only if the displacement field uµ in Ωµ satisfies the classical variational inequality [23]:
Find uµ ∈ Kµ, such that

∫

Ωµ

σµ(uµ) · ∇
s(η − uµ) ≥ 0 ∀η ∈ Kµ . (2.13)

The linearity of (2.11) together with and the additive decomposition (2.4), allows the micro-
scopic stress field to be split as

σµ(uµ) = σµ(u) + σµ(ũµ) , (2.14)

where σµ(u) is the stress field associated with the uniform strain induced by u, i.e., σµ(u) =
Cµ∇

su = Cµε and σµ(ũµ) is the stress fluctuation field associated with ũµ, i.e., σµ(ũµ) =
Cµ∇

sũµ. By introducing (2.14) into (2.13), we obtain that the RVE equilibrium problem
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consists of finding, for a given macroscopic strain ε, an admissible microscopic displacement
fluctuation field ũµ ∈ K̃µ, such that

∫

Ωµ

σµ(ũµ) · ∇
s(η − ũµ) ≥ −

∫

Ωµ

σµ · ∇
s(η − ũµ) ∀η ∈ K̃µ , (2.15)

where σµ = σµ(u). By substituting η = 0 and η = 2ũµ as test function in (2.15) and sum up
the relation obtained, we prove the equality

∫

Ωµ

(σµ(ũµ) + σµ(u)) · ∇
sũµ = 0 . (2.16)

2.4. Classes of multi-scale constitutive models. To completely define a constitutive

model of the present type, the choice of a space Uµ ⊂ Ṽ∗
µ of variations of admissible displace-

ment must be made. We list below four classical possible choices:

(a) Taylor model or Rule of Mixtures. This model is obtained by simply defining

Uµ = UT

µ ≡ {0} . (2.17)

In this case, the strain is homogeneous over the RVE, i.e., εµ = ε.
(b) Linear boundary displacement model. For this class of models the choice is

Uµ = UL

µ ≡ {ũµ ∈ Ṽ∗

µ : ũµ (y) = 0 ∀y ∈ ∂Ωµ} . (2.18)

(c) Periodic boundary fluctuations model. The space of displacement fluctuations is de-
fined as

Uµ = UP
µ ≡ {ũµ ∈ Ṽ∗

µ : ũµ(y
+) = ũµ(y

−) ∀pair (y+, y−) ∈ ∂Ωµ} . (2.19)

(d) Minimally constrained. In this case, we chose,

Uµ = UU
µ ≡ Ṽ∗

µ . (2.20)

Remark 1. Note that the spaces of displacement fluctuations (and virtual displacement)
listed above satisfy

UT

µ ⊂ UL

µ ⊂ UP

µ ⊂ UU

µ . (2.21)

That is, the Taylor model gives the stiffest (most kinematically constrained) solution to the
microscopic equilibrium problem, followed in order of decreasing stiffness, by the linear bound-
ary displacement, the periodic displacement fluctuation and the uniform boundary traction
model. The uniform traction model produces the most compliant (least kinematically con-
strained) solution.

2.5. The homogenised elasticity tensor. Let us introduce a convex function of class C0

such that

W (ε) =
1

2
σ · ε =

1

2Vµ

∫

Ωµ

σµ(uµ) · ∇
suµ . (2.22)

Then the macroscopic stress tensor σ is a subgradient of W , namely [23]

δW ≥ σ · δε . (2.23)

Thus we have

σ = ∂εW , (2.24)

where ∂ε(·) is used to denote the subgradient of (·) with respect to ε. Therefore, at the
macroscopic level, the homogenised elasticity tensor C is obtained as

C ≡ ∂εσ . (2.25)
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On the other hand,

∂εσ = ∂ε

(
1

Vµ

∫

Ωµ

σµ(uµ)

)

= ∂ε

(
1

Vµ

∫

Ωµ

Cµ∇
suµ

)

=
1

Vµ
∂ε

∫

Ωµ

Cµ (ε+∇sũµ)

=
1

Vµ

∫

Ωµ

Cµ +
1

Vµ

∫

Ωµ

Cµ∂ε(∇
sũµ) . (2.26)

Thus we have,

C = CT + C̃ , (2.27)

where

CT =
1

Vµ

∫

Ωµ

Cµ and C̃ =
1

Vµ

∫

Ωµ

Cµ∂ε(∇
sũµ) . (2.28)

In particular, we are interested in the upper and lower bounds for the homogenised elas-
ticity tensor C, which are obtained as

C+ ≡ ∂εσ|ε=ε+ and C−≡ ∂εσ|ε=ε− , (2.29)

where ε+ and ε− represent respectively dilating and compressive spherical strain tensors.

