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Abstract. The aim of this work is to present the calculation of the topological derivative for
the total potential energy associated to the steady-state orthotropic heat diffusion problem,
when a circular inclusion is introduced at an arbitrary point of the domain. By a simple change
of variables and using the first order Pólya-Szegö polarization tensor, we obtain a closed formula
for the topological sensitivity. For the sake of completeness, the analytical expression for the
topological derivative is checked numerically using the standard Finite Element Method. Finally,
we present two numerical experiments showing the influency of the orthotropy in the topological
derivative field and also one example concerning the optimal design of a heat conductor.

1. Introduction

The topological sensitivity analysis gives the topological asymptotic expansion of a shape
functional with respect to an infinitesimal singular domain perturbation, like the insertion of
holes, inclusions, source-term or cracks. The main term of this expansion, called topological
derivative ([12, 31, 10]), is now of common use in numerical procedures of resolution for topology
optimization ([4, 22]), image processing ([20, 7, 21]) and inverse problems ([14, 6, 9]). Concerning
the theoretical development of the topological asymptotic analysis, the reader may refer to [26],
for instance. We refer the reader to [1, 28, 15] and [16], for the numerical methods of shape and
topology optimization which include the topological derivatives in the numerical procedure of
the levelset type.

In order to introduce these concepts, let us consider an open bounded domain Ω ⊂ R
2, which

is submitted to a non-smooth perturbation in a small region ωε(x̂) = εω of size ε with center at
an arbitrary point x̂ ∈ Ω. Thus, we assume that a given shape functional ψ admits the following
topological asymptotic expansion

ψ(Ωε) = ψ(Ω) + f(ε)DT (x̂) + o(f(ε)) , (1.1)

where Ωε is the topologically perturbed domain and f(ε) is a positive function that decreases
monotonically such that f(ε) → 0 when ε → 0. Then, the term DT (x̂) is defined as the
topological derivative of ψ. Therefore, this derivative can be seen as a first order correction on
ψ(Ω) to estimate ψ(Ωε). In addition, from (1.1), we have that the classical definition of the
topological derivative is given by

DT (x̂) = lim
ε→0

ψ(Ωε)− ψ(Ω)

f(ε)
. (1.2)

On the other hand, in the work of [31], the topological sensitivity associated to the nucleation
of a hole in a domain characterized by an orthotropic material was calculated. In order to simplify
the analysis, the domain was perturbed introducing an elliptical hole oriented in the directions
of the orthotropy and with semi-axis proportional to the material properties coefficients in each
orthogonal direction. In this paper, we extend the above result considering as perturbation a
small circular inclusion of size ε of the same nature as the bulk material (see Fig.1), instead of an
elliptical hole. In summary, we present the calculation of the topological derivative for the total
potential energy associated to the steady-state orthotropic heat diffusion problem, considering
the nucleation of a small circular inclusion.

Key words and phrases. Topological asymptotic analysis, steady-state orthotropic heat diffusion, topological
derivative, polarization tensor.
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Figure 1. Topological derivative concept.

This paper is organized as follows. Section 2 describes the model associated to the steady-state
orthotropic heat diffusion problem. The topological sensitivity analysis of the total potential
energy associated to the problem under consideration is developed in Section 3, where we present
the main result of the paper: a closed formula for the topological derivative. In addition, a
simple finite element-based numerical example is also provided for the numerical verification of
the analytically derived topological derivative formula. In Section 4 are presented two numerical
experiments showing the behavior of the topological sensitivity field for different values of the
orthotropic thermal conductivities and also one example concerning the optimal design of heat
conductors. The paper ends in Section 5 where concluding remarks are presented.

2. Formulation of the problem

As mentioned in the previous section, the topological asymptotic analysis of the total potential
energy associated to the steady-state orthotropic heat diffusion problem is calculated. Thus, the
unperturbed shape functional is defined as:

ψ(Ω) := JΩ(u) =
1

2

∫

Ω
K∇u · ∇u−

∫

Ω
bu+

∫

ΓN

q̄u , (2.1)

where K is a symmetric second order thermal conductivity tensor with eigenvalues k1 and k2,
respectively associated to the orthogonal directions e1 and e2, b is a heat source in Ω and u is
solution of the following variational problem: find the temperature field u ∈ U(Ω), such that

∫

Ω
K∇u · ∇η −

∫

Ω
bη +

∫

ΓN

q̄η = 0 ∀η ∈ V(Ω) . (2.2)

