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Abstract. The topological derivative provides the sensitivity of a given shape functional with
respect to an infinitesimal (non smooth) domain perturbation at an arbitrary point of the
domain. Classically, this derivative comes from the second term of the topological asymptotic
expansion, dealing only with infinitesimal perturbations. However, for practical applications,
we need to insert perturbations of finite size. Therefore, we consider one more term in the
expansion which is defined as the second order topological derivative. In order to present
these ideas, in this work we calculate first as well as second order topological derivatives for
the total potential energy associated to the Laplace’s equation, when the domain is perturbed
with a hole. Furthermore, we also study the effects of different boundary conditions on the
hole: Neumann and Dirichlet (both homogeneous). In the Neumann’s case, the second order
topological derivative depends explicitly on higher-order gradients of the state solution and also
implicitly on the point where the hole is nucleated through the solution of an auxiliary problem.
On the other hand, in the Dirichlet’s case, the first order topological derivative depends explicitly
on the state solution as well as implicitly through the solution of an auxiliary problem, and the
second order topological derivative depends only explicitly on the solution associated to the
original problem. Finally, we present two simple examples showing the influence of both terms
in the second order topological asymptotic expansion for each case of boundary condition on
the hole.

1. Introduction

The topological sensitivity analysis gives the topological asymptotic expansion of a shape
functional with respect to an infinitesimal domain perturbation, like the insertion of holes,
inclusions or source term [3, 12]. The second term of this expansion provides the topological
derivative, which has been applied in several problems, such as topology optimization, image
processing and inverse problems. Analogously to the classical Taylor’s theorem, we can consider
new terms in the topological asymptotic expansion of a smooth enough shape functional. As
would be expected, we define the next one as the second order topological derivative. This
procedure allows to deal with perturbation of finite size, which is an important requirement for
practical applications.

In our previous work [5] we have extended the method proposed in [11] to calculate the
second order topological asymptotic expansion for the Laplace’s equation; considering the total
potential energy as the shape functional, the state equation as the constraint and taking into
account two different homogeneous boundary conditions on the hole: Neumann and Dirichlet.
In particular, we will demonstrate that the second order topological derivative associated to
the Neumann’s case depends explicitly on higher-order gradients of the state solution and also
implicitly on the point where the hole is nucleated through the solution of an auxiliary problem.
Concerning the Dirichlet’s case, the first order topological derivative depends explicitly on the
state solution as well as implicitly through the solution of an auxiliary problem. However, in
this last case, the second order topological derivative is given explicitly in terms of the state
solution. Furthermore, for the sake of simplicity, in [5] we have disregarded all these implicit
terms, leading to a discrepancy in the topological asymptotic expansion.

Therefore, in the present paper we calculate the complete second order topological asymp-
totic expansion for the two cases under consideration. Then, we present two simple examples
with analytical solutions, where we discuss the effects of the ad hoc approximations adopted
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in [5] and also the influence of both explicit and implicit terms on the topological asymptotic
expansion. More specifically, we show that these new implict terms play a crucial role in the
analysis. Although very expansible to be computed in the whole domain, they cannot be simply
disregarded in the case of bounded domains.

2. Topological-shape sensitivity method

Let us consider an open bounded domain Ω ⊂ R2, with a smooth boundary ∂Ω. Then, we
drill a small hole Hε of radius ε and center at point x̂ ∈ Ω. Thus, we have a perforated domain
Ωε = Ω\Hε, whose boundary is denoted by ∂Ωε = ∂Ω ∪ ∂Hε. If we assume that a given shape
functional ψ admits the following topological asymptotic expansion

ψ(Ωε) = ψ(Ω) + f1(ε)DTψ + f2(ε)D
2
Tψ + o(f2(ε)) , (2.1)

where f1(ε) and f2(ε) are positive and smooth functions that decreases monotonically such that
f1(ε) → 0, f2(ε) → 0 when ε→ 0+ and

lim
ε→0

f2(ε)

f1(ε)
= 0 , lim

ε→0

o(f2(ε))

f2(ε)
= 0 , (2.2)

then, DTψ and D2
Tψ are the first and second order topological derivatives of ψ, respectively. In

fact, from the approach presented in the work [11], the following results hold:

DTψ = lim
ε→0

1

f ′1(ε)

d

dε
ψ (Ωε) , (2.3)

D2
Tψ = lim

ε→0

1

f ′2(ε)

(
d

dε
ψ (Ωε)− f ′1(ε)DTψ

)
. (2.4)

The derivative of the shape function with respect to the parameter ε, that appears in eqs.
(2.3,2.4), can be seen as its classical shape sensitivity analysis to the change in shape produced
by a uniform expansion of the hole. In particular, for a circular hole, we can define a sufficiently
regular shape change velocity field v, such that on the boundary ∂Ωε, v|∂Hε

= −n and v|∂Ω = 0,
where n is the outward unit normal vector field to the hole Hε. Thus, it is possible to introduce
an analogy to classical continuum mechanics [8] whereby the shape change velocity field v is
identified with the classical velocity field of a deforming continuum and ε is identified as a time
parameter (refer to [13] for analogies of this type in the context of shape sensitivity analysis).
Then, the shape derivative of the cost functional results in an integral on the boundary ∂Hε,
that is

d

dε
ψ(Ωε) = −

∫
∂Hε

Σεn · n , (2.5)

where tensor Σε can be interpreted as a generalization of the Eshelby energy-momentum tensor
[6, 9], which is derived by making use of Reynolds’ transport theorem [8] and the concept of
material derivative of a spatial field [13]. As a consequence, this tensor plays a central role in the
topological-shape sensitivity method and should be clearly identified according to the problem
under consideration.

3. Topological derivative for Laplace’s Problem

In this section we will calculate the topological derivative for steady-state heat conduction
considering homogeneous Neumann and Dirichlet boundary conditions on the hole and adopting
the total potential energy as the shape functional.

The variational formulation of the problem associated to the original domain Ω can be stated
as: find u ∈ U (Ω), such that∫

Ω
∇u · ∇ηdV +

∫
ΓN

qηdS = 0 ∀η ∈ V (Ω) , (3.1)
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where U (Ω) and V (Ω) are respectively defined as

U (Ω) := {u ∈ H1 (Ω) : u|ΓD
= φ} and V (Ω) := {η ∈ H1 (Ω) : η|ΓD

= 0} . (3.2)

In addition, ∂Ω =ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, when ΓD and ΓN are Dirichlet and Neumann
boundaries, respectively. Thus φ is a Dirichlet data on ΓD and q is a Neumann data on ΓN ,
both assumed to be smooth enough.

Now, let us state the variational problem associated to the perturbed domain Ωε, that is: find
uε ∈ Uε (Ωε), such that∫

Ωε

∇uε · ∇ηεdV +

∫
ΓN

qηεdS = 0 ∀ηε ∈ Vε (Ωε) , (3.3)

where Uε (Ωε) and Vε (Ωε) are given, respectively, by

Uε (Ωε) := {uε ∈ U (Ωε) : β uε|∂Hε
= 0} and Vε (Ωε) := {ηε ∈ V (Ωε) : β ηε|∂Hε

= 0} , (3.4)

with β ∈ {0, 1}. This notation should be interpreted as follows: when β = 1, uε = 0 and ηε = 0
on ∂Hε, and when β = 0, uε and ηε are free on ∂Hε. Therefore, according to the values of β,
we have Dirichlet or Neumann boundary condition on the hole, both homogeneous.