For these exceptional two cases, the convex set K̃µ degenerates to Hilbert spaces and the

variational inequality (2.15) leads to a variational problem given by: Find ũ±µ ∈ S̃±
µ , such

that ∫

Ωµ

σµ(ũ
±
µ ) · ∇

sη = −

∫

Ωµ

σµ · ∇
sη ∀η ∈ S̃±

µ , (2.30)

where S̃+
µ and S̃−

µ are defined as

S̃+
µ = Vµ and S̃−

µ = {v ∈ Vµ : [[v]]γc · n = 0 on γc} . (2.31)

It is important to observe that for ε+ the cracks are opened, i.e.

[[ũµ]]γc · n < 0 and [[σµ(uµ)]]γcn · n = 0 (2.32)

and for ε− the cracks are under a compressive contact, that is

[[ũµ]]γc · n = 0 and [[σµ(uµ)]]γcn · n < 0 . (2.33)

Now, we can write the macroscopic strain in Cartesian component form:

ε± = (ε±)ijei ⊗ ej , (2.34)

where {ei} is an orthonormal basis of the two-dimensional Euclidean space and the scalars
(ε±)ij are the corresponding Cartesian components of the macroscopic strain ε±. Therefore,

after differentiating the state equation (2.30) with respect to ε± we obtain the following set

of canonical variational problems: Find ũ±µij
∈ S̃±

µ , such that
∫

Ωµ

σµ(ũ
±

µij
) · ∇sη = −

∫

Ωµ

Cµ(ei ⊗ ej) · ∇
sη ∀η ∈ S̃±

µ , (2.35)

where ũ±µij
is the derivative of ũ±µ with respect to each component (ε±)ij. Thus, since

Cµ = (Cµ)klpqek ⊗ el ⊗ ep ⊗ eq and ∇sũ±µij
= (∇sũ±µij

)pqep ⊗ eq , (2.36)
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the tensor C̃± is obtained as

C̃± =

[
1

Vµ

∫

Ωµ

(Cµ)ijpq(∇
sũ±µij

)pq

]
(ei ⊗ ej ⊗ ek ⊗ el) . (2.37)

3. The topological sensitivity of the homogenised elasticity tensor

This section presents the main result of this paper. Here, we derive a closed formula for
the sensitivity of the upper and lower bounds for the homogenised elasticity tensor C± to
the introduction of a circular inclusion centered at an arbitrary point of the RVE domain.
To this end, let ψ be a functional that depends on a given domain and let it have sufficient
regularity so that the following expansion is possible

ψ (ρ) = ψ (0) + f (ρ)DTψ + o (f (ρ)) , (3.1)

where ψ(0) is the functional evaluated for the original domain and ψ(ρ) denotes the functional
evaluated for a topologically perturbed domain. The parameter ρ defines the size of the
topological perturbation, so that the original domain is retrieved when ρ= 0. In addition,
f(ρ) is a regularising function defined such that f(ρ) → 0 with ρ→ 0+ and o (f (ρ)) contains
all terms of higher order in f(ρ). The termDTψ of (3.1) is defined as the topological derivative
of ψ at the unperturbed (original) RVE domain.

The concept of topological derivative was rigorously introduced by [24]. Since then, the
notion of topological derivative has proved extremely useful in the treatment of a wide
range of problems in mechanics, optimisation, inverse analysis and image processing and has
become a subject of intensive research, see for instance, [4, 6, 9, 20, 21].