In the variational problem (2.2) the set of admissible temperature fields, U(Ω), and the space of
admissible virtual temperature fields, V(Ω), are given by

U(Ω) :=
{
u ∈ H1(Ω) : u|ΓD

= ū
}

and V(Ω) :=
{
η ∈ H1(Ω) : η|ΓD

= 0
}
. (2.3)

In addition, ∂Ω = ΓN ∪ ΓD with ΓN ∩ ΓD = ∅, where ΓN and ΓD are Neumann and Dirichlet
boundaries, respectively. Thus, ū is a Dirichlet data on ΓD and q̄ is a Neumann data on ΓN ,
both assumed to be smooth enough, see Fig.2.

b

Figure 2. Formulation of the problem.

In our particular case, we consider a perturbation on the domain given by the nucleation of
a small circular inclusion with thermal conductivity property γK and heat source δb, where
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K is the thermal conductivity and b is the heat source, both associated to the bulk material,
and parameters γ ∈ [0,∞), δ ∈ [−c, c] with c limited, represent the contrasts in the material
property and in the heat source, respectively. We assume that there is a small inclusion Bε(x̂)
in the region Ω, which leads to the perturbed domain denoted as Ωε. If the inclusion becomes a
cavity, it is denoted by ωε = Bε(x̂). The cavity can be obtained from the inclusion by the limit
passage γ → 0. In the case of inclusion, the region Ωε is decomposed into two disjoint parts
Ω \ Bε(x̂) and Bε(x̂) with different material properties and heat sources, namely K, γK and b,
δb, respectively. The other limit passage with the contrast γ → ∞ results in the ideal thermal
conductor inclusion ωε = Bε(x̂).

Now, tacking into account the definition of the perturbed domain Ωε and considering an
inclusion of the same nature as the bulk material but with contrasts γ and δ, the perturbed
shape functional can be written as:

ψ(Ωε) := JΩε
(uε) =

1

2

∫

Ωε

γεK∇uε · ∇uε −
∫

Ωε

δεbuε +

∫

ΓN

q̄uε , (2.4)

where parameters γε and δε are defined as

γε :=

{
1 if x ∈ Ω \ Bε(x̂)
γ if x ∈ Bε(x̂)

and δε :=

{
1 if x ∈ Ω \ Bε(x̂)
δ if x ∈ Bε(x̂)

. (2.5)

In addition, in (2.4) the function uε is solution of the following variational problem: find the
temperature field uε ∈ U(Ωε), such that

∫

Ωε

γεK∇uε · ∇ηε −
∫

Ωε

δεbηε +

∫

ΓN

q̄ηε = 0 ∀ηε ∈ V(Ωε) , (2.6)

and the set U(Ωε) and the space V(Ωε) are defined as

U(Ωε) :=
{
uε ∈ H1(Ωε) : uε|ΓD

= ū
}

and V(Ωε) :=
{
ηε ∈ H1(Ωε) : ηε|ΓD

= 0
}
. (2.7)

Finally, the Euler-Lagrange equation associated to variational problem (2.6) reads: find field uε,
such that 




−div (γεK∇uε) = δεb in Ωε

uε = ū on ΓD

−K∇uε · n = q̄ on ΓN

JuεK = 0 on ∂Bε

−JγεK∇uεK · n = 0 on ∂Bε

. (2.8)

In the above expression, we use J(·)K to denotes the jump of function (·) across the boundary
∂Bε:

[[(·)]] := (·)|m − (·)|i , (2.9)

with subscripts m and i associated, respectively, with quantity values on the matrix (Ω \Bε(x̂))
and inclusion (Bε(x̂)) sides of the interface.

3. Topological sensitivity analysis

Let us state the following result, leading to a constructive method for computing the topo-
logical derivatives, [32, 29]:

DT (x̂) = lim
ε→0

1

f ′ (ε)

d

dε
JΩε

(uε) , (3.1)

where f ′ (ε) is the derivative of the function f (ε) with respect to the parameter ε and the
derivative of the perturbed cost functional d

dε
JΩε

(uε) may be seen as the classical sensitivity
analysis to the change in shape produced by an uniform expansion of the inclusion.

