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Abstract. In this paper a new approach to the derivation of the worst scenario and the maxi-
mum range scenario methods is proposed. The derivation is based on the topological derivative
concept for the boundary value problems of elasticity in two and three spatial dimensions. It is
shown that the topological derivatives can be applied to the shape and topology optimization
problems within a certain range of input data including the Lamé coefficients and the boundary
tractions. In other words, the topological derivatives are stable functions and the concept of
topological sensitivity is robust with respect to the imperfections caused by uncertain data. Two
classes of integral shape functionals are considered, the first for the displacement field and the
second for the stresses. For such classes, the form of topological derivatives is given and for
the second class some restrictions on the shape functionals are introduced in order to assure
the existence of topological derivatives. The results on topological derivatives are used for the
mathematical analysis of the worst scenario and the maximum range scenario methods. The
presented results can be extended to more realistic methods for some uncertain material param-
eters and with the optimality criteria including the shape and topological derivatives for broad
classe of shape functionals.

1. Introduction

Topological derivatives are now of common use in numerical procedures of resolution for
optimal design problems in structural mechanics, as well as for control and inverse problems.
The concept is based on the asymptotic approximation of solutions to the elliptic boundary
value problems in geometrical domains with singularly perturbed boundaries, it means that the
concept includes the asymptotics due to the creation of small holes or cavities inside of the
domain, or singular perturbations of the existing boundary. For integral shape functionals in
the linear elasticity the associated mathematical construction is fully developed in [1] and it
is used in many papers, we refer the reader e.g., to [2, 3, 4, 5, 6, 7, 8] for the results on the
topological derivatives as well as numerical exemples. In particular, our results generalize and
cover all formulae of topological derivatives presented in papers [3, 4, 6, 7, 8], the main extension
is just the precise formula of topological derivatives for shape functionals depending on stresses.
We point out that there are some restrictions on the applicability of topological derivatives for
the shape functionals depending on the stresses, which are already adressed in [1], and which
are explicitely given in our paper, see Remark 1 for details.

The main issue of the present paper is the robustness of topological derivatives, which is
very natural question in applied science, since the actual model parameters are usually slightly
different from the theoretical parameters of the mathematical model. In other words, we would
like to be sure that the design obtained by the numerical procedure is not very sensitive to the
model imperfections. Such a property of the function called topological derivative is not obvious
for the specific mathematical object which is obtained by a complicated approximation procedure
of asymptotic analysis, the procedure being in a sense arbitrary since the asymptotic ansatz for
the approximation with respect to small parameter, the size of the imperfection, is selected a
priori and requires the verification of its asymptotic exactness. We consider the particular case
of the worst scenario method, which seems to be relatively easy to apply, however the results
obtained can be rather pessimistic. The more relevant probabilistic approach to the model
robustness seems to be expensive and difficult to apply, in any case it requires the knowledge of
probabilistic distributions for the model parameters in question.
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In order to explain briefly the significance of the topological derivative in shape optimization
we present a simple example, with the well known solution obtained by numerical methods. We
start with the description of the model in hold-all-domain and compute the topological derivative
of the compliance to be minimized, and finally present the optimal shape. It is clear from the
numerical experiments that the topological derivative reflects an optimal topology for the shape
optimization problem. Thus, in three figures below we present an example of the structure to be
optimized, the contour plot of the topological derivative of the goal functional obtained for the
hold-all-geometrical domain, and finally the optimal shape in the form of the bridge structure,
which is well known from the literature on the subject.

Example 1. Let us present an application of the topological derivative in the context of structural
design. The compliance minimization, or equivalently the energy maximization, is considered, so
the shape functional to be minimized is negative elastic energy functional, its topological deriva-
tive is given by formula (2.39), and the displacement field is evaluated by solving problem (2.1).
In the numerical example shown in Fig. 1, the initial domain is represented by a rectangular
panel Ω = (0, 180) × (0, 60) m2, with thickness h = 0.3m, Young modulus E = 210× 109N/m2

and Poisson ratio ν = 1/3, clamped on the region a = 9m and submitted to a uniformly dis-
tributed traffic loading q̄ = 250 × 103 N/m2. This load is applied on the grey strip of height
b = 3m which is positioned at the distance c = 30m from the top of the design domain.

W

a a

c

b

q

Figure 1. Hold-all-domain with the framework for the compliance minimization
or energy maximization with respect to the shape and topology

The topological derivative of the compliance shape functional which is obtained in the first itera-
tion of the shape and topology optimization numerical procedure is shown in Fig. 2, where white
to black levels mean smaller to higher values.

Figure 2. Topological derivative of the energy or compliance shape functional
in hold-all-domain.

The resulting shape and topology numerical solution in the form of a well-known tie-arch bridge
structure, which is acceptable from practical point of view, is computed for a volume constraint
given by 0.25 |Ω|, and it is shown in Fig. 3.
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Figure 3. Optimal shape design, usually it is a local minimizer obtained nu-
merically for the compliance minimization, there is a lack of sufficient optimality
conditions for such shape optimization problems.

In the paper we consider topological derivative of shape functionals for elasticity, which is used
to derive the worst and also the maximum range scenarios for behavior of elastic body in case
of uncertain material parameters. It turns out that both problems are connected, because the
criteria describing this behavior have form of functionals depending on topological derivative
of elastic energy. Therefore, in the first part we describe the methodology of computing the
topological derivative with some new additional conditions for shape functionals depending on
stresses. For the sake of fullness of presentation the explicit formulae for stress distribution
around cavities are provided. Then we present the worst scenario and maximum range scenario
framework for the energy-based topological derivative. Finally, we observe that the classical
methods associated to the elastic energy shape functional can be extended to cover problems with
uncertain input data for the criteria based on, for instance, kinematic constraints or constraints
on stresses.

2. Topological Derivative

The topological derivative TΩ of a shape functional J (Ω) is introduced in [7] in order to
characterize the infinitesimal variation of J (Ω) with respect to the infinitesimal variation of the
topology of the domain Ω. The topological derivative allows us to derive the new optimality
condition for the shape optimization problem:

J (Ω∗) = inf
Ω

J (Ω) .

The optimal domain Ω∗ is characterized by the first order condition [9] defined on the boundary
of the optimal domain Ω∗, dJ(Ω∗;V ) ≥ 0 for all admissible vector fields V , and by the following
optimality condition defined in the interior of the domain Ω∗:

TΩ∗(x) ≥ 0 in Ω∗ .

We point out, that the rigorous derivation of necessary conditions for optimality given above
requires some a priori regularity of an optimal shape, since we cannot expect that a specific
shape functional is shape differentiable or admits a topological derivative for any admissible
geometrical domain, otherwise the optimality conditions are only formal. Since the energy type
shape functionals are shape differentaible under relatively week assumptions, the compliance is
a main optimality criteria in the optimal design of structural mechanics. Asymptotic analysis
of eigenvalues is also an important issue for applications, the same analysis can be performed
in such a case, and we refer the reader to [10] for the precise mathematical analysis of spectral
problems and the topological derivatives of simple and multiple eigenvalues.