3.1. Application to the multi-scale elasticity model. To begin the topological sensi-
tivity analysis, it is appropriate to define the following functional

ψ(ρ) ≡ Vµσρ · ε ⇒ ψ(0) = Vµσ · ε , (3.2)

where σρ denotes the macroscopic stress tensor associated with a RVE topologically per-
turbed by a small inclusion of radius ρ and center at y0 ∈ Ωρ defined by Iρ and σ is the
macroscopic stress tensor associated to the unperturbed domain Ωµ. More precisely, the
perturbed domain is defined as Ωµρ = (Ωµ�Hρ) ∪ Iρ (refer to Fig. 2).

g
c

y
0 n
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c

Figure 2. Microstructure perturbed with a inclusion Iε.

Thus, the asymptotic topological expansion of the functional (3.2) reads

σρ · ε = σ · ε+
1

Vµ
f (ρ)DTψ + o (f (ρ)) . (3.3)
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3.2. Topological derivative calculation. In order to obtain a closed form expression of
the asymptotic expansion (3.3), we start here by deriving a closed formula for the associated
topological derivative DTψ. To this end, we define the functional

ψ(ρ) ≡ JΩµρ

(
uµρ

)
=

∫

Ωµρ

σ∗

µ(uµρ) · ∇
suµρ , (3.4)

where σ∗
µ(uµρ) is the microscopic stress field associated to perturbed domain Ωµρ . Analo-

gously to the presented in the previous section, the stress tensor field σ∗
µ is defined as

σ∗

µ(uµρ) = C∗

µ∇
suµρ , (3.5)

where the constitutive tensor C∗
µ, for γ ∈ R+, is given by

C∗
µ =

{
Cµ ∀y ∈ Ωµ�Hρ

γCµ ∀y ∈ Iρ
. (3.6)

Particularly, the microscopic displacement field uµρ ∈ Kµρ ≡ {v ∈ Kµ : [[v]] = 0 on ∂Iρ} is
the solution of the variational inequality for the perturbed domain Ωµρ : Find uµρ ∈ Kµρ ,
such that: ∫

Ωµρ

σ∗

µ(uµρ) · ∇
s(η − uµρ) ≥ 0 ∀η ∈ Kµρ , (3.7)

where Kµρ is the space of kinematically admissible displacement fluctuations of the perturbed
RVE. In addition, uµρ is decomposed as

uµρ(y) = u+ u(y) + ũµρ(y) , (3.8)

where u = u(x), u(y) = εy and the fluctuation displacement field ũµρ ∈ K̃µρ ≡ {v ∈ K̃µ :

[[v]] = 0 on ∂Iρ} is the solution of the following variational inequality: Find ũµρ ∈ K̃µρ , such
that ∫

Ωµρ

σ∗

µ(ũµρ) · ∇
s(η − ũµρ) ≥ −

∫

Ωµρ

σ∗

µ · ∇
s(η − ũµρ) ∀η ∈ K̃µρ , (3.9)

where σ∗
µ = σ∗

µ(u) is the microscopic stress field, associated to Ωµρ , induced by u, i.e., σ∗
µ(u) =

C∗
µε and σ

∗
µ(ũµρ) is the stress fluctuation field associated with ũµρ , i.e., σ

∗
µ(ũµρ) = C∗

µ∇
sũµρ .

By substituting η = 0 and η = 2ũµρ as test function in (3.9) and sum up the relation
obtained, we prove the equality

∫

Ωµρ

(
σ∗

µ(ũµρ) + σ∗

µ(u)
)
· ∇sũµρ = 0 . (3.10)

Among the methods for calculation of the topological derivative available in the literature,
we shall adopt the one proposed in [21], whereby the topological derivative is obtained as

DTψ = lim
ρ→0

1

f ′ (ρ)

d

dρ
JΩµρ

(
uµρ

)
. (3.11)

The derivative of the functional JΩµρ

(
uµρ

)
with respect to the perturbation parameter ρ can

be seen as the sensitivity of JΩµρ
, in the classical sense, to the change in shape produced by

a uniform expansion of the inclusion.
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3.2.1. Domain decomposition. Since the problem is non-linear, let us introduce a domain
decomposition given by ΩµR

= Ωµρ \ BR, where BR is a ball of radius R > ρ and center at

y0 ∈ Ωµ, that is BR = {y ∈ R2 : ‖y − y0‖ < R}, BR is the closure of BR. Thus, we have the
following linear elasticity system defined in BR with an inclusion Bρ inside: Find w̃µρ , such
that 