As already mentioned, the total potential energy associated to the problem under analysis is
adopted as the shape functional, that is

ψ(Ωε) =
1

2

∫
Ωε

∥∇uε∥2 dV+

∫
ΓN

quεdS . (3.5)

Considering the Reynold’s transport theorem and the concept of material derivative of spatial
field, the Eshelby tensor Σε is given by [11]

Σε =
1

2
∥∇uε∥2 I− (∇uε ⊗∇uε) . (3.6)

From an orthonormal curvilinear coordinate system n and t on the boundary ∂Hε, the gradient
∇uε|∂Hε

can be decomposed into its normal and tangential components, that is

(∇uε · n)n =
∂uε
∂n

n and (∇uε · t) t =
∂uε
∂t

t , (3.7)

and we can apply the respective Neumann or Dirichlet boundary condition on the hole before
perform the final topological derivatives calculation.

3.1. Neumann boundary condition on the hole. By taking β = 0 in eq. (3.4), we have
homogeneous Neumann boundary condition on the hole. In the present case, we have the
following expansion for uε (see Appendix)

uε (x) = u (x) +
ε2

∥x− x̂∥2
∇u (x̂) · (x− x̂)

+
ε4

∥x− x̂∥4
S (x− x̂) · (x− x̂) +

ε6

∥x− x̂∥6
(T (x− x̂)) (x− x̂) · (x− x̂)

+ ε2ũ (x) +
ε4

∥x− x̂∥2
∇ũ (x̂) · (x− x̂) + vε (x) , (3.8)

where the second-order tensor S and the third-order tensor T are respectively given by

S =
1

2
∇∇u (x̂) and T =

1

6
∇∇∇u (x̂) . (3.9)

In addition, vε is such that |vε|H1(Ωε)
≤ Cε3, with C independent of ε, and function ũ is solution

of the following variational problem: find ũ ∈ V, such that∫
Ω
∇ũ · ∇η+

∫
ΓN

∂gN
∂n

η = 0 ∀η ∈ W , (3.10)
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where the admissible functions set V and the admissible variations space W are defined, respec-
tively, as

V = {ũ ∈ H1(Ω) : ũ|ΓD
= −gN} and W = {η ∈ H1(Ω) : η|ΓD

= 0} , (3.11)

and function gN is given by

gN (x) = ∇u (x̂) · x− x̂

∥x− x̂∥2
. (3.12)

In addition, according to the variational problem (3.3) we observe that ∂uε/∂n|∂Hε
= 0, for

β = 0. Therefore, the shape derivative of the cost functional reads

d

dε
ψ(Ωε) = −1

2

∫
∂Hε

(
∂uε
∂t

)2

. (3.13)

Considering the expansion (3.8) in (3.13) and after analytically solving the integral on the
boundary of the hole ∂Hε, we obtain, from eqs. (2.3,2.4) and taking into account that function
u is harmonic, the following results

DTψ = −∥∇u (x̂)∥2 , (3.14)

D2
Tψ =

1

2
det∇∇u (x̂)−∇u (x̂) · ∇ũ (x̂) , (3.15)

with f1(ε) = πε2 and f2(ε) = πε4. Finally, the topological asymptotic expansion of the energy
shape functional reads

ψ(Ωε) = ψ(Ω)− πε2 ∥∇u(x̂)∥2 + 1

2
πε4 (det∇∇u(x̂)− 2∇u(x̂) · ∇ũ(x̂)) + o(ε4) . (3.16)

3.2. Dirichlet boundary condition on the hole. By taking β = 1 in eq. (3.4), we have
homogeneous Dirichlet boundary condition on the hole. Let G (x) be solution of the following
auxiliary variational problem: find G ∈ V, such that∫

Ω
∇G · ∇η +

∫
ΓN

hDη = 0 ∀η ∈ W , (3.17)

where the admissible functions set V and the admissible variations space W are defined, respec-
tively, as

V = {G ∈ H1(Ω) : G|ΓD
= gD} and W = {η ∈ H1(Ω) : η|ΓD

= 0} , (3.18)

and functions gD and hD are respectively given by

gD(x) = − 1

2π
log ∥x− x̂∥ and hD(x) =

1

2π

x− x̂

∥x− x̂∥2
· n . (3.19)

Then, we have the following expansion for uε (see Appendix A)

uε (x) = u (x)− α(ε)u (x̂)

(
1

2π
log ∥x−x̂∥+ G (x)

)
− ε2

∥x−x̂∥2
(∇u (x̂)− α(ε)u (x̂)∇G (x̂)) · (x− x̂) + ũε (x) , (3.20)

where ũε is such that |ũε|H1(Ωε)
≤ Cε2, with C independent of ε, and α(ε) is given by (A.20). In

addition, according to the variational problem (3.3) we observe that ∂uε/∂t|∂Hε
= 0, for β = 1.