The other use of the topological derivative is connected with approximating the influence of
the holes in the domain on the values of integral functionals of solutions, what allows us to solve
a class of shape inverse problems.

In general terms the notion of the topological derivative (TD) has the following meaning.
Assume that Ω ⊂ IRN is an open set and that there is given a shape functional

J : Ω \K → IR
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for any compact subset K ⊂ Ω. We denote by Bρ(x), x ∈ Ω, the ball of radius ρ > 0, Bρ(x) =

{y ∈ IRN |‖y−x‖ < ρ}, Bρ(x) is the closure of Bρ(x), and assume that there exists the following
limit

T(x) = lim
ρ↓0

J (Ω \Bρ(x))− J (Ω)

|Bρ(x)|

which can be defined in an equivalent way by

T̃(x) = lim
ρ↓0

J (Ω \Bρ(x))− J (Ω)

ρN

The function T(x), x ∈ Ω, is called the topological derivative of J (Ω), and provides the informa-
tion on the infinitesimal variation of the shape functional J if a small hole is created at x ∈ Ω.
This definition is suitable for Neumann–type boundary conditions on ∂Bρ.

In several cases this characterization is constructive, i.e. TD can be evaluated for shape
functionals depending on solutions of partial differential equations defined in the domain Ω.

For instance, TD may be computed for the 3D elliptic Laplace type equation, as well as for
extremal values of cost functionals for a class of optimal control problems. All these examples
have one common feature: the expression for TD may be calculated in the closed functional
form.

As we shall see below, the 3D elasticity case is more difficult, since it requires evaluation of
integrals on the unit sphere with the integrands which can be computed at any point, but the
resulting functions have no explicit functional form. In the particular case of energy functional
we obtain the closed formula.

2.1. Problem Setting for Elasticity Systems. We introduce elasticity system in the form
convenient for the evaluation of topological derivatives. Let us consider the elasticity equations
in IRN , where N = 2 for 2D and N = 3 for 3D,

div σ(u) = 0 in Ω,

u = g on ΓD,

σ(u)n = T on ΓN , (2.1)

and the same system in the domain with the spherical cavity Bρ(x0) ⊂ Ω centered at x0 ∈ Ω,

Ωρ = Ω \Bρ(x0),

div σ(uρ) = 0 in Ωρ,

uρ = g on ΓD,

σ(uρ)n = T on ΓN ,

σ(uρ)n = 0 on ∂Bρ(x0), (2.2)

where n is the unit outward normal vector on ∂Ωρ = ∂Ω ∪ ∂Bρ(x0). Assuming that 0 ∈ Ω, we
can consider the case x0 = 0.
Here u and uρ denote the displacement vectors fields, g is a given displacement on the fixed
part ΓD of the boundary, T is a traction prescribed on the loaded part ΓN of the boundary. In
addition, σ is the Cauchy stress tensor given, for ξ = u (eq. 2.1) or ξ = uρ (eq. 2.2), by

σ(ξ) = Dε(ξ) , (2.3)

where ε(ξ) is the symmetric part of the gradient of vector field ξ, that is

ε(ξ) =
1

2

(

∇ξ +∇ξ⊤
)

, (2.4)

and D is the elasticity tensor,

D = 2µII + λ (I ⊗ I) , (2.5)

with

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
and λ = λ∗ =

νE

1− ν2
(2.6)
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being E the Young’s modulus, ν the Poisson’s ratio and λ∗ the particular case for plane stress.
In addition, I and II respectively are the second and fourth order identity tensors. Thus, the
inverse of D is

D−1 =
1

2µ

[

II −
λ

2µ+Nλ
(I ⊗ I)

]

,

The first shape functional under consideration depends on the displacement field,

Ju(ρ) =

∫

Ωρ

F (uρ) dΩ , (2.7)

where F is a C2 function, e.g., F (uρ) = (Huρ · uρ)
p for an integer p ≥ 2. It is also useful for

further applications in the framework of elasticity to introduce the yield functional of the form

Jσ(ρ) =

∫

Ωρ

Sσ(uρ) · σ(uρ) dΩ , (2.8)

where S is an isotropic fourth-order tensor, which means that S may be expressed as follows

S = 2mII + l (I ⊗ I) ,

where l,m are real constants. Their values may vary for particular yield criteria. The following
assumption assures, that Ju, Jσ are well defined for solutions of the elasticity system.

(A) The domain Ω has piecewise smooth boundary, which may have reentrant corners with
α < 2π created by the intersection of two planes. In addition, g, T must be compatible with
u ∈ H1(Ω; IRN ).

The interior regularity of u in Ω is determined by the regularity of the right hand side of the
elasticity system. For simplicity the following notation is used for functional spaces,

H1
g (Ωρ) = {ψ ∈ [H1(Ωρ)]

N | ψ = g on ΓD},

H1
ΓD

(Ωρ) = {ψ ∈ [H1(Ωρ)]
N | ψ = 0 on ΓD},

H1
ΓD

(Ω) = {ψ ∈ [H1(Ω)]N | ψ = 0 on ΓD},

here we use the convention that eg., in our notation H1
g (Ωρ) stands for the Sobolev space of

vector functions [H1
g (Ωρ)]

N .
The weak solutions to the elasticity systems are defined in the standard way.

Find uρ ∈ H1
g (Ωρ) such that, for every φ ∈ H1

ΓD
(Ωρ),

∫

Ωρ

Dε(uρ) · ε(φ) dΩ =

∫

ΓN

T · φdS (2.9)

We introduce the adjoint state equations in order to simplify the form of shape derivatives of
functionals Ju, Jσ [9, 11]. For the functional Ju they take on the form:

Find wρ ∈ H1
ΓD

(Ωρ) such that, for every φ ∈ H1
ΓD

(Ωρ),
∫

Ωρ

Dε(wρ) · ε(φ) dΩ = −

∫

Ωρ

F ′
u(uρ) · φdΩ, (2.10)

whose Euler-Lagrange equation reads

div σ(wρ) = F ′
u(uρ) in Ωρ,

wρ = 0 on ΓD,

σ(wρ)n = 0 on ΓN ,

σ(wρ)n = 0 on ∂Bρ(x0), (2.11)

while vρ ∈ H1
ΓD

(Ωρ) is the adjoint state for Jσ and satisfies for all test functions

φ ∈ H1
ΓD

(Ω) the following integral identity:
∫

Ωρ

Dε(vρ) · ε(φ) dΩ = −2

∫

Ωρ

DSσ(uρ) · ε(φ) dΩ. (2.12)
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which associated Euler-Lagrange equation becomes

div σ(vρ) = −2div (DSσ(uρ)) in Ωρ,

vρ = 0 on ΓD,

σ(vρ)n = −2DSσ(uρ)n on ΓN ,

σ(vρ)n = −2DSσ(uρ)n on Sρ(x0) = ∂Bρ(x0). (2.13)

Remark 2. We observe that DS can be written as

DS = 4µmII + γ (I ⊗ I) (2.14)

where

γ = λlN + 2 (λm+ µl) (2.15)

Thus, when γ = 0, the boundary condition on ∂Bρ(x0) in eq. (2.13) becomes homogeneous and
the yield criteria must satisfy the constraint

m

l
= −

(

µ

λ
+
N

2

)

, (2.16)

which is naturally satisfied for the energy shape functional, for instance. In fact, in this particular
case, tensor S is given by

S =
1

2
D−1 ⇒ γ = 0 and 2m+ l =

1

2E
, (2.17)

which implies that the adjoint solution associated to Jσ can be explicitly obtained in terms of uρ.

