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Abstract. The topological derivative provides the sensitivity of a given shape functional with
respect to an infinitesimal domain perturbation. Classically, this derivative comes from the
second term of the topological asymptotic expansion, dealing only with infinitesimal perturba-
tions. Therefore, as a natural extension of this concept, we can consider higher order terms
in the expansion. In particular, the next one we recognize as the second order topological de-
rivative, which allows to deal with perturbations of finite sizes. This term depends explicitly
on higher-order gradients of the solution associated to the non-perturbed problem and also im-
plicitly through the solution of an auxiliary variational problem. In this paper, we calculate
the explicit as well as implicit terms of the second order topological asymptotic expansion for
the total potential energy associated to the Laplace equation in two-dimensional domain. The
domain perturbation is done by the insertion of a small inclusion with thermal conductivity
coefficient value different from the bulk material. Finally, we present some numerical experi-
ments showing the influence of the second order term in the topological asymptotic expansion
for several values of the thermal conductivity coefficient of the inclusion.

1. Introduction

The topological sensitivity analysis gives the topological asymptotic expansion of a shape
functional with respect to an infinitesimal domain perturbation, like the insertion of holes,
inclusions or source term [9, 29]. The second term of this expansion provides the topological
derivative, which has been applied in several problems, such as topology optimization, image
processing and inverse problems [2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25,
26, 28, 30, 31]. Such a technique has also been applied on noninvasive medical diagnosis and
nondestructive evaluation of materials, for instance.

However, for practical applications, it is necessary to consider perturbations of finite size.
In general, the first order correction term provides a good estimation for the shape functional
only for infinitesimal perturbations. In this case, we need to consider higher order terms in the
topological asymptotic expansion. The next one is recognized as the second order topological
derivative. These issues were addressed in our previous work [12], where we have shown that the
second order topological derivative provides a good estimation for the shape functional even for
very large holes. Furthermore, we observe that in general the second order topological derivative
depends explicitly on higher-order gradients of the solution associated to the non-perturbed
problem and also implicitly through the solution of an auxiliary variational problem. However,
in [12] we have only calculated the explicit term of the second order topological derivative.
Therefore, as a natural extension of our work, in the present paper we calculate the explicit
as well as implicit terms of the second order topological asymptotic expansion for the total
potential energy associated to the Laplace equation in two-dimensional domain. In addition,
the domain perturbation is done by the insertion of a small inclusion, stead of a hole, with
thermal conductivity coefficient value different from the bulk material. In summary, the main
contribution of this paper is the calculation of the complete second order topological asymptotic
expansion for inclusions, whose result is very useful for applications in the context of inverse
problems, where we seek to identify a set of inclusions from boundary measurements (see, for
instance [1, 10]).

In order to fix the basics ideas, let us consider an open bounded domain Ω ⊂ R
2, with a smooth

boundary ∂Ω. If the domain Ω is perturbed by introducing a small inclusion represented by Iε,
which is a ball of radius ε centered at point x̂ ∈ Ω, we have a perturbed domain Ωε = (Ω\Hε)∪Iε.
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From these elements, the topological asymptotic expansion of a given shape functional ψ, when
exists, may be expressed as

ψ(Ωε) = ψ(Ω) + f1(ε)DTψ + f2(ε)D
2
Tψ +R(f2(ε)) , (1.1)

where f1(ε) and f2(ε) are positive and smooth functions that decreases monotonically such that
f1(ε) → 0, f2(ε) → 0 when ε→ 0+ and

lim
ε→0

f2(ε)

f1(ε)
= 0 , lim

ε→0

R(f2(ε))

f2(ε)
= 0 . (1.2)

In addition, DTψ and D2
Tψ are the first and second order topological derivatives of ψ, respec-

tively. In fact, dividing eq. (1.1) by f1(ε) and taking the limit ε→ 0 we obtain

DTψ = lim
ε→0

ψ(Ωε)− ψ(Ω)

f1(ε)
. (1.3)

Moreover, dividing eq. (1.1) by f2(ε) and taking the limit ε→ 0 we have

D2
Tψ = lim

ε→0

ψ(Ωε)− ψ(Ω)− f1(ε)DTψ

f2(ε)
. (1.4)

In this work, we apply the Topological-Shape Sensitivity Method developed in [27] to calcu-
late DTψ and D2

Tψ for the total potential energy associated to the Laplace equation in two-
dimensional domain.

