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ABSTRACT

The problem of reconstructing an image from projections has been largely studied. Nowadays, the so called

”Direct methods” (based on Fourier transform) are the most widely used, mainly because of its low computational

cost. Nevertheless, in some situations old fashion iterative algorithms are more appropriate as is the case of Nuclear

imaging, where attenuation coefficients need to be considered in the reconstruction process. In this work we present

an alternative tomography reconstruction method based on the sensitivity of an objective function with respect to

small perturbations in the material properties of the problem domain. In particular, we use a simple tomography

model to represent the attenuation of 1D projections thought 2D slices. Then, we compute the sensitivity associated

to the misfit between a boundary measurement and the model solution. Finally, we use this information to devise

an iterative algorithm, which allows to reconstruct the attenuation coefficient defined in the whole domain from

exact or noisy synthetic boundary data.

INTRODUCTION

The inverse problem associated to the reconstruction of the 3D data based on 2D projections has been largely stud-

ied. Different alternatives have been proposed over the years [13, 17]. Early approaches for image reconstruction

are based on iterative processes. Although these methods were the most popular in the early days of Computed

Tomography (CT), they present a high computational cost and its convergence accuracy is compromised by the

presence of noise. For these reasons, they became almost completely replaced by direct methods. Nowadays,

CT reconstruction is driven by direct methods based on Fourier Transform (i.e., Filtered Back Projection - FBP),

mainly by the significant computational time reduction.

Nevertheless, there are situations where FBP is not enough and extensions of it or iterative algorithms are more

convenient than the basic FBP. For example, in the case of Nuclear Imaging (Single Photon Emission Tomography

- SPECT and Positron Emission Tomography - PET), where an internal source is used, direct algorithms do not take

into account the absorption of the tissues that surround the illuminating source. This characteristic, produces an

attenuation on the resulting image that may lead to a miss judgement by the specialist. In the case of PET, different

approaches have been used, going from neural networks [4] to random correction [23] with different statistical
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models, where good results are obtained. For iterative methods, the introduction of attenuation correction may lead

to more precise reconstruction results [11]. Also, the use of Conjugate-Gradient preconditioning has brought good

results for iterative methods [8, 7]. Another important feature of iterative methods is the possibility parallelization

[14].

The objective of this work is to present an alternative reconstruction method based on the well established

concept of sensitivity analysis [10]. This concept is based on analyzing the sensitivity of a specific objective

function with respect to small perturbations in the material properties of the problem domain. In particular, we use

a simple tomography model to represent the attenuation of 1D projections thought 2D slices. Then, we compute

the sensitivity associated to the misfit between a boundary measurement obtained from the real object and the

one obtained from the model. Finally, we use this information to devise an iterative algorithm, which allows to

reconstruct the attenuation coefficient defined in the whole domain from boundary data.

This work is organized as follows: Firstly, the simplified tomography model is described and the tomography

reconstruction problem is stated. After that, we revisit sensitivity analysis, the addressed objective function and the

corresponding sensitivity. Finally, we present the proposed algorithm and some tomography reconstruction results

from exact or noisy synthetic boundary measurements.

A SIMPLE TOMOGRAPHY MODEL

When an object (e.g., a body or tissue) is irradiated with an X-ray source, the incident ray is attenuated by two

different phenomena: absorption and dispersion. For simplicity, no distinction is made between both effects

(considering them together). In order to present the idea, let us consider an object composed by an homogeneous

material. If we assume that the object is being illuminated by n rays from the side of the object where the source

is located, after an arbitrary period of time during which the object was irradiated, only n+4n, with4n < 0, rays

where able to pass though the object (where every ray is assumed to have the same energy). In this situation, the

following relation is satisfied
4n
n

1
4s

=−µ,

being µ the rate of photons loss due to both phenomena (which we will call attenuation) and s the variable used to

parameterize the path line passed by the ray. Taking4s→ 0 we obtain the following differential equation

1
n

dn =−µds.