2.2. Main Result . We shall define the topological derivative of the functionals Ju, Jσ at the
point x0 as [5, 7]:

T Ju(x0) = lim
ρ↓0

dJu(ρ)

d(|Bρ(x0)|)
, (2.18)

T Jσ(x0) = lim
ρ↓0

dJσ(ρ)

d(|Bρ(x0)|)
. (2.19)

Now we may formulate the following result, giving the constructive method for computing the
topological derivatives:

Theorem 3. Assume that (A) is satisfied, then

T Ju(x0) = −
1

2(N − 1)π
[ 2(N − 1)πF (u) + Ψ(D−1;σ(u), σ(w))]x=x0

, (2.20)

T Jσ(x0) = −
1

2(N − 1)π
[ Ψ(S;σ(u), σ(u)) + Ψ(D−1;σ(u), σ(v))]x=x0

, (2.21)

where w, v ∈ H1
ΓD

(Ω) are adjoint variables satisfying the integral identities (2.10) and (2.12)
for ρ = 0, i.e. in the whole domain Ω instead of Ωρ, that is

∫

Ω
Dε(w) · ε(φ) dΩ = −

∫

Ω
F ′
u(u) · φdΩ. (2.22)

∫

Ω
Dε(v) · ε(φ) dΩ = −2

∫

Ω
DSσ(u) · ε(φ) dΩ. (2.23)

for all test functions φ ∈ H1
ΓD

(Ω).

Some of the terms in (2.20), (2.21) require explanation. The function Ψ is defined as an
integral over the unit sphere S1(0) = {x ∈ IRN | ‖x‖ = 1} of the following functions:

Ψ(S;σ(u(x0)), σ(u(x0))) =

∫

S1(0)
Sσ∞(u(x0);x) · σ

∞(u(x0);x) dS (2.24)

Ψ(D−1;σ(u(x0)), σ(v(x0))) =

∫

S1(0)
σ∞(u(x0);x) ·D

−1σ∞(v(x0);x) dS (2.25)
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Ψ(D−1;σ(u(x0)), σ(w(x0))) =

∫

S1(0)
σ∞(u(x0);x) ·D

−1σ∞(w(x0);x) dS (2.26)

The symbol σ∞(u(x0);x) denotes the stresses for the solution of the elasticity system (2.2) in

the infinite domain IRN \B1(0) with the following boundary conditions:

• no tractions are applied on the surface of the ball, S1(0) = ∂B1(0);
• the stresses σ∞(u(x0);x) tend to the constant value σ(u(x0)) as ‖x‖ → ∞.

In this notation σ∞(u(x0);x) is a function of space variables depending on the functional
parameter u(x0), while σ(u(x0)) is a value of the stress tensor computed in the point x0 for the
solution u. The dependence between them results from the boundary condition at infinity listed
above. The method for obtaining such solutions (and u∞), based on [12], is discussed in the
next section.

In order to derive the above formulae (2.20), (2.21) we calculate the derivatives of the func-
tional Ju(ρ) with respect to the parameter ρ, which determines the size of the hole Bρ(x0), by
using the material derivative method [9]. Then we pass to the limit ρ ↓ 0 using the asymptotic
expansions of uρ with respect to ρ. For the functional Ju the shape derivative with respect to ρ
is given by

J ′
u(ρ) =

∫

Ωρ

F ′
u(uρ) · u

′
ρ dΩ−

∫

Sρ(x0)
F (uρ) dS, (2.27)

and in the same way for the state equation:
∫

Ωρ

Dε(u′ρ) · ε(φ) dΩ −

∫

Sρ(x0)
Dε(uρ) · ε(φ) dS = 0, (2.28)

where u′ρ is the shape derivative, i.e. the derivative of uρ with respect to ρ, [9].
After substitution of the test functions φ = wρ in the derivative of the state equation, φ = u′ρ

in the adjoint equation, we get

J ′
u(ρ) = −

∫

Sρ(x0)
[F (uρ) +Dε(uρ) · ε(wρ)] dS

= −

∫

Sρ(x0)
[F (uρ) + σ(uρ) ·D

−1σ(wρ)] dS, (2.29)

and similarly for Jσ

J ′
σ(ρ) = −

∫

Sρ(x0)
[Sσ(uρ) · σ(uρ) +Dε(uρ) · ε(vρ)] dS

= −

∫

Sρ(x0)
[Sσ(uρ) · σ(uρ) + σ(uρ) ·D

−1σ(vρ)] dS. (2.30)

Observe, that both matrices D−1 and S are isotropic, and therefore, the corresponding bilinear
forms in terms of stresses are invariant with respect to the rotations of the coordinate system.

Now we exploit the fact, that

dJu(ρ)

d(|Bρ(x0)|)
=

1

2(N − 1)πρN−1

dJu
dρ

,

and use the existence of the asymptotic expansions for uρ in the neighborhood of Bρ(x0), namely

uρ = u(x0) + u∞ +O(ρ2). (2.31)

In addition, u∞ is proportional to ρ, ‖u∞‖IRN = O(ρ), on the surface Sρ(x0) of the ball. The
expansion of σ(uρ) corresponding to (2.31) has the form

σ(uρ) = σ∞(u(x0);x) +O(ρ). (2.32)

It can be proved, that wρ and vρ have similar expansions.
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Using the formulae (2.31),(2.32) the following passages to the limit hold:

lim
ρ↓0

1

ρN−1

∫

Sρ(x0)
σ(uρ) ·D

−1σ(vρ) dS = Ψ(D−1;σ(u(x0)), σ(v(x0))),

lim
ρ↓0

1

ρN−1

∫

Sρ(x0)
σ(uρ) ·D

−1σ(wρ) dS = Ψ(D−1;σ(u(x0)), σ(w(x0))),

lim
ρ↓0

1

ρN−1

∫

Sρ(x0)
Sσ(uρ) · σ(uρ) dS = Ψ(S;σ(u(x0)), σ(u(x0))),

lim
ρ↓0

1

ρN−1

∫

Sρ(x0)
F (uρ) dS = 2(N − 1)πF (u(x0)).