In fact, considering a direct analogy with the continuum mechanics, see [18], we have that
the shape derivative of the cost function JΩε

(uε) can be written as

d

dε
JΩε

(uε) =

∫

Ωε

Σε · ∇v , (3.2)
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where v is the shape change velocity field and tensor Σε can be interpreted as a generalization
of the Eshelby energy-momentum tensor, see [13] and [19], which is given in our particular case
by

Σε =
1

2
(γεK∇uε · ∇uε − 2δεbuε) I− γεK∇uε ⊗∇uε . (3.3)

Since uε is solution of the state equation (2.8), it is straightforward to verify that, in this
particular case, the Eshelby tensorΣε is a divergence-free field, i.e., divΣε = 0 in Ωε. Integrating
(3.2) by parts and applying the divergence theorem, the shape derivative of the cost function
JΩε

(uε) becomes an integral defined on the boundaries ∂Ω and ∂Bε, that is

d

dε
JΩε

(uε) =

∫

∂Ω
Σεn · v+

∫

∂Bε

JΣεKn · v , (3.4)

where the normal vector field satisfies n := n|m = −n|i on ∂Bε. As a consequence, since the
velocity field v is smooth enough in the domain Ωε, then the shape sensitivity of the problem only
depends on the definition of this field on the boundaries ∂Ω and ∂Bε. However, in our particular
case, we observe that only the boundary of the inclusion ∂Bε, is submitted to a perturbation
(an uniform expansion). Therefore, remembering that n is the outward normal unit vector (see
Fig. 1), the velocity v assumes the following values on the boundaries ∂Bε and ∂Ω

{
v = −n on ∂Bε

v = 0 on ∂Ω
. (3.5)

From this last remark and result (3.1), the topological derivative becomes an integral only
defined on the boundary of the circular inclusion ∂Bε, that is

DT (x̂) = −lim
ε→0

1

f ′ (ε)

∫

∂Bε

JΣεKn · n . (3.6)

3.1. Asymptotic analysis . The problem given by (2.8), eventhough linear, it is not so easy
to expand in power of ε. Initially, consider a local coordinate system centered at x̂ and oriented
along the eigenvectors of tensor K. Therefore, let us make the following change of variables

xi =
√
ki yi for i = 1, 2 ⇒ x = K

1

2y, (3.7)

where x = (x1, x2) and y = (y1, y2) are points defined over the domain Ωε and transformed

domain Ω̃ε, respectively. Thus, the circular inclusion Bε(x̂) is mapped into an ellipse B̃ε(ŷ) =
Eε(ŷ) with semi-major axis α = 1/

√
k1, semi-minor axis β = 1/

√
k2 and centered at point ŷ,

as can be seen in Fig. 3. The above mapping allows us to rewrite the Euler-Lagrange equation
(2.8) as 




−div (γε∇uε) = δεb in Ω̃ε

uε = ū on Γ̃D

−∂uε

∂n
= q̄ on Γ̃N

JuεK = 0 on ∂B̃ε

−Jγε
∂uε

∂n
K = 0 on ∂B̃ε

, (3.8)

where for the sake of simplicity we are using the same notation for field uε, heat source b and
boundary conditions q̄ and ū. Then, the following asymptotic expansion of solution uε(y) in Ω̃ε

holds ([11, 23, 2, 27]),

uε(y)|Ω̃\Eε(ŷ)
= u(y) +

ε

‖ζ‖2
P∇u(ŷ) · ζ +O(ε2), (3.9)

uε(y)|Eε(ŷ) = u(y) + εP∇u(ŷ) · ζ +O(ε2), (3.10)

where ζ = (y − ŷ)/ε, u(y) is the solution of the problem in the unperturbed domain Ω̃, ∇u(ŷ)
is the corresponding gradient evaluated at point ŷ (the centre of the ellipse) and P is given by

P =
1

2
(1− γ)αβ

(
α+β
α+γβ

0

0 α+β
β+γα

)
, (3.11)

which has been derivated from the polarization tensor for an elliptical inclusion, [30].
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Figure 3. Change of variables.