To find the solution of this equation we integrate along the path of the ray through the object using the model

presented in Fig. 1, considering µ not constant and depending on the spatial variable x (i.e., µ(x), that can be

parameterized using s as x(s)). Assuming the thickness of the ray is small enough, we obtain

nout = nin exp
[
−
∫

r
µ(s)ds

]
⇒

∫
r
µ(s)ds = ln

nin

nout
,

being nout the number of photons reaching the sensor for a non homogeneous object, ds is a differential element

along the path line r of the ray. The left-hand-side corresponds to a ray integral of a projection. Therefore,
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Figure 2: Real obstacle, approximate model and projection example.

measurements like ln
nin

nout
taken from different angles, may be used to generate projections of data µ(s). That is

lnnin−
∫

r
µ(s)ds = lnnout .

If we consider that the object is being illuminated by m rays in each direction, the expression presented above

can be rewritten as

α j−
∫

r j

µ(s)ds = p j, j = 1,2, . . . ,m

being α the intensity of the ray illuminating the object and p the measurement observed at the sensor on the other

side of the object. If the object is illuminated in D different directions, d = 1 . . .D different projections of µ are

obtained, namely

α
d
j −

∫
rd

j

µ(s)ds = pd
j , (1)

In Eq. (1) the tomography model is assumed to be continuous. In order to solve this problem computationally

this continuous model needs to be replaced by a discretized one. To do this, the continuous representation of

the attenuation coefficient µ(x) is divided using a regular grid (Figure 2). The values of µ(x) are assumed to be

constant on each cell of the grid [20]. Then, let µi be the constant value of the ith cell, and N the total number of

cells.
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In order to obtain the discrete version of the projection data, we cluster the rays j by defining r j = ∪r j, where

r j lands on sensor j thus contributing to measure p j (see Figure 2, projection example), and on each direction m

sensors are used. This results in a line running trough the plane spanned by two linearly independent vectors x1

and x2 (see [13]). With this in mind we may express the relationship between µi and p j as following

α j−
N

∑
i=1

Ki jµi = p j, j = 1,2, . . . ,M (2)

where M = m∗D is the total number of rays in all the projections, and Ki j is a weighting factor that represents the

contribution of the ith cell to the jth measure (i.e., the intersection between the line and the cell). For simplicity, let

us assume the following notation

p = (p1, p2, . . . , p j, . . . , pM)T ,

K =


K11 K12 . . . K1N

K21 K22
...

. . .

KM1 KMN

 ,

µµµ = (µ1,µ2, . . . ,µi, . . . ,µM)T .

Therefore, Eq. (2) can be rewritten in compact form as following

p = ααα−Kµµµ.

Note that only a small number of Ki j’s are different from zero since only a small number of cells is passed through

by any given ray.

A TOMOGRAPHY RECONSTRUCTION PROBLEM

The tomography reconstruction problem under consideration can be stated as: given the measurement p∗, find an

approximation µµµ of the unknown attenuation coefficient µµµ∗ by solving the following equation

Kµµµ = ααα−p∗. (3)

For large values of M and N different iterative methods exist for solving Eq. (3). For example, the so called

”method of projections”, first proposed in [12] and reviewed in [22]. The computational procedure for finding the

solution consists in starting with an initial guess µµµ0 and successively projecting it on the subspaces defined by the

rows of K. If a unique solution of the system exists, the iterations will converge to that solution.

Different algorithms based on these ideas have been proposed over the years (ART - Algebraic Reconstruction

Technique [9], SART - Simultaneous Algebraic Reconstruction Technique [1], etc.).

As mentioned before, in this work we propose an alternative tomography reconstruction method based on

sensitivity analysis. For this, a discrete tomography model is used. As will be presented later, in the discrete case,

a link between this method and the topological gradient can be established.