−divσ∗
µ(w̃µρ) = 0 in BR

σ∗
µ(w̃µρ) = C∗

µ∇
sw̃µρ in BR

w̃µρ = ϕ on ∂BR

[[w̃µρ ]] = 0 on ∂Bρ

[[σ∗
µ(w̃µρ)]]n = −(1 − γ)(Cµε)n on ∂Bρ

. (3.12)

We are interested in the Steklov-Poincaré operator on ∂BR, that is

Aρ : ϕ ∈ H1/2(∂BR) 7→ σ∗

µ(w̃µρ)n ∈ H−1/2(∂BR) . (3.13)

Then we have σ∗
µ(ũµR

)n = Aρ(ũµR
) on ∂BR, where ũµR

is solution of the variational inequality

in ΩµR
, that is: Find ũµR

∈ K̃µρ∫

ΩµR

σ∗

µ(ũµR
)·∇s(η−ũµR

)+

∫

∂BR

Aρ(ũµR
)·(η−ũµR

) ≥ −

∫

ΩµR

σ∗

µ(u)·∇
s(η−ũµR

) ∀η ∈ K̃µρ .

(3.14)
Finally, in the disk BR we have∫

BR

σ∗

µ(w̃µρ) · ∇
sw̃µρ =

∫

∂BR

Aρ(w̃µρ) · w̃µρ −

∫

BR

σ∗

µ(u) · ∇
sw̃µρ , (3.15)

where w̃µρ is the solution of the elasticity system in the disk BR (3.12) or equivalently solution

of the following variational problem: Find w̃µρ ∈ W̃µρ , such that
∫

BR

σ∗

µ(w̃µρ) · ∇
sη = −

∫

BR

σ∗

µ(u) · ∇
sη ∀η ∈ W̃0

µ , (3.16)

with W̃µρ and W̃0
µρ

such that

W̃µρ = {w ∈ H1(BR)
2 : [[w]] = 0 on ∂Bρ, w = ϕ on ∂BR} , (3.17)

W̃0
µρ

= {w ∈ H1(BR)
2 : [[w]] = 0 on ∂Bρ, w = 0 on ∂BR} . (3.18)

Therefore, we can define the microscopic displacement field defined in the disk BR as the
sum

wµρ(y) = u+ u(y) + w̃µρ(y) . (3.19)

3.2.2. Shape sensitivity analysis of the energy functional. Let us introduced the energy-based
shape functional defined in the disk BR, that is

Eρ(wµρ) :=

∫

BR

σ∗

µ(wµρ) · ∇
swµρ . (3.20)

Thus, we need to calculate

d

dρ
Eρ(wµρ) = 2

∫

BR

σ∗

µ(wµρ) · ∇
s ˙̃wµρ +

∫

BR

Σµ · ∇V

= 2

∫

BR

(σ∗

µ(w̃µρ)− σ∗

µ(u)) · ∇
s ˙̃wµρ +

∫

BR

Σµρ · ∇V , (3.21)

which was obtained using the Reynold’s transport theorem and the concept of material
derivatives of spacial fields [12, 26]. Some of the terms in (3.21) require explanation. Vector
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V represents the shape change velocity field defined on the disk BR and such that V = 0 on

∂BR and V = −n on ∂Bρ. Thus, ˙̃wµρ ∈ W̃0
µ is the material (total) derivative with respect

to ρ. Finally, the Eshelby energy-momentum tensor Σµρ takes the form [8, 13]

Σµρ := σ∗

µ(wµρ) · ∇
swµρI− 2(∇w̃µρ)

Tσ∗

µ(wµρ) . (3.22)

Since ˙̃wµρ ∈ W̃0
µρ

and considering that Σµρ is a free-divergence tensor field (divΣµρ = 0), the
shape derivative of the energy functional becomes

d

dρ
Eρ(wµρ) = −

∫

∂Bδ

[[Σµρ ]]n · n , (3.23)

where we have used the fact that w̃µρ is solution to (3.16), namely

∫

BR

(σ∗

µ(w̃µρ)− σ∗

µ(u)) · ∇
s ˙̃wµρ = 0 ∀ ˙̃wµρ ∈ W̃0

µρ
. (3.24)