Considering the inverse mapping y = Jx in (3.9, 3.10), where J := K− 1

2 , we have that the
asymptotic expansion for uε(x) in Ωε is given by

uε(x)|Ω\Bε(x̂)
= u(x) +

ε

‖Jξ‖2
P∇u(x̂) · ξ +O(ε2), (3.12)

uε(x)|Bε(x̂)
= u(x) + εP∇u(x̂) · ξ +O(ε2), (3.13)

where ξ = (x− x̂)/ε. It is well known that the asymptotic expansions can be differentiated term
by term ([25, 24]). Thus, by assuming a sufficient regularity of u(x) in Ω and performing its
Taylor series expansion around point x̂, we obtain the following expansion for ∇uε(x) in Ωε,

∇uε(x)|Ω\Bε(x̂)
= ∇u(x̂) + 1

‖Jξ‖2
SP∇u(x̂) +O(ε), (3.14)

∇uε(x)|Bε(x̂)
= ∇u(x̂) +P∇u(x̂) +O(ε), (3.15)

with

S := I− 2

‖Jξ‖2
J2ξ ⊗ ξ . (3.16)

3.2. Topological derivative calculation. From expansions (3.12-3.15), and using symbolic
calculus to solve the integral (3.6) (choosing the function f(ε) as the size of the perturbation,
i.e., f(ε) = πε2) we have that the final expression of the topological derivative becomes a scalar
function that depends on the solution u associated to the original domain Ω (without inclusion),
that is (see also [3]):

DT (x̂) = −
√
detK KP∇u(x̂) · ∇u(x̂) + (1− δ)bu(x̂) ∀x̂ ∈ Ω . (3.17)

Remark 1. From the final expression of the topological derivative for the steady-state orthotropic
heat diffusion problem (3.17), we can analyze the limits cases of the parameter γ, which are:

• ideal thermal insulator (γ → 0):

DT (x̂) = −1

2

K√
detK

(√
detK I+K

)
∇u(x̂) · ∇u(x̂) + (1− δ)bu(x̂) ∀x̂ ∈ Ω , (3.18)

• ideal thermal conductor (γ → ∞):

DT (x̂) =
1

2

(√
detKI+K

)
∇u(x̂) · ∇u(x̂) + (1− δ)bu(x̂) ∀x̂ ∈ Ω . (3.19)

Remark 2. It is interesting to observe that for isotropic material, we have k1 = k2 = k and the
final expression for the topological derivative (3.17) degenerates to the classical one given by [3],

DT (x̂) = −k1− γ

1 + γ
∇u(x̂) · ∇u(x̂) + (1− δ)bu(x̂) ∀x̂ ∈ Ω . (3.20)
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3.3. Numerical verification. In direct analogy with classical finite difference-based methods
for the numerical approximation of the derivative of a generic function, a first order topological
finite difference formula based on (1.2) to approximate numerically the value of DT (x̂) at the
unperturbed domain can be defined as

dTJ :=
JΩε

(uε)− JΩ(u)

f (ε)
, (3.21)

with finite ε. The above satisfies

lim
ε→0

dTJ = DT (x̂) . (3.22)

If for a given domain we calculate JΩ(u) and its perturbed counterpart JΩε
(uε) for a sequence

of decreasing (sufficiently small) inclusion radii ε, the use of formula (3.21) will provide an as-
ymptotic approximation to the analytical value of DT (x̂) given by (3.17). Here such a procedure
is used to provide a numerical validation of result (3.17). The required values of function JΩ and
JΩε

are computed numerically by means of the standard Finite Element Method for steady-state
orthotropic heat diffusion problems.

For this instance, we have a unit square body without heat source (b = 0) and submitted to a
temperature ū = 0 on ΓD1

and ΓD2
, a heat flux q1 = 1.0 on ΓN1

and q2 = 2.0 on ΓN2
, as shown

in Fig. 4(a), where a = 0.2. In addition, the remainder part of the boundary remains insulated.
For the computation of the values of JΩε

(uε), a sequence of finite element analyses are carried
out for perturbed domains obtained by introducing circular inclusions of radii

ε ∈ {0.16, 0.08, 0.04, 0.02, 0.01}, (3.23)

centred at x̂ = (0.5, 0.5). The finite element mesh used to discretise the domain Ωε was built so
that each boundary of radius ε has 120 six-noded (quadratic) triangular isoparametric elements.
The obtained mesh contains 50781 nodes and 25322 elements, as can be see in Fig.4(b).

(a) Domain. (b) Finite element mesh.

Figure 4. Numerical verification. Domain and finite elements mesh.

For this numerical verification two cases for the parameter γ are studied: (i) γ = 1/2; and
(ii) γ = 2. The results of the analyses are plotted in Fig.5 and Fig.6, respectively, which shows
the analytical topological derivative and the numerical approximations for each value of ε for
values of parameters k1 and k2 between 1/16 and 16.