Finally, we present some numerical experiments showing the influence of the second order
term in the topological asymptotic expansion by taking different values for the parameter ε and
several values of the thermal conductivity coefficient of the inclusion.

2. The Topological-Shape Sensitivity Method

The Topological-Shape Sensitivity Method [27] was proposed as an alternative procedure to
calculate the topological derivative. A remarkable fact of this methodology is that it can be
naturally extended to calculate higher order topological derivatives. In particular, the following
results holds:

Theorem 1. Let f1(ε) be a function chosen in order to ||DTψ||L2(Ω) 6= 0, then the (first order)

topological derivative given by eq. (1.3) can be written as

DTψ = lim
ε→0

1

f ′1(ε)

d

dε
ψ (Ωε) . (2.1)

Theorem 2. Let f2(ε) be a function chosen in order to
∣∣∣∣D2

Tψ
∣∣∣∣
L2(Ω)

6= 0, then the second order

topological derivative is given by

D2
Tψ = lim

ε→0

1

f ′2(ε)

(
d

dε
ψ (Ωε)− f ′1(ε)DTψ

)
. (2.2)

The derivative of the shape function with respect to the parameter ε that appears in eqs.
(2.1, 2.2) may be seen as its classical shape sensitivity analysis [24]. In particular, for inclusions
given by a disk, the shape change velocity v is defined on the boundary ∂Ωε as

{
v = −n on ∂Iε
v = 0 on ∂Ω

, (2.3)

where n is the outward unit normal vector field. Then, the shape derivative of the shape
functional results in an integral on the boundary ∂Iε,

d

dε
ψ(Ωε) = −

∫

∂Iε

Σεn · n , (2.4)

where tensor Σε can be interpreted as a generalization of the Eshelby energy-momentum tensor
[11]. As a consequence, this tensor plays a central role in the Topological-Shape Sensitivity
Method and should be clearly identified according to the problem under consideration.
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On the other hand, the topological asymptotic expansion may also be written as

d

dε
ψ(Ωε) = f ′1(ε)DTψ + f ′2(ε)D

2
Tψ +R′(f2(ε))f

′
2(ε) , (2.5)

which allows a straightforward identification of all terms in the above expansion.
Before applying the above methodology for a practical problem, let us present a simple one-

dimensional diffusion-reaction example given by:

Example 3. Let be a function uε ∈ Uε satisfying
∫ 1

0
(u′εη

′ + cε (x)uεη)dx = η(1) ∀η ∈ Vε , (2.6)

where Uε = Vε =
{
η ∈ H1 (Ωε) : η(0) = 0

}
, with Iε = [x̂, x̂+ ε]. Then, let us consider a pertur-

bation on the reaction coefficient cε (x) satisfying

cε (x) =

{
1, if x ∈ Iε
0, if x ∈ Ω\Hε

. (2.7)

Therefore, the above problem has exact solution, which is given by the following piecewise func-
tion

• for 0 ≤ x < x̂

uε (x) =
x

cosh ε+ x̂ sinh ε
; (2.8)

• for x̂ ≤ x ≤ x̂+ ε

uε (x) =
x̂ cosh(x̂− x)− sinh(x̂− x)

cosh ε+ x̂ sinh ε
; (2.9)

• for x̂+ ε < x ≤ 1

uε (x) = x− (x̂+ ε) +
x̂ cosh ε+ sinh ε

cosh ε+ x̂ sinh ε
. (2.10)

In addition, let us consider a shape function associated to the solution uε evaluated at point
x = 1, that is

ψ (Ωε) = uε (1)

= 1− (x̂+ ε) +
x̂ cosh ε+ sinh ε

cosh ε+ x̂ sinh ε
.