This completes the proof of the theorem.
The main difficulty lies in the computation of the values of the functions denoted above as

Ψ(S;σ(u(x0)), σ(u(x0))), Ψ(D−1;σ(u(x0)), σ(w(x0))) and Ψ(D−1;σ(u(x0)), σ(v(x0))) ,

which, in general, are difficult to obtain in the closed form, in contrast with the two dimensional
case. Therefore, we can approximate them using numerical quadrature. It is possible, because we
may calculate the values of integrands at any point on the sphere. This makes the computations
more involved, but does not increase the numerical complexity in comparison to evaluating single
closed form expression.

Remark 4. The tensor S in the definition of Jσ may, in fact, be arbitrary, not only isotropic.
However, it is difficult to imagine such a need for the isotropic material. Anyway, in the general
case, we would have to transform S according to the known rules for the fourth order tensor,
connected with the rotation of the reference frame.

2.2.1. Topological Derivatives in 3D Elasticity. The shape functionals Ju, Jσ are defined in the
same way as presented in section 2.2 with the exception, that Jσ is now the energy stored in a
3D elastic body (see remark 2). The weak solutions to the elasticity system as well as adjoint
equations are defined also analogously to the section 2.2. Then, considering the expansions
presented in Appendix A.2, we may state the following result [8] (see also [3, 4, 6]):

Theorem 5. The expressions for the topological derivatives of the functionals Ju, Jσ have the
form

T Ju(x0) = −

[

F (u) +
3

2E

1− ν

7− 5ν
(10(1 + ν)σ(u) · σ(w) − (1 + 5ν)trσ(u)trσ(w))

]

x=x0

, (2.33)

T Jσ(x0) =
3

4E

1− ν

7− 5ν

[

10(1 + ν)σ(u) · σ(u)− (1 + 5ν)(trσ(u))2
]

x=x0

. (2.34)

2.2.2. Topological Derivatives in 2D Elasticity. For the convenience of the reader we recall here
the results derived in [7] for the 2D case. The principal stresses associated with the displacement
field u are denoted by σI(u), σII(u), the trace of the stress tensor σ(u) is denoted by trσ(u) =
σI(u)+σII(u). The shape functionals Ju, Jσ are defined in the same way as presented in section
2.2, with the tensor S isotropic (that is similar to D). The weak solutions to the elasticity
system as well as adjoint equations are defined also analogously to the section 2.2. Then, from
the expansions presented in Appendix A.1, we can prove the following result [7]:

Theorem 6. The expressions for the topological derivatives of the functionals Ju,Jσ have the
form

T Ju(x0) = −

[

F (u) +
1

E
(auaw + 2bubw cos 2δ)

]

x=x0

= −

[

F (u) +
1

E
(4σ(u) · σ(w) − trσ(u)trσ(w))

]

x=x0

(2.35)
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T Jσ(x0) = −

[

(α+ β)a2u + 2(α− β)b2u +
1

E
(auav + 2bubv cos 2δ)

]

x=x0

= −
[

4(α − β)σ(u) · σ(u)− (α− 3β)(trσ(u))2

+
1

E
(4σ(u) · σ(v)− trσ(u)trσ(v))

]

x=x0

(2.36)

Some of the terms in (2.35), (2.36) require explanation. According to eq. (2.15) for N = 2,
constants α and β are given by

α = l + 2
(

m+ γ
ν

E

)

and β = 2
γ

E
. (2.37)

Furthermore, we denote

au = σI(u) + σII(u), bu = σI(u)− σII(u),

aw = σI(w) + σII(w), bw = σI(w)− σII(w),

av = σI(v) + σII(v), bv = σI(v)− σII(v). (2.38)

Finally, the angle δ denotes the angle between principal stress directions for displacement fields
u and w in (2.35), and for displacement fields u and v in (2.36).

Remark 7. For the energy stored in a 2D elastic body, tensor S is given by eq. (2.17), γ = 0,
α = 1/(2E) and β = 0. Thus, we obtain the following well-known result

T Jσ(x0) =
1

2E

[

4σ(u) · σ(u)− (trσ(u))2
]

x=x0

(2.39)

Compare these expressions to the 3D case. Their simplicity comes from the fact, that on
the plane the rotation of one coordinate system with respect to the other is defined by the
single value of the angle (here δ). This is a purely 2D phenomenon and it makes the explicit
computations possible.

3. Uncertain Input Data

The methods proposed in this section can be used in the presence of model imperfections.
In order to analyse the methods, we need the continuity of topological derivatives with respect
to the parameters of the model, including the Lamé coefficients and the tractions. The Lamé
coefficients are given in some compact sets i.e., the closed intervals, and the tractions are given in
a convex subset of a functional space. The critical case is the topological derivative of the shape
functional for stresses, so that case is analysed in details, and Theorem 8 shows the continuity of
the pointwise values of stresses with respect to the Lamé coefficients and tractions. This result
allows us, in fact, to establish the well-posedness of both methods in section 3.1.2. The elasticity
problems in two spatial dimensions are investigated in section 3.2.

In reality, the values of input data (loading, material parameters) are guaranteed only in some
given intervals. One of the simplest remedy is to apply the worst scenario or maximum range
scenario method [13]. In what follows, we present the methods for the traction problem (2.1)
with ∂Ω = ΓN and the criterion corresponding to the topological derivatives (2.34) or (2.39),
respectively.

3.1. Traction Problem in 3D Elasticity. Let us consider a bounded domain Ω ⊂ R
3 with

Lipschitz boundary ∂Ω ≡ Γ, occupied by a homogeneous and isotropic elastic body. Let the
body be loaded by surface forces T ∈ [L∞ (Γ)]3 and the body forces be zero.

We introduce sets of admissible uncertain input data as follows :

(i): Lamé coefficients

λ ∈ Uλ
ad =

[

λ, λ
]

, 0 ≤ λ < λ <∞,

µ ∈ Uµ
ad =

[

µ, µ
]

, 0 < µ < µ <∞;
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(ii): surface loading forces

Ti ∈ UT
ad

=
{

τ ∈ L∞ (Γ) : τ
∣

∣

Γp ∈ C(0),1
(

Γp

)

, |τ | ≤ C1, |∂τ/∂sj | ≤ C2 a.e. on Γ, j = 1, 2
}

,

where
Γ =

⋃P
p=1 Γp, Γk ∩ Γm = ∅ for k 6= m, i = 1, 2, 3,

sj are local coordinates of the surface Γp and C1, C2 are given constants,
T ≡ (T1, T2, T3) ∈ UT

ad = {Ti ∈ UT
ad, i = 1, 2, 3 and

∫

Γ TdS = 0,
∫

Γ x× TdS = 0}.