In particular, we study the behavior of a properly defined objective function when the attenuation coefficients

of the object being illuminated is perturbed. With this information, an iterative algorithm is proposed.
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SENSITIVITY ANALYSIS

Let us consider an objective function Ψ(µµµ). If we perturb µµµ (say, µµµT = µµµ + δµµµ) we obtain a perturbed objective

function Ψ(µµµT ), then for small perturbations δµµµ , the following expansion holds

Ψ(µµµT ) = Ψ(µµµ)+gΨ ·δµµµ +O(δµµµ) , (4)

where δµµµ is such that

δµµµ = µµµT −µµµ

and the perturbed attenuation coefficient is

µµµT = (µ1,µ2, . . . ,µT , . . . ,µM)T ,

that is, the value of µµµ at cell i was changed from µi to µT , then

δµµµ = (0,0, . . . ,µT −µi, . . . ,0)T ,

meaning that the perturbation is made in one cell. Therefore, gΨ can be recognized as a the sensitivity of the

objective function.

In order to minimize the objective function, gΨ ·δµµµ should always be negative. Thus, according to the sign of

gΨ, we need to choose the perturbation δµµµ with the opposite sign. Then, the sensitivity can be used as an indicator

providing a descent direction to reduce the value of the objective function. As will be shown in the next sections,

this information can be used to develop fast algorithms for tomography reconstruction.

Objective Function Definition

Let us now define an appropriate objective function Ψ(µµµ) for the problem beforehand. As we want to find a µµµ

that produces the best approximation of the observations obtained from the object (p∗), we propose Ψ(µµµ) to be the

misfit between p∗ and the projection data obtained from the model (p). Namely,

Ψ(µµµ) = ‖p∗−p‖2,

= ‖p∗− (ααα−Kµµµ)‖2. (5)

On the same basis, the perturbed objective function Ψ(µµµT ) is defined as

Ψ(µµµT ) = ‖p∗− (ααα−KµµµT )‖2. (6)

From these elements we can calculate an explicit formula for the sensitivity of the objective function.

Sensitivity Calculation

In this fully discrete case, to obtain an expression for the sensitivity we first calculate the total variation of the

objective function associated to a perturbation δµµµ . That is, subtracting Eqs. (5) and (6), we obtain

Ψ(µµµT ) = Ψ(µµµ)

+ KT (2p∗−2p+Kδµµµ) ·δµµµ

= Ψ(µµµ)

+ 2KT (p∗−p) ·δµµµ +O(δµµµ). (7)
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Then, rearranging this expression and according to Eq. (4), the sensitivity is given by

gΨ = 2KT (p∗−p)

= 2KT (p∗− (ααα−Kµµµ)). (8)

It is easy to notice that gΨ is a vector of N components and that the value giΨ indicate the sensitivity of the

objective function to a small perturbation in µi. It is also important to remark that the sensitivity does not depend

on the perturbation, but instead, indicates the direction in which the perturbation should be made for every cell. As

observed, in order to reduce the objective function value it is sufficient to take δµµµ i with a signal opposite to the

one of gΨ at cell i.

As a remark, we may relate the idea discussed in this work with the Topological Gradient concept. The

topological derivative (see [18, 19, 6, 5, 21] and references therein), originally conceived for studying topology

optimization, has shown promising and interesting results when applied in different image processing problems

[2, 3, 16]. In fact, and as was shown in [15], equation (8) can be interpreted as the discrete version of the topological

gradient associated to the continuous counterpart of the objective function (5) for non-smooth perturbations over

the continuous field µµµ .

NUMERICAL RESULTS

Using the sensitivity (Eq. (8)) as an indicator function, we can devise an iterative algorithm (Algorithm 1) that

allows us to find an approximate solution for the above mentioned problem.

In this case, and for the sake of simplicity in the numerical examples, we assume that a cell might be either

intersected or not by a given line. As presented in Fig. 1, the sensors have a given thickness. Then, for the

computation of the projections, was considered the measure of the intersection of each line with each pixel and

multiplied by the attenuation coefficient of that pixel, obtaining the weighting factor Ki j (Eq. (2)).