Therefore, the shape derivative of the cost functional reads

d

dε
ψ(Ωε) =

1

2

∫
∂Hε

(
∂uε
∂n

)2

. (3.21)
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Considering the expansion (3.20) in (3.21) and after analytically solving the integral on the
boundary of the hole ∂Hε, we obtain, from eqs. (2.3,2.4), the following results

DTψ = u (x̂)2 , with f1(ε) = − π

log ε+ 2πG(x̂)
, (3.22)

D2
Tψ = ∥∇u (x̂)∥2 , with f2(ε) = πε2 . (3.23)

Finally, the topological asymptotic expansion of the energy shape functional reads

ψ(Ωε) = ψ(Ω)− π

log ε+ 2πG(x̂)
u(x̂)2 + πε2 ∥∇u(x̂)∥2 + o(ε2) . (3.24)

It is important to mention that the domain truncation technique used in [5] introduces an
artificial parameter R in the first order topological derivative, which cannot be explicitly cal-
culated. Thus, the simplification f1(ε) ≈ −π/ log ε has been widely adopted in the literature,
leading to the following expansion (see, for instance, [7])

ψ(Ωε) = ψ(Ω)− π

log ε
u (x̂)2 + o(

−1

log ε
) . (3.25)

The consequence of this approximation on the topological asymptotic expansion can be found
in [5].

4. Examples

Now, we shall study, through some examples, the influence of the second order topological
derivative in the complete topological asymptotic expansion. Therefore, we will compute the
estimate for the shape functional taking into account only the first order topological derivative

ψ(Ωε) ≈ ψ(Ω) + f1(ε)DTψ . (4.1)

Then we will compare it with the estimate considering both first and second order topological
derivatives, that is

ψ(Ωε) ≈ ψ(Ω) + f1(ε)DTψ + f2(ε)D
2
Tψ . (4.2)

Thus, let us consider the Laplace problem defined in the domain Ωε = Ω\Hε, where, for ε < ρ,
we have

Ω =
{
x ∈ R2 : ∥x∥ < ρ, ρ ∈ R

}
and Hε =

{
x ∈ R2 : ∥x∥ < ε, ε ∈ R

}
. (4.3)

4.1. Example A: the Neumann’s case. By taking q = −(cos θ + cos 2θ), the problem for-
mulation associated to the perturbed domain Ωε reads: find uε, such that

∆uε = 0 in Ωε
∂uε
∂n = cos θ + cos 2θ on ∂Ω
∂uε
∂n = 0 on ∂Hε

. (4.4)

The analytical solution is given, up to an arbitrary additive constant, by

uε(r, θ) =
ρ2

r

(
r2 + ε2

ρ2 − ε2

)
cos θ +

ρ3

2r2

(
r4 + ε4

ρ4 − ε4

)
cos 2θ . (4.5)

Thus, the shape functional is given by

ψ (Ωε) = −πρ
2

2

(
ρ2 + ε2

ρ2 − ε2
+

1

2

ρ4 + ε4

ρ4 − ε4

)
, (4.6)

which can by expanded in power of ε, such that

ψ (Ωε) = −3

4
πρ2 − πε2 − πε4

3

2ρ2
+ o

(
ε4
)
. (4.7)
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Taking into account the influence associated to term ũ (x) in the topological asymptotic expan-
sion, we have