Finally, from these elements we may calculate the topological asymptotic expansion for this
simple problem. In fact,

• first order topological derivative: applying theorem 1, we have for f1(ε) = ε

DTψ = −x̂2 ∀x̂ ∈ (0, 1) ; (2.11)

• second order topological derivative: applying theorem 2, with f2(ε) = ε2, we obtain

D2
Tψ = x̂3 − x̂ ∀x̂ ∈ (0, 1) . (2.12)

From the above results, we may build the following topological asymptotic expansion of the shape
function

uε (1) = u (1)− εx̂2 + ε2
(
x̂3 − x̂

)
+ o

(
ε2
)
. (2.13)

Let us fix the size of the inclusion, then we observe that the point which minimizes the shape
function is given by x̂ = 1− ε for both approximations

uε (1) ≈ u (1)− εx̂2 , (2.14)

uε (1) ≈ u (1)− εx̂2 + ε2
(
x̂3 − x̂

)
, (2.15)

where function u is solution of eq. (2.6) for ε = 0. On the other hand, let us now fix x̂ = 0.5.
Then we take the size of the inclusion ε ∈ {0, 0.01, 0.02, ..., 0.4} . Considering both approximations
given by eqs. (2.14,2.15), we can build the curves shown in fig. 1. From analysis of this graphic,
we observe that the second order topological derivative plays an important role in the estimation
of the shape function, allowing a good approximation even for very large (finite) inclusions.
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Figure 1. estimation of uε(1) considering first and second order terms in the
topological asymptotic expansion.

3. Topological Derivative for the Laplace Equation

As already mentioned, in this Section we will calculate first as well as second order topological
derivative for inclusions taking the total potential energy associated to the Laplace equation in
two-dimensional domain as the shape functional.

The variational formulation for the Laplace equation associated to the perturbed domain Ωε

can be stated as: find uε ∈ Uε, such that
∫

Ωε

kδ∇uε · ∇η+

∫

ΓN

q̄η = 0 ∀η ∈ Uε , (3.1)

where the set Uε is defined as

Uε = {uε ∈ H2(Ωε) : uε|ΓD
= 0} ,

and ΓD and ΓN are the Dirichlet and Neumann boundaries, such that ∂Ω = ΓD ∪ ΓN , with
ΓD ∩ ΓN = ∅. In addition, q̄ is the heat flux prescribed on ΓN and the material property kδ is
defined, for δ ∈ R

+, as

kδ :=

{
k ∀x ∈ Ω\Hε

δk ∀x ∈ Iε
. (3.2)

The shape functional adopted will be the associated total potential energy, that is

ψ(Ωε) =
1

2

∫

Ωε

kδ |∇uε|
2 −

∫

ΓN

q̄uε . (3.3)

For this case, the Eshelby energy-momentum tensor is given by

Σε =
kδ
2
|∇uε|

2
I− kδ (∇uε ⊗∇uε) . (3.4)

Adopting an orthonormal coordinate system (t,n) on ∂Iε, the continuity condition of the solu-
tion uε on the boundary of the inclusion ∂Iε gives

∂u−ε
∂t

=
∂u+ε
∂t

and
∂u−ε
∂n

=
1

δ

∂u+ε
∂n

, (3.5)

where (·)+ = (·)|Ω\Hε
, (·)− = (·)|Iε and the jump condition associated to the normal derivative

of uε comes from its respective variational formulation (eq. 3.1). Considering eq. (3.4) in eq.
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(2.4) and taking into account the above conditions, the shape derivative of the shape functional
results

d

dε
ψ(Ωε) = −

k (1− δ)

2

∫

∂Iε

[(
∂uε
∂t

)2

+
1

δ

(
∂u+ε
∂n

)2
]
. (3.6)

Now, we need to know the behavior of the solution uε in relation to ε, which, as consequence
of the methodology adopted, may be obtained from an asymptotic analysis of uε around the
neighborhood of the inclusion. In the present case, we have the following expansion for uε (see
Appendix)

uε (x)|Ω\Hε
= u (x) +

1− δ

1 + δ

[
ε2

‖x− x̂‖2
∇u (x̂) · (x− x̂) +

1

2

ε4

‖x− x̂‖4
∇∇u (x̂) (x− x̂) · (x− x̂)

]