3.2.3. Calculation of the limit ρ → 0. By using formula (3.23) together with (3.11), the
topological derivative can be obtained from the following result

DTψ = −lim
ρ→0

1

f ′ (ρ)

∫

∂Iδ

[[Σµρ ]]n · n . (3.25)

Remark 2. For the simplest class of multi-scale models given by the rule of mixtures (or
Taylor) model, the tensor Σµρ is given by

Σµρ = (σ∗

µ · ε)I . (3.26)

Then, substituting (3.26) into definition (3.25) of the topological derivative and identifying
function f(ρ) as the size of the perturbation Iρ, i.e., f (ρ) = πρ2, we find that, for the rule
of mixtures model, the topological derivative is given by

DT

T ψ = −(1− γ)σµ · ε . (3.27)

In order to derive an explicit expression for the integrand on the right hand side of (3.25),
we use the existence of the asymptotic expansions for w̃µρ , solution of the elasticity system
(3.12) defined in the disk BR ⊂ R2, in the neighborhood of Bρ, namely

w̃µρ(y) = w̃µ(y) + w̃∞
µ (y) + o(ρ) . (3.28)

In addition, w̃∞
µ is proportional to ρ, ‖w̃∞

µ ‖R2 = O(ρ), on the surface ∂Bρ of the ball. The
expansion of σµ(w̃µρ) corresponding to (3.12) has the form

σµ(w̃µρ) = σ∞

µ (w̃µ0
(y0), y) +O(ρ) . (3.29)

where σ∞
µ is the stress distribution around a circular inclusion in an infinity medium and w̃µ

is solution of the elasticity system (3.12) defined in the disk BR ⊂ R2 for ρ = 0. Thus, σ∞
µ

can be calculated explicitly, which is given in a polar coordinate system (r, θ) by:
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• for r ≥ ρ

(σ∞

µ )rr = α̃

(
1−

1− γ

1 + γa

ρ2

r2

)
+ β̃

(
1− 4

1− γ

1 + γb

ρ2

r2
+ 3

1− γ

1 + γb

ρ4

r4

)
cos 2θ

− α
1− γ

1 + γa

ρ2

r2
− β

(
4
1− γ

1 + γb

ρ2

r2
− 3

1− γ

1 + γb

ρ4

r4

)
cos 2(θ + φ) , (3.30)

(σ∞
µ )θθ = α̃

(
1 +

1− γ

1 + γa

ρ2

r2

)
− β̃

(
1 + 3

1− γ

1 + γb

ρ4

r4

)
cos 2θ

+ α
1− γ

1 + γa

ρ2

r2
− 3β

1− γ

1 + γb

ρ4

r4
cos 2(θ + φ) , (3.31)

(σ∞

µ )rθ = −β̃

(
1 + 2

1− γ

1 + γb

ρ2

r2
− 3

1− γ

1 + γb

ρ4

r4

)
sin 2θ

− β

(
2
1− γ

1 + γb

ρ2

r2
− 3

1− γ

1 + γb

ρ4

r4

)
sin 2(θ + φ) ; (3.32)

• for 0 < r < ρ

(σ∞
µ )rr = 2

γa

1 + γa

α̃

1− ν
+ 4

γb

1 + γb

β̃

3− ν
cos 2θ

+ γa
1− γ

1 + γa
α + γb

1− γ

1 + γb
β cos 2(θ + φ) , (3.33)

(σ∞

µ )θθ = 2
γa

1 + γa

α̃

1− ν
− 4

γb

1 + γb

β̃

3− ν
cos 2θ

+ γa
1− γ

1 + γa
α− γb

1− γ

1 + γb
β cos 2(θ + φ) , (3.34)

(σ∞

µ )rθ = −4
γb

1 + γb

β̃

3− ν
sin 2θ − γb

1− γ

1 + γb
β sin 2(θ + φ) . (3.35)

In the above formulas, φ denotes the angle between the eigenvector of tensors σµ(wµ(y0))

and σµ(u). The coefficients α̃, β̃ and α, β are given respectively by

α̃ =
1

2
(σ̃1 + σ̃2), β̃ =

1

2
(σ̃1 − σ̃2) and α =

1

2
(σ1 + σ2), β =

1

2
(σ1 − σ2) , (3.36)

where σ̃1,2 and σ1,2 are the eigenvalues of tensors σµ(wµ(y0)) and σµ(u), respectively. In
addition, constants a and b are given by

a =
1 + ν

1− ν
and b =

3− ν

1 + ν
. (3.37)