ψ (Ωε) ≈ ψ(Ω)− πε2 ∥∇u (x̂)∥2 + 1

2
πε4 (det∇∇u(x̂)− 2∇u (x̂) · ∇ũ(x̂))

= −3

4
πρ2 − πε2 − πε4

(
1

2ρ2
+

1

ρ2

)
, (4.8)

that coincides with the above expansion in power of ε, where ũ(x) is solution of (3.10), that is

ũ(r, θ) = − 1

ρ2
r cos θ ⇒ ∇u (x̂) · ∇ũ (x̂) = − 1

ρ2
. (4.9)

On the other hand, disregarding the influence of term associated to ũ (x) , we obtain

ψ (Ωε) ≈ ψ(Ω)− πε2 ∥∇u (x̂)∥2 + 1

2
πε4 det∇∇u (x̂)

= −3

4
πρ2 − πε2 − 1

2ρ2
πε4 . (4.10)

In particular, by taking ρ = 1, the first order topological asymptotic expansion is given by

ψ (Ωε) ≈ −3

4
π − πε2 , (4.11)

the second order topological asymptotic expansion, disregarding the influence of term associated
to ũ (x), results in

ψ (Ωε) ≈ −3

4
π − πε2 − 1

2
πε4 , (4.12)

and, finally, taking into account the influence of term associated to ũ (x), we have

ψ (Ωε) ≈ −3π

4
− πε2 − 3

2
πε4 . (4.13)

These results are compared in the graphic of fig. 1, where we observe that the approximation
associated only with higher-order gradients of solution u eq. (4.12) gives a better estimation for
the shape functional than the first order topological asymptotic eq. (4.11). We also observe that
the approximation taking into account the term associated to ũ eq. (4.13) plays an important
role in the expansion for large values of ε.

0.0 0 .1 0 .2 0 .3 0 .4 0 .5 0.6 0 .7

-6 .0
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-3 .0
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π ε2
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Figure 1. topological asymptotic expansions: the Neumann’s case.
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4.2. Example B: the Dirichlet’s case. Now, let us consider φ = γ+cos θ. Then, the problem
formulation associated to the perturbed domain Ωε reads: find uε, such that ∆uε = 0 in Ωε

uε = γ + cos θ on ∂Ω
uε = 0 on ∂Hε

, (4.14)

whose analytical solution is given by

uε(r, θ) = γ
log(r/ε)

log(ρ/ε)
+
ρ

r

(
r2 − ε2

ρ2 − ε2

)
cos θ . (4.15)

Thus, the shape functional results in

ψ (Ωε) =
π

log(ρ/ε)
γ2 +

π

2

ρ2 + ε2

ρ2 − ε2
. (4.16)

which can by expanded in power of ε, such that

ψ (Ωε) =
π

2
+

π

log(ρ/ε)
γ2 + πε2

1

ρ2
+ o

(
ε2
)
. (4.17)

Taking into account the final formulas for the first and second order topological derivatives, we
have

DTψ = γ2 , with f1(ε) =
π

log(ρ/ε)
, (4.18)

D2
Tψ =

1

ρ2
, with f2(ε) = πε2 . (4.19)

that coincides with the above expansion in power of ε, where G(x) is solution of (3.17), that is

{
∆G = 0 in Ω
G = − 1

2π log ρ on ∂Ω
⇒ G(x̂) = − 1

2π
log ρ . (4.20)

Now, we shall study the influence of the second order topological derivative in the topological
asymptotic expansion. Therefore, choosing ρ = γ = 1, we can compute the estimate for the
shape functional taking into account only the first order topological derivative

ψ(Ωε) ≈
π

2
− π

log ε
. (4.21)

Then we will compare it with the estimate considering both first and second order topological
derivatives, that is

ψ(Ωε) ≈
π

2
− π

log ε
+ πε2 . (4.22)

These results are compared in the graphic of fig. 2, where we observe that the second order
topological derivative is an important correction factor in the expansion for large values of ε.
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Figure 2. topological asymptotic expansions: the Dirichlet’s case.