The convergence of the numerical topological derivatives to their corresponding analytical
values with decreasing ε is obvious in all cases and confirm the correctness of formula (3.17).
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Figure 5. Numerical verification. Convergence of numerical topological deriva-
tive to analytical value for γ = 1/2.
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Figure 6. Numerical verification. Convergence of numerical topological deriva-
tive to analytical value for γ = 2.
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4. Numerical examples

In this section we present two examples considering different values of the orthotropic thermal
conductivities parameters k1 and k2, namely:

• Case A: k1 = k2 = 2 (isotropic behavior),
• Case B: k1 = 3 and k2 = 1,
• Case C: k1 = 1 and k2 = 3.

The first one concerns two numerical experiments showing the behavior of the topological
sensitivity field taking into account the limit cases γ → 0 and γ → ∞. In the second example,
the topological derivative is used in the optimal design of heat conductors. In all examples we
consider a set D = (0, 10) × (0, 10) such that the domain Ω ⊆ D, whose boundary is given by
∂Ω = ΓD ∪ ΓN with ΓN ∩ ΓD = ∅.

4.1. Example 1. For this example we consider a domain Ω without heat source (b = 0) and
the Dirichlet boundary ΓD is such that: ΓD = ΓD1

∪ ΓD2
with meas(ΓD1

) = meas(ΓD2
) = 4.

We study the behavior of the limits cases given by (3.18) and (3.19).

Experiment 1. In this first experiment Ω = D and the boundary condition are given by: on ΓN

we have that q̄ = 0 and on ΓD1
and ΓD2

are prescribed the temperatures ū1 = 0 and ū2 = 100,
respectively. Due to the symmetry of the problem, only half of the domain is discretized. For
discretization we use an uniform mesh with 1822 tree-noded (linear) triangular elements with
a total of 972 nodes. The domain Ω and the finite element mesh are shown in Figs.7(a) and
7(b), respectively. The topological derivative field obtained for the ideal thermal insulator case
(γ → 0) is shown in Fig.8 and, for the ideal thermal conductor case (γ → ∞) in Fig.9.

(a) Domain. (b) Mesh.

Figure 7. Example 1, Experiment 1. Domain and finite elements mesh.

Field: GradTop-CaseA
Max.: -6.455541E-001
Node: 826

Min.: -2.167194E+003
Node: 60

Palette:
-8.000000E-001
-2.575000E+001
-5.070000E+001
-7.565000E+001
-1.006000E+002
-1.255500E+002
-1.505000E+002
-1.754500E+002
-2.004000E+002
-2.253500E+002
-2.503000E+002
-2.752500E+002
-3.002000E+002
-3.251500E+002
-3.501000E+002
-3.750500E+002
-4.000000E+002

(a) Case A.

Field: GradTop-CaseB
Max.: -4.499755E-001
Node: 330

Min.: -3.408339E+003
Node: 931

Palette:
-4.500000E-001
-3.792188E+001
-7.539375E+001
-1.128656E+002
-1.503375E+002
-1.878094E+002
-2.252813E+002
-2.627531E+002
-3.002250E+002
-3.376969E+002
-3.751688E+002
-4.126406E+002
-4.501125E+002
-4.875844E+002
-5.250563E+002
-5.625281E+002
-6.000000E+002

(b) Case B.

Field: GradTop-CaseC

Max.: -6.766538E-001
Node: 826

Min.: -1.055236E+003
Node: 60

Palette:
-6.767000E-001
-1.313441E+001
-2.559211E+001
-3.804982E+001
-5.050753E+001
-6.296523E+001
-7.542294E+001
-8.788064E+001
-1.003384E+002
-1.127961E+002
-1.252538E+002
-1.377115E+002
-1.501692E+002
-1.626269E+002
-1.750846E+002
-1.875423E+002
-2.000000E+002

(c) Case C.

Figure 8. Example 1, Experiment 1. Topological derivative value for γ → 0.
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Field: GradTop-CaseA
Max.: 2.167194E+003
Node: 60

Min.: 6.455541E-001
Node: 826

Palette:
4.000000E+002
3.750500E+002
3.501000E+002
3.251500E+002
3.002000E+002
2.752500E+002
2.503000E+002
2.253500E+002
2.004000E+002
1.754500E+002
1.505000E+002
1.255500E+002
1.006000E+002
7.565000E+001
5.070000E+001
2.575000E+001
8.000000E-001

(a) Case A.