Finally, considering formulas (3.30)-(3.34) together with (3.19) in (3.25), we can calculate
the integral on ∂Iρ explicitly, which allows to identify function f(ρ) = πρ2. Then, after
calculating the limit ρ→ 0, we obtain the following result:

Theorem 3. The energy shape functional admits for ρ→ 0 the following topological asymp-
totic expansion

σρ · ε = σ · ε+ v(ρ)Hγσµ(uµ) · σµ(uµ) + o (v (ρ)) , (3.38)

where uµ is solution of the variational inequality (2.13) in Ωµ ⊂ R2, v(ρ) is the volume
fraction of the inclusion, namely,

v(ρ) =
πρ2

Vµ
(3.39)
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and Hγ is a forth-order tensor defined as

Hγ = −
1

E

(
1− γ

1 + aγ

)[
4II +

γ(a− 2b)− 1

1 + bγ
I⊗ I

]
. (3.40)

Corollary 4. Let us consider the contrast γ → 0. Thus, the elastic inclusion degenerates to
a circular cavity with homogeneous Neumann boundary condition and the tensor H0 becomes

H0 = −
1

E
[4II− I⊗ I] . (3.41)

Corollary 5. Let us consider the contrast γ → ∞. Thus, the elastic inclusion degenerates
to rigid one and the tensor H∞ takes the form

H∞ =
1

aE

[
4II +

a− 2b

b
I⊗ I

]
. (3.42)

3.3. The sensitivity of the macroscopic elasticity tensor. Let us consider again the
particular case associated to the dilating ε+ and compressive ε− spherical strain tensors.
Thus, by differentiating twice the topological asymptotic expansion (3.38) with respect to
the macroscopic strain tensor ε± we obtain

C±

ρ = C± + v(ρ)D±

Tµ + o (v (ρ)) , (3.43)

where C±
ρ are the upper and lower bounds for the homogenised elasticity tensor of the

topologically perturbed RVE, C± are the upper and lower bounds for the homogenised
elasticity tensor of the unperturbed RVE and v(ρ) = πρ2/Vµ is the volume fraction of the
perturbation. In addition, D±

Tµ is the fourth order symmetric tensor field over Ωµ defined by
(with i, j, k, l = 1, 2)

D±

Tµ = (Hγσ
±

µij
· σ±

µkl
)ei ⊗ ej ⊗ ek ⊗ el , (3.44)

where σ±
µij

is the canonical stress field defined analogously to (2.14), that is

σ±

µij
= C±

µ (ei ⊗ ej) + σµ(ũ
±

µij
) , (3.45)

with ũ±µij
solution to the set of canonical variational problems given by (2.35).

Remark 6. The topological sensitivity tensor (3.44) provides a first order accurate measure
of how the macroscopic elasticity tensor varies when a topological perturbation is added to
the RVE. Each Cartesian component (D±

Tµ)ijkl represents the derivative of the component
ijkl of the macroscopic elasticity tensor with respect to the volume fraction v(ρ) of a circular
inclusion of radius ρ inserted at an arbitrary point y of the RVE. The remarkable simplicity
of the closed form sensitivity given by (3.44) is to be noted. Once the vector fields ũ±µij

have

been obtained as solutions of (2.35) for the original RVE domain, the sensitivity tensor can
be trivially assembled.
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[8] J.D. Eshelby. The elastic energy-momentum tensor. Journal of Elasticity, 5(3-4):321–335, 1975.
[9] S. Garreau, Ph. Guillaume, and M. Masmoudi. The topological asymptotic for pde systems: the elas-

ticity case. SIAM Journal on Control and Optimization, 39(6):1756–1778, 2001.
[10] P. Germain, Q.S. Nguyen, and P. Suquet. Continuum thermodynamics. Journal of Applied Mechanics,

Transactions of the ASME, 50(4):1010–1020, 1983.
[11] S.M. Giusti, A.A. Novotny, E.A. de Souza Neto, and R.A. Feijóo. Sensitivity of the macroscopic elasticity
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