5. Conclusions

In this work, we have obtained a close formula for the topological asymptotic expansion con-
sidering first and second order approximations. In particular, we have applied the topological-
shape sensitivity method to calculate first and second order topological derivatives for the total
potential energy associated to the Laplace equation in two-dimensional domain, which was per-
turbed through the insertion of a small hole with homogeneous Neumann or Dirichlet boundary
conditions.

From these results we observe that, in the Neumann’s case, the second order topological
derivative depends explicitly on higher-order gradients of the solution u associated to the non-
perturbed problem and also implicitly through the function ũ, solution of an auxiliary boundary
value problem. On the other hand, in the Dirichlet’s case, we have observed that the first order
topological derivative depends explicitly on the solution u as well as implicitly on the solution
G of an auxiliary problem. However, in this last case, the second order topological derivative
depends only explicitly on the solution u. In addition, the incorporation of the terms associated
to ũ (Neumann’s case) and G (Dirichlet’s case) in the calculation of the topological asymptotic
expansion for all points x̂ ∈ Ω is impracticable from the computational point of view, since they
depend on the point x̂ ∈ Ω where the hole is positioned, as can be seen in eqs. (3.10,3.17). Thus,
it is natural to use the optimality condition given by the first order topological derivative (DTψ)
to chose the points where the holes should be introduced. Once these points are fixed, then we
can compute the complete topological asymptotic expansion until order two, considering both
explicit and implicit terms, only for that points.

Then, we have presented two simple examples showing the influence of the second order
approximation term in the topological asymptotic expansion. From these examples, we have
observed that the estimate considering the second order topological derivative remains precise
even for very large holes, allowing to deal with perturbations of finite size. This feature is very
important in the development of topology optimization and reconstruction algorithms.
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Appendix A. Asymptotic Analysis

In this section we present the derivation of the asymptotic expansions (eqs. 3.8 and 3.20)
adopted to calculate the final expressions for the first and second order topological derivatives.
For a rigorous justification of the asymptotic expantions of the solution uε, the reader may refer
to the work [1].

A.1. Neumann boundary condition on the hole. In order to obtain the derivation of the
asymptotic formula given by eq. (3.8), let us propose the following expansion for uε

uε (x) = u (x) + w (x/ε) + ũε(x) , (A.1)

where w is the solution of the following exterior problem: find w such that ∆w = 0 in R2\H1

w → 0 at ∞
∂w
∂n = −(ε∇u(x̂)− 2ε2Sn+ 3ε3(Tn)n) · n on ∂H1

(A.2)
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with S and T given by eq. (3.9). The above boundary value problem has an explicit solution,
namely

w (x/ε) =
ε2

∥x− x̂∥2
∇u(x̂) · (x− x̂)

+
ε4

∥x− x̂∥4
S(x− x̂) · (x− x̂)

+
ε6

∥x− x̂∥6
(T(x− x̂))(x− x̂) · (x− x̂). (A.3)

In addition, the remaining term of expansion (A.1) solves: find ũε such that
∆ũε = 0 in Ωε

ũε = −w (x/ε) on ΓD
∂ũε
∂n = − ∂

∂nw (x/ε) on ΓN
∂ũε
∂n = ε3D4u(ξ(x)) (n)4 on ∂Hε

(A.4)

where ξ(x) is an intermediate point between x and x̂. Likewise, we assume that ũε, solution of
the boundary value problem (A.4), satisfies the expansion

ũε (x) = ε2ũ (x) + w̃ (x/ε) + vε (x) , (A.5)

where w̃ is the solution of the following exterior problem: find w̃ such that
∆w̃ = 0 in R2\H1

w̃ → 0 at ∞
∂w̃
∂n = −ε3∇ũ (x̂) · n on ∂H1

(A.6)

which also has explicit solution, that is

w̃ (x/ε) =
ε4

∥x− x̂∥2
∇ũ (x̂) · (x−x̂) . (A.7)