That is, the Ki j coefficient is computed as (see Figure 2)

Ki j =

 |r j ∩ celli|, line j intersects cell i;

0, otherwise.

where |(.)| is the Lebesgue measure of (.). The measurement vector p∗ is the input data to the algorithm, obtained

from the object being reconstructed. The matrix K is easily computed since the projection directions are known.

A short comment should be made on δµµµ , that does not need to be constant and can be adjusted during algorithm

evolution to speed up convergence and provide a more accurate result. At the start of the algorithm, the step size

δµµµ is the same for all the cells and computed as 1/4 of the image average cell absorption (where the value 1/4

was obtained empirically and the average easily obtained from the projection data). In particular, for the results

presented next, δµµµ was decreased by a factor of 1/2 when, in two consecutive oscillations, giΨ changed its sign

(interpreted as an oscillation at the ith cell). Then, the step size is controlled by δµµµ and only the sign of giΨ is used

to know the direction in which the perturbation needs to be done.
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Figure 3: Original data set used in tests.

Algorithm 1 Image reconstruction based on sensitivity analysis
Require: Projection data p∗, matrix K, step size δµµµ and tol.

Ensure: The reconstructed image µµµ .

set µµµ0 = 0, t = 0, Stop = FALSE

while Stop = FALSE do

compute gΨt using Eq. (8)

for every cell i do

if giΨ
t < 0 then

µ
t+1
i = µ t

i +δµµµ i

else

µ
t+1
i = µ t

i −δµµµ i

end if

if sign(giΨ
t)! = sign(giΨ

t−1) then

δµµµ i = δµµµ i
2

end if

end for

if |Ψ(µµµ t)−Ψ(µµµ t+1)|> tol then

t = t +1

else

Stop = TRUE, µµµ = µµµ t

end if

end while

On the computational cost of the algorithm, each iteration requires two matrix-vector products (N ∗M) and

two vector sums (N) for the sensitivity computation, a run over vector µµµ t to find µµµ t+1 (M) and the computation of

Ψ(µµµ t+1) that involves a matrix-vector product (N ∗M). Then, the computational cost of the algorithm is governed

by O(N ∗M).
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Figure 4: Projection data for 16, 32, 64 and 128 directions. The abscissa corresponds to p∗ for each direction and

the ordinate to the dth direction. The intensity scale is the same for all images.

Test 1 - Standard reconstruction

In order to show the performance of the proposed algorithm, some results are shown. The projection data p∗ was

artificially generated from the synthetic data µµµ∗ shown in Fig. 3 (256 levels grayscale image of size 200×204, with

intensities 4, 75, 130, 230 and 250, N = 200∗204). From this data, different sets of projections were generated for

D = 16, 32, 64 and 128. The projection data obtained is also shown in Fig. 4.

It is important to mention that in this situation a so called ”inverse crime” is being committed, as the same

model is being used for the generation of the observations and in the algorithm. For this reason, a second test is

driven where the observation data (p∗) is perturbed by the addition of different levels of Gaussian noise, a technique

widely used in the field for simulating real data.

From these projections, an approximation of the original data µµµ was obtained using the proposed reconstruction

method (Algorithm 1). In this case was considered M = (200 + 204) ∗D, what is enough to fit the projection of

the image. As can be seen (Fig. 5 for D = 16, 32, 64 and 128 respectively), the reconstructed result presents good

quality even for small number of directions.

In Fig. 6 is presented the behavior of the objective function during the iterative process. As can be seen, the

algorithm stabilizes very fast. In approximately 30 iterations the objective function has almost stabilized and very

close to 0, meaning that the solution is very close.