Finally, we define

Uad = Uλ
ad × Uµ

ad × UT
ad and A ≡ {A, T}, A = {λ, µ}.

We will consider the following criterion-functional based on the topological derivative associ-
ated to the energy shape functional (2.34)

Φ(A, σ) = σ⊤H(A)σ

where σ ≡ σ(y) is the stress tensor of a full body at the center y ∈ Ω of a spherical cavity,

H(A) =
3

4E

1− ν

7− 5ν
[10(1 + ν)II−(1 + 5ν)I ⊗ I] . (3.1)

Note that ν = λ
2(λ+µ) , E = µ(3λ+2µ)

λ+µ
.

3.1.1. Continuous Dependence of the Criterion on the Input Data. Our main result of the present
section is given by the following theorem

Theorem 8. Let An ∈ Uad, An → A in R
2 × [L∞(Γ)]3 as n→ ∞. Then

Φ(An, σ(An)) → Φ(A, σ(A)).

Proof is based on the formulae ([14]-Theorem 10.1.1)

∂ui
∂yj

(y) =

∫

Γ
T ·Gij

y dS , i, j = 1, 2, 3 (3.2)

and
Gij

y = Gij
y (A) = u∗ij(A)− uij(A), (3.3)

where, for k = 1, 2, 3,

uijk (A) =
1

κ
uij0k , κ(A) = 16πµ(1 − ν)

uij0k (A) = |r|−3(rkδij + riδjk − 3rjrirk|r|
−2 − (3− 4ν)rjδik), (3.4)

and r = x− y. Since
(κ(An))

−1 −→ (κ(A))−1

and the components uij0k are bounded on Γ,

uij(An) −→ uij(A) in [L2(Γ)]3. (3.5)

The vector field u∗ij(A) is the displacement solving the first boundary value problem with zero
body forces and the equilibriated surface loading

T ∗ij = sij + wij ,

where

sijk = (λδkmdivuij + 2µεkm(uij))nm (3.6)

and

wij = aij + bij × x, aij , bij ∈ R
3
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represents a rigid body displacement such that
∫

Γ
wijdS = 0,

∫

Γ
wij × xdS = ei × ej ,

(ei denote unit vectors in the directions of Cartesian coordinates). The field wij is uniquely
determined by the conditions shown.

Inserting (3.4) in (3.6), we observe that

sijk =

(

λ

κ
δkmdivuij0 + 2

µ

κ
εkm(uij0)

)

nm = sijk (ν) (3.7)

since uij0, λ
κ
and µ

κ
are independent of the modulus E.

Lemma 9. Let us define

a(A;u, v) =

∫

Ω
(λdivudivv + 2µ εij(u)εij(v))dx.

If A ∈ Uλ
ad × Uµ

ad, then positive constants C, c0 exist, independent of A and such that

|a(A;u, v)| ≤ C‖u‖1,Ω‖v‖1,Ω ∀u, v ∈ [H1(Ω)]3, (3.8)

a(A;u, u) ≥ c0‖u‖
2
1,Ω ∀u ∈ V0, (3.9)

where

V0 = {v ∈ [H1(Ω)]3 :

∫

Γ
v dS = 0,

∫

Γ
v × xdS = 0}.

Proof. The estimate (3.8) follows from the Cauchy-Schwartz inequality and the boundedness
of sets Uλ

ad, U
µ
ad. To justify (3.9), we write

a(A;u, u) ≥ 2µ

∫

Ω
εij(u)εij(u)dx

and use the Korn’s inequality
∫

Ω
εij(u)εij(u)dx ≥ c‖u‖21,Ω ∀u ∈ V0

(see e.g. [14]-Lemma 7.3.3).

Lemma 10. Let λn ∈ Uλ
ad, µn ∈ Uµ

ad, λn → λ and µn → µ as n→ ∞. Then νn → ν and

T ∗ij(νn) → T ∗ij(ν) in [L2(Γ)]3. (3.10)

Proof. Since λn + µn ≥ λ+ µ > 0,

νn =
λn

2(λn + µn)
→

λ

2(λ+ µ)
= ν.

We infer that

sijk (νn) → sijk (ν) in L2(Γ), k = 1, 2, 3. (3.11)

Indeed, we have λn/κn → λ/κ, µn/κn → µ/κ and

‖uij0(νn)− uij0(ν)‖H1(Γ) ≤ C|νn − ν| → 0,

so that (3.11) holds.
Since the field wij is independent of A, we arrive at (3.10).

Lemma 11. Let λn ∈ Uλ
ad, µn ∈ Uµ

ad, λn → λ and µn → µ as n→ ∞ and u∗ij(An) ∈ V0. Then

u∗ij(An) → u∗ij(A) in [H1(Ω)]3.
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Proof. For brevity, let us denote T ∗
n = T ∗ij(νn), T

∗ = T ∗ij(ν), u∗n = u∗ij(An), u
∗ = u∗ij(A).

By definition, we have

a(An;u
∗
n, v) =

∫

Γ
T ∗
nv dS (3.12)

a(A;u∗, v) =

∫

Γ
T ∗v dS (3.13)

for all v ∈ [H1(Ω)]3. Let us consider also solutions ûn ∈ V0 of the following problem

a(A; ûn, v) =

∫

Γ
T ∗
nv dS ∀v ∈ [H1(Ω)]3. (3.14)

From (3.14) and (3.13) we obtain

a(A; ûn − u∗, v) =

∫

Γ
(T ∗

n − T ∗)v dS.

Inserting v := ûn − u∗ and using Lemma 9, we infer that

c0‖ûn − u∗‖1,Ω ≤ C‖T ∗
n − T ∗‖L2(Γ) (3.15)

so that ‖ûn − u∗‖1,Ω → 0 follows from Lemma 10.
We can show that

‖u∗n‖1,Ω ≤ C1 ∀n . (3.16)

Indeed, (3.12) and Lemma 9 yield that

c0‖u
∗
n‖

2
1,Ω ≤ C‖T ∗

n‖L2(Γ)‖u
∗
n‖1,Ω,

so that (3.16) follows from Lemma 10.
We can use (3.12), (3.14) and Lemma 9 to obtain

c0‖u
∗
n − ûn‖

2
1,Ω ≤ a(A;u∗n − ûn, u

∗
n − ûn)

= [a(A;u∗n, u
∗
n − ûn)− a(An;u

∗
n, u

∗
n − ûn)]

+ [a(An;u
∗
n, u

∗
n − ûn)− a(A; û,u

∗
n − ûn)]

= a(A;u∗n, u
∗
n − ûn)− a(An;u

∗
n, u

∗
n − ûn)

≤ C‖A −An‖0,∞,Ω‖u
∗
n‖1,Ω‖u

∗
n − ûn‖1,Ω. (3.17)

Then (3.16) and (3.17) yield

‖u∗n − ûn‖1,Ω ≤ C2‖A −An‖0,∞,Ω → 0. (3.18)

The convergence u∗n → u∗ in [H1(Ω)]3 follows from the triangle inequality, (3.15) and (3.18).