Field: GradTop-CaseB
Max.: 3.110460E+003
Node: 931

Min.: 5.891985E-001
Node: 330

Palette:
5.000000E+002
4.687869E+002
4.375738E+002
4.063606E+002
3.751475E+002
3.439344E+002
3.127213E+002
2.815081E+002
2.502950E+002
2.190819E+002
1.878688E+002
1.566556E+002
1.254425E+002
9.422938E+001
6.301625E+001
3.180313E+001
5.900000E-001

(b) Case B.

Field: GradTop-CaseC
Max.: 1.064160E+003
Node: 60

Min.: 8.860112E-001
Node: 826

Palette:

3.000000E+002
2.813054E+002
2.626109E+002
2.439163E+002
2.252217E+002
2.065272E+002
1.878326E+002
1.691381E+002
1.504435E+002
1.317489E+002
1.130544E+002
9.435981E+001
7.566525E+001
5.697069E+001
3.827613E+001
1.958156E+001
8.870000E-001

(c) Case C.

Figure 9. Example 1, Experiment 1. Topological derivative value for γ → ∞.

Experiment 2. In Fig.10(a) we show the disposition of boundaries ΓD1
, ΓD2

, ΓN and the
domain Ω = D\BR, where BR denote a ball with radius R = 2.0 and centered at point x =
(5.0, 5.0). In this case, the boundary conditions are the same that for the previous experiment.
Due to the symmetry of the problem, only half of the domain is discretized. For discretization
we use an uniform mesh with 1583 tree-noded (linear) triangular elements with a total of 857
nodes. In Fig. 10(b) is shown the finite element mesh used in this experiment. In Fig.11 is
shown the topological derivative field for the ideal thermal insulator case (γ → 0) and in Fig.12
for the ideal thermal conductor case (γ → ∞) .

(a) Domain. (b) Mesh.

Figure 10. Example 1, Experiment 2. Domain and finite elements mesh.

Field: GradTop-CaseA
Max.: -6.032948E-001
Node: 857

Min.: -1.522108E+003
Node: 60

Palette:
-8.000000E-001
-2.575000E+001
-5.070000E+001
-7.565000E+001
-1.006000E+002
-1.255500E+002
-1.505000E+002
-1.754500E+002
-2.004000E+002
-2.253500E+002
-2.503000E+002
-2.752500E+002
-3.002000E+002
-3.251500E+002
-3.501000E+002
-3.750500E+002
-4.000000E+002

(a) Case A.

Field: GradTop-CaseB
Max.: -3.824462E-001
Node: 292

Min.: -2.313969E+003
Node: 60

Palette:
-3.830000E-001
-5.035906E+001
-1.003351E+002
-1.503112E+002
-2.002873E+002
-2.502633E+002
-3.002394E+002
-3.502154E+002
-4.001915E+002
-4.501676E+002
-5.001436E+002
-5.501197E+002
-6.000958E+002
-6.500718E+002
-7.000479E+002
-7.500239E+002
-8.000000E+002

(b) Case B.

Field: GradTop-CaseC
Max.: -5.123356E-001
Node: 857

Min.: -7.423291E+002
Node: 60

Palette:
-5.200000E-001
-9.862500E+000
-1.920500E+001
-2.854750E+001
-3.789000E+001
-4.723250E+001
-5.657500E+001
-6.591750E+001
-7.526000E+001
-8.460250E+001
-9.394500E+001
-1.032875E+002
-1.126300E+002
-1.219725E+002
-1.313150E+002
-1.406575E+002
-1.500000E+002

(c) Case C.

Figure 11. Example 1, Experiment 2. Topological derivative value for γ → 0.



10

Field: GradTop-CaseA
Max.: 1.522108E+003
Node: 60

Min.: 6.032948E-001
Node: 857

Palette:
4.000000E+002
3.750500E+002
3.501000E+002
3.251500E+002
3.002000E+002
2.752500E+002
2.503000E+002
2.253500E+002
2.004000E+002
1.754500E+002
1.505000E+002
1.255500E+002
1.006000E+002
7.565000E+001
5.070000E+001
2.575000E+001
8.000000E-001

(a) Case A.

Field: GradTop-CaseB
Max.: 2.148031E+003
Node: 60

Min.: 5.007755E-001
Node: 292

Palette:
5.000000E+002
4.687813E+002
4.375626E+002
4.063439E+002
3.751253E+002
3.439066E+002
3.126879E+002
2.814692E+002
2.502505E+002
2.190318E+002
1.878131E+002
1.565944E+002
1.253758E+002
9.415706E+001
6.293838E+001
3.171969E+001
5.010000E-001

(b) Case B.