By introducing the notation,

g (x) =
1

∥x− x̂∥2
∇u(x̂) · (x− x̂) , (A.8)

h (x) =
1

∥x− x̂∥4
S(x− x̂) · (x− x̂) , (A.9)

p (x) =
1

∥x− x̂∥6
(T(x− x̂))(x− x̂) · (x− x̂) , (A.10)

we have
w (x/ε) = ε2g (x) + ε4h (x) + ε6p (x) . (A.11)

Thus, function ũ satisfies a boundary value problem stated as: find ũ such that
∆ũ = 0 in Ω
ũ = −g (x) on ΓD

∂ũ
∂n = − ∂

∂ng (x) on ΓN

(A.12)

and the remaining term of expansion (A.5) solves: find vε such that
∆vε = 0 in Ωε

vε = −w̃(x/ε)− ε4h(x)− ε6p(x) on ΓD
∂vε
∂n = − ∂

∂n(w̃(x/ε) + ε4h(x) + ε6p(x)) on ΓN
∂vε
∂n = ε3(D4u(ξ(x))(n)4 −D2ũ(ζ(x))(n)2) on ∂Hε

(A.13)

where ζ(x) is an intermediate point between x and x̂. Finally, we have the following expansion
for solution uε,

uε (x) = u (x) + w(x/ε) + ε2ũ(x) + w̃(x/ε) + vε(x) , (A.14)
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where vε satisfies the estimate |vε|H1(Ωε)
≤ Cε3, with constant C independent of ε [2, 4, 10].

A.2. Dirichlet boundary condition on the hole. Following the original ideas introduced in
[10], we present the derivation of the asymptotic formula given by (3.20). Initially, we consider
that uε can be decomposed as

uε (x) = u (x) + vε (x) + w (x/ε) + ũε (x) , (A.15)

where the function vε is defined as

vε (x) = α(ε)u (x̂)G(x) , (A.16)

and G is solution of the following boundary value problem: find G, such that
−∆G = δ(x−x̂) in Ω

G = 0 on ΓD
∂G
∂n = 0 on ΓN

(A.17)

which admits the following representation in the neighborhood of the point x̂ ∈ Ω

G(x) = −
(

1

2π
log ∥x−x̂∥+ G(x)

)
, with ∥x−x̂∥ → 0 , (A.18)

where G is harmonic in Ω and must compensate the discrepancy on ∂Ω introduced by the above
representation, that is, G is solution of the auxiliary boundary value problem: find G, such that

∆G = 0 in Ω
G = − 1

2π log ∥x−x̂∥ on ΓD
∂G
∂n = − 1

2π
x−x̂

∥x−x̂∥2 · n on ΓN

(A.19)

The choice

α(ε) =

(
1

2π
log ε+ G(x̂)

)−1

, (A.20)

guarantees the decay at infinity of the remaining terms. Furthermore, function w is solution of
the exterior problem: find w, such that ∆w = 0 in R2\H1

w → 0 as ∥y∥ → ∞
w = ε (∇u (x̂)−α(ε)u (x̂)∇G (x̂)) · n on ∂H1

(A.21)

which has a close solution, given by

w (x/ε) = − ε2

∥x−x̂∥2
(∇u (x̂)− α(ε)u (x̂)∇G (x̂)) · (x− x̂) . (A.22)

Finally, function ũε is constructed in such a way that compensate the discrepancy introduced
by the previous terms of the expansion for uε, thus it solves: find ũε, such that

∆ũε = 0 in Ωε

ũε = −w (x/ε) on ΓD
∂ũε
∂n = − ∂

∂nw (x/ε) on ΓN

ũε = −ε2(D2u(ξ(x))− α(ε)u(x̂)D2G(ζ(x)))(n)2 on ∂Hε

(A.23)

where ξ(x) and ζ(x) are intermediate points between x and x̂. In fact, this remaining term
admits the following estimate |ũε|H1(Ωε)

≤ Cε2, with C independent of ε [2, 4, 10].
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