Proposition 12. Let An ∈ Uλ
ad × Uµ

ad, An → A in R
2. Then

Gij
y (An) → Gij

y (A) in [L2(Γ)]3, i, j ∈ {1, 2, 3} (3.19)

as n→ ∞.

Proof. Since by (3.3) we have

‖Gij
y (An)−Gij

y (A)‖0,Γ ≤ ‖u∗ij(An)− u∗ij(A)‖0,Γ + ‖uij(An)− uij(A)‖0,Γ,

the assertion follows from Lemma 11, the Trace Theorem and (3.5).

Proposition 13. Let the stress components at the point y be

σkl(A) =

∫

Γ
T · (cklij(A)Gij

y (A))dS.

Assume that An ∈ Uad, An → A in R
2 × [L∞(Γ)]3 as n→ ∞. Then

σkl(An) → σkl(A).
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Proof. We may write

|σkl(An)− σkl(A)| = |
∫

Γ Tn · (cklij(An)G
ij
y (An))dS

−
∫

Γ T · (cklij(A)Gij
y (A))dS|

≤ |
∫

Γ Tn · ((cklij(An)− cklij(A))Gij
y (An))dS|

+|
∫

Γ Tn · (cklij(A)(Gij
y (An)−Gij

y (A)))dS|

+|
∫

Γ(Tn − T ) · (cklij(A)Gij
y (A))dS| ≡ I1 + I2 + I3,

where a positive constant C exists such that

I1 ≤

∫

Γ
C‖An −A‖0,∞max

i,j
|Gij

y (An)|dS → 0

and

I2 ≤

∫

Γ
Cmax

i,j
|Gij

y (An)−Gij
y (A)|dS → 0

due to Proposition 12 and the boundedness of Tn in [L∞(Γ)]3. I3 tend to zero by assumption.
Proof of Theorem 8. We have

|Φ(An, σ(An))− Φ(A, σ(A))|
≤ |σ(An)

⊤H(An)(σ(An)− σ(A))|
+|σ(An)

⊤(H(An)−H(A))σ(A)|
+|(σ(An)

⊤ − σ(A)⊤)H(A)σ(A)| = J1 + J2 + J3.

By Proposition 13 we infer that J1 and J3 tend to zero. We also use the continuity of the
function A → H(A), which follows from Lemma 10 and the convergence

En = 2µn(1 + νn) → 2µ(1 + ν) = E ≥ 2µ > 0.

As a consequence, J2 tends to zero, as well.

3.1.2. Worst Scenario and Maximum Range Scenario. Suppose that we wish to be “on the
safe side”, taking uncertain input data A and T in consideration. Then we solve either the
worst scenario problem

A0 = arg max
A∈Uad

Φ(A, σ(A)) (3.20)

or the maximum range scenario problem: find

: (i) A0 according to (3.20) and
: (ii)

A0 = arg min
A∈Uad

Φ(A, σ(A)). (3.21)

In other words, we seek exact upper and lower bounds of the criterion functional (see the
monograph [13] for applications of problem (3.21) within the frame of the fuzzy set theory).

Theorem 14. Problems (3.20) and (3.21) have at least one solution.

Proof. The set Uad is compact in R
2 × (

3
∏

i=1

P
∏

p=1
C(Γp)), so that the assertion follows from

Theorem 8.

3.2. Traction Problem in 2D Elasticity. Let us consider plane elasticity, i.e., either the
case of plane strain or that of plane stress. It is well-known, that both cases have the same
stress-strain relations, where only the coefficient λ varies. It is either λ or λ⋆, see (2.6).

λ =
Eν

(1 + ν)(1− 2ν)

for plane strain, whereas

λ = λ∗ =
Eν

1− ν2

for plane stress.
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Let us consider a bounded domain Ω ⊂ R
2 with a Lipschitz boundary ∂Ω ≡ Γ, occupied by

a homogeneous and isotropic elastic body, loaded only by surface loads T ∈ [L∞(Γ)]2. Assume

that λ ∈ Uλ
ad, µ ∈ Uµ

ad and Ti ∈ UTi

ad , i = 1, 2, with Uλ
ad, U

µ
ad and UTi

ad defined in section 3.1.
Moreover, assume that the forces T are in equilibrium, i.e.

∫

Γ
TdS = 0,

∫

Γ
(x1T2 − x2T1)dS = 0. (3.22)

We define
UT
ad = {T ≡ (T1, T2) : Ti ∈ UT

ad, i = 1, 2, T satisfy (3.22)},
Uad = Uλ

ad × Uµ
ad × UT

ad,
A = {λ, µ}, A = {A, T}

and introduce the criterion-functional based on the topological derivative associated to the
energy shape functional (2.39)

Φ(A, σ) = σ⊤H(A)σ, (3.23)

where σ ≡ σ(y) is the stress tensor of a full body at the center y ∈ Ω of a circular cavity, and

H(A) =
1

2E
(4II−I ⊗ I)

=
K + µ

8Kµ
(4II−I ⊗ I) , (3.24)

where K = λ+ µ is the bulk modulus.

3.2.1. Continuous Dependence of the Criterion on the Input Data. The main result of the present
section will be represented by an analogue of Theorem 8 as follows.

Theorem 15. Let An ∈ Uad, An → A in R
2 × [L∞(Γ)]2 as n→ ∞. Then

Φ(An, σ(An)) → Φ(A, σ(A)).

For the proof we shall employ the following integral representation formula, analogous to
(3.2), namely

∂ui
∂yj

(y) =

∫

Γ
T ·Gij

y dS, i, j ∈ {1, 2}. (3.25)

We can construct the vector function Gij
y in a way parallel to that of the proof of Theorem 10.1.1

in [14]. First, we consider the well-known Kelvin solution

(uiy)k = κ
−1
0 [−(K + 2µ)δik ln |r|+Krirk|r|

−2], (3.26)

where
κ0 = 4πµ(K + µ), r = x− y

and define
uij = −∂uiy/∂yj .

The corresponding surface forces on Γ are then

(sij)k = [λδkmdivuij + 2µεkm(uij)]nm.