Field: GradTop-CaseC
Max.: 7.461251E+002
Node: 60

Min.: 6.708528E-001
Node: 857

Palette:
2.500000E+002
2.344169E+002
2.188339E+002
2.032508E+002
1.876677E+002
1.720847E+002
1.565016E+002
1.409186E+002
1.253355E+002
1.097524E+002
9.416937E+001
7.858631E+001
6.300325E+001
4.742019E+001
3.183712E+001
1.625406E+001
6.710000E-001

(c) Case C.

Figure 12. Example 1, Experiment 2. Topological derivative value for γ → ∞.

These experiments, although academic, shows that the topological derivative can be used to
determine where the holes (or inclusion) must be positioned (points x̂ in which DT (x̂) assumes
the value closer to zero) in order to minimize (or maximize) the shape functional, in this case,
the total potential energy associated to the steady-state orthotropic heat diffusion problem. In
particular, in both examples the region in which the topological derivative assume the value
closer to zero is almost the same for the three cases. But in Case C this region is bigger than in
the others two cases, due to, in part, to the fact that the direction of the heat flux corresponds
with the direction of higher coefficient of the thermal conductivity tensor.

4.2. Example 2. In this second example we use the topological derivative field (3.17) to perform
the optimal design of heat conductors. To this ends we use the topology optimization algorithm
developed in [17]. In Fig.13 is presented the design domain Ω = D, whose boundary remain
isolated except for a region ΓD of size meas(ΓD) = 2, positioned in the middle of the left side
in which the temperature is prescribed as ū = 0. We also consider an uniform heat generation
b = 1 over all the domain Ω (δ = 1). For this example, we have two materials: a good
conductor characterized by the thermal conductivities previously mentioned (Case A, B or C)
and a bad conductor (or insulator) characterized by the parameter γ = 0.001. Finally, the
volume constraint is chosen to be 40% of good conductor material. Due to the symmetry of the
problem, only half of the domain is discretized. For discretization we use an uniform mesh with
46212 tree-noded (linear) triangular elements with a total of 23407 nodes.

Figure 13. Example 2. Model.

In this final example, we show how the topological derivative field can be used in the topo-
logical design of heat conductors. As expected, the obtained result, Fig.14, show how the good
conductor drains energy from all parts of the domain. Similar results, for the isotropic case, can
be found in the literature, see [8] for instance.
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(a) Case A. (b) Case B. (c) Case C.

Figure 14. Example 2. Obtained topologies.

The value of the shape functional ψ(Ωε) throughout the optimization procedure previously
referred is presented in Fig.15. In Fig.14 we shown the obtained topologies for the three studied
cases for the different values of the thermal conductivities. In the figures, the black material
represents the good thermal conductor.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

Case A

Case C

Case B

Iterations

Figure 15. Example 2. Total potential energy.

5. Final remarks

An analytical expression for the topological derivative associated to the total potential energy
in steady-state orthotropic heat diffusion problem, when a circular inclusion of the same nature
as the bulk material is introduced at an arbitrary point of the domain, has been proposed in this
paper. The final formula was obtained using a simple changing of variable and the first order
Pólya-Szegö polarization tensor. Thus, besides to extend the result presented in [31], we have
shown that the approach here adopted ([29]) can be in fact applied to arbitrary shaped holes
or inclusions (an elliptical inclusion in this case), contrary to the comment by [5]. In order to
verify the proposed analytical expression, we have developed a numerical validation showing the
convergence of the numerical topological derivative to their corresponding analytical value. The
obtained result was used to devise two numerical examples. The first one shows the behavior of
the topological derivative field for different values of the orthotropic thermal conductivity. For
the second numerical example, the topological derivative formula is used in the design of heat
conductors. Finally, we remark that this information can be potentially used, as shown in the
numerical examples, in a number of applications of practical interest such as, for instance: image
restoration algorithm, optimization of mechanical or electronic pieces, design of an orthotropic
material to achieve a specified thermal behavior.
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[29] A.A. Novotny, R.A. Feijóo, C. Padra, and E. Taroco. Topological sensitivity analysis. Computer Methods in
Applied Mechanics and Engineering, 192(7-8):803–829, 2003.
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