+ ε2ũ (x) +
1− δ

1 + δ

ε4

‖x−x̂‖2
∇ũ (x̂) · (x−x̂) + vε (x) , (3.7)

where u is solution of (3.1) for ε = 0 (without inclusion), vε is such that |vε|H1(Ωε)
≤ Cε3, with

C independent of ε, and function ũ is solution of the following variational problem: find ũ ∈ V,
such that ∫

Ω
∇ũ · ∇η+

∫

ΓN

∂g

∂n
η = 0 ∀η ∈ W , (3.8)

where the admissible functions set V and the admissible variations space W are defined, respec-
tively, as

V = {ũ ∈ H1(Ω) : ũ|ΓD
= −g} and W = {η ∈ H1(Ω) : η|ΓD

= 0} (3.9)

and function g is given by

g(x) =
1− δ

1 + δ
∇u (x̂) ·

x− x̂

‖x− x̂‖2
. (3.10)

Considering the expansion given by eq. (3.7) in eq. (3.6), we obtain

d

dε
ψ(Ωε) = −k

1− δ

1 + δ

[
2πε |∇u (x̂)|2 − 4πε3

(
1

2
det∇∇u (x̂)−∇u (x̂) · ∇ũ (x̂)

)]
+ o

(
ε3
)
.

(3.11)
Finally, taking into account eq. (2.5), we get the following results for f1(ε) = πε2 and f2(ε) = πε4

DTψ = −k
1− δ

1 + δ
|∇u (x̂)|2 , (3.12)

D2
Tψ = k

1− δ

1 + δ

(
1

2
det∇∇u (x̂)−∇u (x̂) · ∇ũ (x̂)

)
. (3.13)

Remark 4. From eq. (3.13) we observe that the second order topological derivative depends on
higher-order gradients of the solution u (x̂) and also through the solution ũ (x̂) of an auxiliary
variational problem (3.8).

Remark 5. In the case of energy based shape functional, we can obtain the topological asymptotic
expansion for homogeneous Neumann boundary condition on the hole by simply taking the limit
when the material property associated to the inclusion vanishes. Thus, after compute the limit
δ → 0 in eqs. (3.12, 3.13), we have

DTψ = −k |∇u (x̂)|2 , (3.14)

D2
Tψ =

1

2
k det∇∇u (x̂)− k∇u (x̂) · ∇ũ (x̂) . (3.15)
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4. Numerical Experiments

Now, we shall study, through some examples, the influence of the second order topological
derivative in the topological asymptotic expansion. Therefore, we will compute the estimate for
the shape functional taking into account only the first order topological derivative

ψ(Ωε) ≈ ψ(Ω) + f1(ε)DTψ . (4.1)

Then we will compare it with the estimate considering both first and second order topological
derivatives, that is

ψ(Ωε) ≈ ψ(Ω) + f1(ε)DTψ + f2(ε)D
2
Tψ . (4.2)

Remark 6. Solution ũ (x) of the auxiliary problem (3.8) depends on the point where the inclu-
sion is positioned. Thus, the incorporation of its contribution on the second order topological
derivative calculation is a quite cumbersome task and impracticable from the computational point
of view. Therefore, the influence of function ũ (x) will be disregarded in the numerical experi-
ments.

For that, let us consider a body represented by Ω = (0, 1) × (0, 1), submitted to a temper-
ature ū = 0 on ΓD1

and ΓD2
, and a heat flux q̄1 = 1 on ΓN1

, q̄2 = 2 on ΓN2
and q̄ = 0 on

ΓN\
(
ΓN1

∪ ΓN2

)
, as shown in fig. (2), where a = 0.2. This body is perturbed by introducing

inclusions with center at x∗ = (0.5, 0.5), where δ ∈ {1/16, 1/8, 1/4, 1/2, 2, 4, 8, 16} and k = 1.
Then, for each value of δ, we take ε ∈ {0.01, 0.02, 0.04, 0.08, 0.16}. Considering these values of
ε and δ, we compute the topological asymptotic expansion associated to the domain Ω at x∗.
Then, in order to compute the shape functional values ψ(Ωε), we effectively insert the inclusions
with center at the fixed point x∗. Finally, from these results, we can compare the accuracy
obtained from both estimates given by eqs. (4.1, 4.2).