Test 2 - Reconstruction with noise

In order to test the robustness of the proposed reconstruction method, in this section are presented some results for

different levels of additive noise in the measurement data. The model assumed for the noise polluted measurement
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Figure 5: Results for the gΨ reconstruction method. D = 16, 32, 64 and 128.

pn is

pn = p∗+η(p) (9)

where η is a zero mean Gaussian distributed random variable, considered as noise in the signal, and

p = mean|pn−p∗|.

Then, for a signal of strength 100 and p = 5, we consider a 5% noise.

The polluted projection data vector pn was created adding white Gaussian noise to p∗ with the model described

in (9). The noise added was p = 1%, 2%, 3% and 6%. This produces a PSNR (Peak Signal to Noise Ratio)

of 40dB, 35dB, 30dB and 25dB respectively. Figure 7 presents the projection data (always with 128 directions)

polluted with noise.

As before, the polluted data was used to find an approximation of the original data µµµ with Algorithm 1. As

can be seen (in Fig. 8 for PSNR 40dB, 35dB, 30dB and 25dB respectively), the gΨ method obtains good quality

results even for intense noise.

Figure 9 presents the evolution of the objective function. In this case we see that the objective function does

not converge to zero, but still stabilizes in about 30 iterations.
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Test 3 - Reconstruction with different discretization

Another way to avoid the inverse crime, is to use a different discretization in the reconstructed image than the one

coming from the original data. In this third test, the proposed algorithm was used to reconstruct the image with

4 different discretizations. To do this, the original image is assumed to have cell with constant spacing (i.e., each

cell is 1 by 1) and the reconstructed image cells where spaced 1.1 (182×185), 1.2 (167×170 cells), 1.3 (154×157

cells), 1.4 (143×146 cells) respectively.

As the projection data is generated according to the size (spacing) of the reconstructed image, different projec-

tion data is associated to each configuration (Fig. 10) always with 128 directions.

Figure 11 correspond to the reconstructions for spacing 1.1, 1.2, 1.3 and 1.4 respectively. Also in this case, good

quality results are obtained. Figure 12 presents the evolution of the objective function for the different spacings.

In this case we may observe that the objective function behaves similar to the first test approximating to zero and

stabilizing in few iterations (around 40).

CONCLUSIONS

In this work the image reconstruction problem was addressed for a simplified tomography model using sensitivity

analysis.

To this end, an objective function that takes into account the misfit between the model solution (p) and the

exact (p∗) or noisy (pn) boundary measurements was used. The model solution is associated to an approximation

µµµ of the attenuation coefficient of the object µµµ∗. Using the first terms of the asymptotic expansion, was possible

to find an expression for the sensitivity of this objective function to small perturbations in µµµ . This expression, was

used as an indicator function to find the best places were these perturbations should be introduced, leading to an

alternative tomography reconstruction algorithm. Furthermore, the sensitivity of the objective function was used

to devise an iterative reconstruction algorithm. The proposed algorithm was used to reconstruct artificial objects

considering different number of projections and from exact or noisy synthetic data. In all cases good quality results

were obtained, even for considerably large levels of noise and different spacing.
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Figure 7: Projection data for PSNR 40dB, 35dB, 30dB and 25dB (128 directions). The abscissa corresponds to p∗

for each direction and the ordinate to the dth direction.

As a final remark we may state that the presented approach offers an alternative way to treat the tomography

reconstruction problem providing easy, fast and robust reconstruction algorithms.
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Figure 8: Results for the gΨ reconstruction method from noise data with 128 directions for PSNR 40dB, 35dB,

30dB and 25dB (128 directions).
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Figure 9: Objective function evolution for reconstruction with noise.
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abscissa corresponds to p∗ for each direction and the ordinate to the dth direction.
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Figure 11: Results for the gΨ reconstruction method for different discretization in the reconstructed image (1.1,

1.2, 1.3 and 1.4 spacings, 128 directions).
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Figure 12: Objective function evolution for spacing 1.1, 1.2, 1.3 and 1.4.
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