We can find that
∫

Γ
sijdS = 0,

∫

Γ
(x1(s

ij)2 − x2(s
ij)1)dS = e3 · (ej × ei). (3.27)

Let us construct the rigid body translation

wij = aij + bije3 × x

where aij ∈ R
2, bij ∈ R and wij satisfies the following conditions

∫

Γ
wijdS = 0,

∫

Γ
(x1w

ij
2 − x2w

ij
1 )dS = e3 · (ei × ej). (3.28)

Note that the field wij is uniquely determined by conditions (3.28). If we define

T ∗ij = sij + wij ,
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the forces T ∗ij are in equilibrium, i.e., they satisfy conditions (3.22).
There exists a unique displacement field u∗ij , which solves the first boundary value problem of

elasticity with zero body forces and surface loads T ∗ij and satisfies the normalization conditions
∫

Γ
u∗ijdS = 0,

∫

Γ
(x1u

∗ij
2 − x2u

∗ij
1 )dS = 0. (3.29)

Next, we assume that the field u fullfils conditions (3.29) as well and consider the so-called
Love formula

∂ui
∂yj

(y) =

∫

Γ
(sij · u− T · uij)dS, (3.30)

which follows by differentiating the so-called Somigliana identity

ui(y) =

∫

Γ
(T · uiy − u · siy)dS, (3.31)

where
∂siy/∂yj = −sij.

By Reciprocity Theorem, we obtain
∫

Γ
(T · u∗ij − T ∗ij · u)dS = 0. (3.32)

Then (3.30) and (3.32) yield

∂ui
∂yj

(y) =

∫

Γ
T · (u∗ij − uij)dS +

∫

Γ
u · (sij − T ∗ij)dS.

The last integral vanishes by virtue of normalization conditions, since

sij − T ∗ij = −wij .

As a consequence, we arrive at the formula (3.25), where

Gij
y = u∗ij − uij . (3.33)

Now we may go on in proving Theorem 15 as in the proof of Theorem 8. We establish an
analogue of Lemma 9, where the subspace V0 is defined by

V0 =

{

v ∈ [H1(Ω)]2 :

∫

Γ
v dS = 0,

∫

Γ
(x1v2 − x2v1)dS = 0

}

.

For the Korn’s inequality in V0, see e.g. section 10.2.2 in [14].
As far as an analogue of Lemma 10 is concerned, we use the formula

ν =
λ

2(λ+ µ)

for plane strain and

ν =
λ∗

λ∗ + 2µ
for plane stress.

It is readily seen that sij ≡ sij(ν), i.e., it does not depend on the modulus E. Then we can
prove that λ∗n → λ∗, νn → ν and

sij(νn) → sij(ν) in
[

L2(Γ)]2 as νn → ν ,

since
λn(Kn + 2µn)/κ0n → λ(K + 2µ)/κ0 (3.34)

and λnKn/κ0n → λK/κ0 for Kn = λn + µn, λn ∈ Uλ
ad, µn ∈ Uµ

ad, An → A.

The field wij is independent of A, so that we arrive at

T ∗ij(νn) → T ∗ij(ν) in [L2(Γ)]2.

An analogue of Lemma 11 can be proved in the same way as Lemma 11. We infer that

u∗ij(An) → u∗ij(A) in [H1(Ω)]2. (3.35)
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Using again (3.34), we observe that

uij(An) → uij(A) in [L2(Γ)]2. (3.36)

Combining (3.33) with (3.35), the Trace Theorem and (3.36), we obtain

Gij
y (An) → Gij

y (A) in [L2(Γ)]2. (3.37)

Theorem 15 follows in a way parallel to the proof of Theorem 8, from (3.37), the uniform
convergence of surface loads on Γ and the continuity of the function A 7→ H(A).

3.2.2. Worst Scenario and Maximum Range Scenario. Both the worst scenario problem (3.20)
and the maximum range scenario problem (3.21) have at least one solution. This assertion is a

consequence of Theorem 15 and the compactness of the set Uad in R
2 ×

2
∏

i=1

P
∏

p=1
C(Γp).

4. Conclusions

In the present paper it is shown that the topological derivatives of shape functionals in elas-
ticity are robust mathematical objects in shape and topology optimization. Our analysis is
performed in the particular and useful for application case of the worst scenario and maximum
range scenario methods. The case of probabilistic distributions of imperfections in model pa-
rameters should be still investigated. The influence of imperfections on the resulting numerical
solution of optimal design problems with respect to the uncertainty of model parameters de-
pends on the probabilistic distributions of the shape gradients and of the topological derivatives.
Such studies can be performed for some specific problems, and should be based on some effective
description of probabilistic model imperfections, which seems to us to be quite complicated. In
any case, such investigations should be performed in order to complete our analysis.

We have seen that the worst case and maximal range scenario problems are solvable with crite-
rions of energy-based topological derivative. Therefore, the proposed method leads to a general
approach to deal with uncertain input data considering different criteria based on topological
derivative of arbitrary shape functionals. In fact, the same methodology may be applied to de-
rive similar analysis for criteria dependent for example on displacement (kinematic constraints)
and yield constraints, extending the classical result obtained for the energy functional.

Appendix A. Stress Distribution Around Cavities

We present in this appendix the analytical solution for the stress distribution around a circular
(N = 2) and spherical (N = 3) cavities respectively for two and three-dimensional linear elastic
bodies.

A.1. Circular Cavity . Considering a polar coordinate system (r, θ), we have the following
expansion for the stress distribution σ(ξρ) around a free boundary circular cavity (σrr(ξρ) =

σrθ(ξρ) = 0 on ∂Bρ(x0)), with ξρ = uρ or ξρ = wρ

σrr(ξρ) =
aξ
2

(

1−
ρ2

r2

)

+
bξ
2

(

1− 4
ρ2

r2
+ 3

ρ4

r4

)

cos 2θξ +O (ρ) , (A.1)

σθθ(ξρ) =
aξ
2

(

1 +
ρ2

r2

)

−
bξ
2

(

1 + 3
ρ4

r4

)

cos 2θξ +O (ρ) , (A.2)

σrθ(ξρ) = −
bξ
2

(

1 + 2
ρ2

r2
− 3

ρ4

r4

)

sin 2θξ +O (ρ) , (A.3)

where the angle θu = θ and θw = θ + δ, with δ denoting the angle between principal stress
directions for displacement fields u and w in (2.35). In addition, the following expansion for σ(vρ)
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satisfying the boundary condition on ∂Bρ(x0) given by σrθ(vρ) = 0 and σrr(vρ) = −2γσθθ(uρ),
holds

σrr(vρ) =
av
2

(

1−
ρ2

r2

)

+
bv
2

(

1− 4
ρ2

r2
+ 3

ρ4

r4

)

cos 2θv

−2γau
ρ2

r2
+ 4γbu

(

2
ρ2

r2
−
ρ4

r4

)

cos 2θ +O (ρ) , (A.4)

σθθ(vρ) =
av
2

(

1 +
ρ2

r2

)

−
bv
2

(

1 + 3
ρ4

r4

)

cos 2θv

+2γau
ρ2

r2
+ 4γbu

ρ4

r4
cos 2θ +O (ρ) , (A.5)

σrθ(vρ) = −
bv
2

(

1 + 2
ρ2

r2
− 3

ρ4

r4

)

sin 2θv + 4γbu

(

ρ2

r2
−
ρ4

r4

)

sin 2θ +O (ρ) , (A.6)

where the angle θv = θ + δ, with δ denoting the angle between principal stress directions for
displacement fields u and v in (2.36). Finally,

aξ = σI(ξ) + σII(ξ) and bξ = σI(ξ)− σII(ξ) ,

where σI(ξ) and σII(ξ) are the principal stress values of tensor σ(ξ), for ξ = u, ξ = w or ξ = v
associated to the original domain without hole Ω.