W

a
a

a
a

G
D

2

G
D

1

G
N

2

G
N

1

x*

Figure 2. example.

The solutions u and uε associated to the original Ω and perturbed Ωε domains, respectively, are
approximated using the standard three node triangular finite element. In particular, the meshes
were constructed maintaining the same number of elements ne = 120 along the boundary of the
inclusion for whichever value of its radius ε. Since an automatic mesh generation was used, the
following expected size he for the elements was adopted for all meshes

he ≈
2π

ne
‖x∗ − x‖ . (4.3)

The behavior of the topological asymptotic expansion as a function of ε, evaluated at x∗,
is shown in figs. (3-6) for different values of δ, where the label used to identify the curves is
summarized in table 1.
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0.00 0.02 0.04 0.06 0.08

-0.21065

-0.21060

-0.21055

-0.21050

-0.21045

-0.21040

-0.21035

Figure 3. estimate of ψ(Ωε) for δ = 1/2 and δ = 2.

0.00 0.02 0.04 0.06 0.08

-0.21080

-0.21070

-0.21060

-0.21050

-0.21040

-0.21030

-0.21020

Figure 4. estimate of ψ(Ωε) for δ = 1/4 and δ = 4.

0.00 0.02 0.04 0.06 0.08

-0.21090

-0.21080

-0.21070

-0.21060

-0.21050

-0.21040

-0.21030

-0.21020

Figure 5. estimate of ψ(Ωε) for δ = 1/8 and δ = 8.
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0.00 0.02 0.04 0.06 0.08

-0.21090

-0.21080

-0.21070

-0.21060

-0.21050

-0.21040

-0.21030

-0.21020

-0.21010

Figure 6. estimate of ψ(Ωε) for δ = 1/16 and δ = 16.

Table 1. label of the graphics in figs. (3-6).

According to remark 5, the limit case δ → 0 gives the topological asymptotic expansion for
homogeneous Neumann boundary condition on the perturbation. Then, in fig. (7), we observe
the behaviour of the topological asymptotic expansion when δ decreases to zero.

0.00 0.02 0.04 0.06 0.08

-0.2110

-0.2109

-0.2108

-0.2107

-0.2106

-0.2105

Figure 7. behaviour of the topological asymptotic expansion when δ decreases
to 0.

Finally, taking again δ = 0 and considering a larger variation of ε ∈ {0.08, 0.16, 0.24, 0.32},
we observe in fig. (8) that the discrepancy between the shape functional and its estimate
considering first and second order topological derivatives (eq. 8) grows with ε. However, the
estimation becomes bad only for very large holes (ε > 0.16).
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0.08 0.16 0.24 0.32

-0.26

-0.25

-0.24

-0.23

-0.22

-0.21

Figure 8. estimate of ψ(Ωε) considering the second order term of the topological
asymptotic expansion for ε ∈ {0.08, 0.16, 0.24, 0.32}.

5. Conclusions

In this work, we have obtained an explicit formula for the topological asymptotic expan-
sion considering first and second order approximations. In particular, we have applied the
Topological-Shape Sensitivity Method to calculate first and second order topological derivatives
for the total potential energy associated to the Laplace equation in two-dimensional domain,
which was perturbed through the insertion of a small inclusion. Then, we have presented some
numerical experiments showing the influence of the second order approximation term in the
topological asymptotic expansion. From these experiments, we have observed that the estimate
considering only the explicit term of the second order topological derivative remains precise even
for very large inclusions or holes, allowing to deal with perturbations of finite size. This feature
is very important in the development of topology optimization and reconstruction algorithms.
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Appendix: Asymptotic Analysis

In this appendix we present the derivation of the asymptotic formula given by eq. (3.7).
Therefore, let us propose the following expansion

uε (x) = u (x) + w (x/ε) + ũε (x) , (5.1)

where u (x) is the solution of the problem stated in eq. (3.1) for δ = 1 (without perturbation)
and w (x/ε) is the solution of the following exterior problem