A.2. Spherical Cavity . Let us introduce a spherical coordinate system (r, θ, ϕ). Then, the
stress distribution around the spherical cavity Bρ(x0) is given by

σrr(ξρ) = σrr1 + σrr2 + σrr3 +O(ρ) ,
σrθ(ξρ) = σrθ1 + σrθ2 + σrθ3 +O(ρ) ,
σrϕ(ξρ) = σrϕ1 + σrϕ2 + σrϕ3 +O(ρ) ,
σθθ(ξρ) = σθθ1 + σθθ2 + σθθ3 +O(ρ) ,

σθϕ(ξρ) = σθϕ1 + σθϕ2 + σθϕ3 +O(ρ) ,
σϕϕ(ξρ) = σϕϕ1 + σϕϕ2 + σϕϕ3 +O(ρ) ,

where ξρ = uρ, ξρ = wρ or ξρ = vρ; σ
rr
i , σrθi , σrϕi , σθθi , σθϕi and σϕϕi , for i = 1, 2, 3, are written, as:

for i = 1

σrr1 = σI(ξ)
14−10ν

[

12
(

ρ3

r3
− ρ5

r5

)

+
(

14− 10ν − 10(5− ν)ρ
3

r3
+ 36ρ5

r5

)

sin2 θ sin2 ϕ
]

, (A.7)

σrθ1 = σI(ξ)
14−10ν

[

7− 5ν + 5(1 + ν)ρ
3

r3
− 12ρ5

r5

]

sin 2θ sin2 ϕ , (A.8)

σrϕ1 = σI(ξ)
14−10ν

[

7− 5ν + 5(1 + ν)ρ
3

r3
− 12ρ5

r5

]

sin θ sin 2ϕ , (A.9)

σθθ1 = σI(ξ)
56−40ν

[

14− 10ν + (1 + 10ν)ρ
3

r3
+ 3ρ5

r5
−

(

14− 10ν + 25(1 − 2ν)ρ
3

r3
− 9ρ5

r5

)

cos 2ϕ

+
(

28− 20ν − 10(1 − 2ν)ρ
3

r3
+ 42ρ5

r5

)

cos 2θ sin2 ϕ
]

, (A.10)

σθϕ1 = σI(ξ)
14−10ν

[

7− 5ν + 5(1 − 2ν)ρ
3

r3
+ 3ρ5

r5

]

cos θ sin 2ϕ , (A.11)

σϕϕ1 = σI(ξ)
56−40ν

[

28− 20ν + (11 − 10ν)ρ
3

r3
+ 9ρ5

r5
+

(

28− 20ν + 5(1 − 2ν)ρ
3

r3
+ 27ρ5

r5

)

cos 2ϕ

−30
(

(1− 2ν)ρ
3

r3
− ρ5

r5

)

cos 2θ sin2 ϕ
]

, (A.12)
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for i = 2

σrr2 = σII(ξ)
14−10ν

[

12
(

ρ3

r3
− ρ5

r5

)

+
(

14− 10ν − 10(5− ν)ρ
3

r3
+ 36ρ5

r5

)

sin2 θ cos2 ϕ
]

, (A.13)

σrθ2 = σII(ξ)
14−10ν

[

7− 5ν + 5(1 + ν)ρ
3

r3
− 12ρ5

r5

]

cos2 ϕ sin 2θ , (A.14)

σrϕ2 = −σII (ξ)
14−10ν

[

7− 5ν + 5(1 + ν)ρ
3

r3
− 12ρ5

r5

]

sin θ sin 2ϕ , (A.15)

σθθ2 = σII(ξ)
56−40ν

[

14− 10ν + (1 + 10ν)ρ
3

r3
+ 3ρ5

r5
+

(

14− 10ν + 25(1 − 2ν)ρ
3

r3
− 9ρ5

r5

)

cos 2ϕ

+
(

28− 20ν − 10(1 − 2ν)ρ
3

r3
+ 42ρ5

r5

)

cos 2θ cos2 ϕ
]

, (A.16)

σθϕ2 = −σII (ξ)
14−10ν

[

7− 5ν + 5(1 − 2ν)ρ
3

r3
+ 3ρ5

r5

]

cos θ sin 2ϕ , (A.17)

σϕϕ2 = σII(ξ)
56−40ν

[

28− 20ν + (11 − 10ν)ρ
3

r3
+ 9ρ5

r5
−

(

28− 20ν + 5(1 − 2ν)ρ
3

r3
+ 27ρ5

r5

)

cos 2ϕ

−30
(

(1− 2ν)ρ
3

r3
− ρ5

r5

)

cos 2θ cos2 ϕ
]

, (A.18)

for i = 3

σrr3 = σIII(ξ)
14−10ν

[

14− 10ν − (38− 10ν)ρ
3

r3
+ 24ρ5

r5

−
(

14− 10ν − 10(5 − ν)ρ
3

r3
+ 36ρ5

r5

)

sin2 θ
]

, (A.19)

σrθ3 = −σIII(ξ)
14−10ν

[

14− 10ν + 10(1 + ν)ρ
3

r3
− 24ρ5

r5

]

cos θ sin θ , (A.20)

σrϕ3 = 0 , (A.21)

σθθ3 = σIII(ξ)
14−10ν

[

(9− 15ν)ρ
3

r3
− 12ρ5

r5
+

(

14− 10ν − 5(1 − 2ν)ρ
3

r3
+ 21ρ5

r5

)

sin2 θ
]

, (A.22)

σθϕ3 = 0 , (A.23)

σϕϕ3 = σIII(ξ)
14−10ν

[

(9− 15ν)ρ
3

r3
− 12ρ5

r5
− 15

(

(1− 2ν)ρ
3

r3
− ρ5

r5

)

sin2 θ
]

, (A.24)

where σI(ξ), σIII(ξ) and σIII(ξ) are the principal stress values of tensor σ(ξ), for ξ = u, ξ = w or
ξ = v associated to the original domain without hole Ω.

Remark 16. It is important to mention that the stress distribution for i = 1, 2 was obtained
from a rotation of the stress distribution for i = 3. In addition, the derivation of this last result
(for i = 3) can be found in [12], for instance.
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Nancy I, B.P. 239, 54506 Vandoeuvre lès Nancy Cedex, France

E-mail address: Jan.Sokolowski@iecn.u-nancy.fr
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