∆w+ = 0 in R
2\H1

∆w− = 0 in I1
w → 0 at ∞
w+ = w− on ∂I1

∂w+

∂n
− δ ∂w

−

∂n
= (δ − 1)

(
ε∇u (x̂) · n− ε2∇∇u (x̂)n · n

)
on ∂I1

, (5.2)
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whose explicit solution may be written as

w+ (x/ε) =
1− δ

1 + δ

[
ε2

‖x−x̂‖2
∇u (x̂) · (x−x̂) +

1

2

ε4

‖x−x̂‖4
∇∇u (x̂) (x−x̂) · (x−x̂)

]
, (5.3)

w− (x/ε) =
1− δ

1 + δ

[
∇u (x̂) · (x−x̂) +

1

2
∇∇u (x̂) (x−x̂) · (x−x̂)

]
. (5.4)

In addition, the remaining term of expansion (5.1) satisfies




∆ũ+ε = 0 in Ω\Hε

∆ũ−ε = 0 in Iε
ũε = −w on ΓD

−∂ũε

∂n
= ∂w

∂n
on ΓN

ũ+ε = ũ−ε on ∂Iε
∂ũ+

ε

∂n
− δ ∂ũ

−

ε

∂n
= ε3 (δ − 1)D3u (ξ) (n)3 on ∂Iε

, (5.5)

where ξ is an intermediate point between x and x̂.
In the same way, we assume that ũε, solution of the boundary value problem (5.5), satisfies

the expansion
ũε (x) = ε2ũ (x) + w̃ (x/ε) + vε (x) , (5.6)

where w̃ is the solution of the following exterior problem: find w̃ such that




∆w̃+ = 0 in R
2\H1

∆w̃− = 0 in I1
w̃ → 0 at ∞
w̃+ = w̃− on ∂I1

∂w̃+

∂n
− δ ∂w̃

−

∂n
= (δ − 1) ε3∇ũ (x̂) · n on ∂I1

, (5.7)

which also has explicit solution, that is

w̃+ (x/ε) =
1− δ

1 + δ

ε4

‖x−x̂‖2
∇ũ (x̂) · (x−x̂) and w̃− (x/ε) =

1− δ

1 + δ
ε2∇ũ (x̂) · (x−x̂) . (5.8)

Introducing the notation,

g (x) =
1− δ

1 + δ

1

‖x−x̂‖2
∇u (x̂)·(x−x̂) and h (x) =

1

2

(
1− δ

1 + δ

)
1

‖x−x̂‖4
∇∇u (x̂) (x−x̂)·(x−x̂) ,

(5.9)
then

w+ (x/ε) = ε2g (x) + ε4h (x) . (5.10)

Thus, function ũ satisfies a boundary value problem stated as: find ũ such that




∆ũ = 0 in Ω
ũ = −g on ΓD

− ∂ũ
∂n

= ∂g
∂n

on ΓN

(5.11)

and the remaining term of expansion (5.6) solves: find vε such that




∆v+ε = 0 in Ω\Hε

∆v−ε = 0 in Iε
vε = −w̃ − ε4h on ΓD

∂vε
∂n

= −∂w̃
∂n

− ε4 ∂h
∂n

on ΓN

v+ε = v−ε on ∂Iε
∂v+ε
∂n

− δ ∂v
−

ε

∂n
= ε3 (δ − 1)

(
D3u (ξ) (n)3 −D2ũ (ζ) (n)2

)
on ∂Iε

, (5.12)

where ζ is an intermediate point between x and x̂.
Finally, we have the following expansion for solution uε,

uε (x) = u (x) + w (x/ε) + ε2ũ (x) + w̃ (x/ε) + vε (x) . (5.13)

where vε satisfies the estimate below:
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Proposition 7. Let vε satisfying the boundary-value problem (5.12). Then, there exist a con-
stant C, independent of ε, such that

|vε|H1(Ωε)
≤ Cε3. (5.14)

Proof. See [1, 10, 20] �

Remark 8. The reader interested in asymptotic analysis for arbitrary shaped inclusions may
refer to [10], whose methodology may be extended to obtain higher order expansions like the one
given by (5.13).
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