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Abstract. A remarkably simple analytical expression for the sensitivity of the two-dimensional
macroscopic elasticity tensor to topological microstructural changes of the underlying material is
proposed. The derivation of the proposed formula relies on the concept of topological derivative,
applied within a variational multi-scale constitutive framework where the macroscopic strain
and stress at each point of the macroscopic continuum are volume averages of their microscopic
counterparts over a Representative Volume Element (RVE) of material associated with that
point. The derived sensitivity – a symmetric fourth order tensor field over the RVE domain
– measures how the estimated two-dimensional macroscopic elasticity tensor changes when a
small circular hole is introduced at the micro-scale level. This information has potential use in
the design and optimisation of microsctructures.

1. Introduction

Composite materials have become one of the most important classes of engineering materials.
Their macroscopic mechanical behavior is of paramount importance in the design of load bear-
ing components for a vast number of applications in civil, mechanical, aerospace, biomedical
and nuclear industries. In a broad sense, one can argue that much of material science is about
improving macroscopic material properties by means of topological and shape changes at a mi-
crostructural level. For example, changes in shape of graphite inclusions in a cast iron matrix
may produce dramatic changes in the corresponding macroscopic properties of this material. In
this context, the ability to accurately predict the macroscopic mechanical behavior from the cor-
responding microscopic properties as well as its sensitivity to changes in microstructure becomes
essential in the analysis and potential purpose-design and optimisation of heterogeneous media.
Such concepts have been successfully used, for instance, in [1, 30, 31] by means of a relaxation-
based technique in the design of microstructural topologies that produce negative macroscopic
Poisson’s ratio. This type of approach relies on the use of a fictitious material density field and
mimics, in a regularised sense, the introduction of localised topological microstructural changes
(voids) wherever the artificial density is sufficiently close to zero (refer, for instance, to the
fundamental papers [9, 53]).

In contrast to the heuristic, regularised approach, this paper proposes a general exact an-
alytical expression for the sensitivity of the two-dimensional macroscopic elasticity tensor to
topological changes of the microstructure of the underlying material. The macroscopic linear
elastic response is estimated by means of a well-established homogenisation-based multi-scale
constitutive theory for elasticity problems [19, 37] where the macroscopic strain and stress ten-
sors at each point of the macroscopic continuum are defined as the volume averages of their
microscopic counterparts over a Representative Volume Element (RVE) of material associated
with that point. The proposed sensitivity is a symmetric fourth order tensor field over the RVE
that measures how the macroscopic elasticity constants estimated within the multi-scale frame-
work changes when a small circular void is introduced at the micro-scale. Its analytical formula
is derived by making use of the concepts of topological asymptotic expansion and topological
derivative [50, 12] within a variational formulation of the adopted multi-scale theory. The (rela-
tively new) mathematical notions of topological asymptotic expansion and topological derivative
allow the closed form exact calculation of the sensitivity of a given shape functional with respect
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Figure 1. Macroscopic continuum with a locally attached microstructure.

to infinitesimal domain perturbations such as the insertion of voids, inclusions or source terms.
Their use in the context of solid mechanics, topological optimisation of load bearing structures
and inverse problems is reported in a number of recent publications [18, 33, 43, 44, 10, 26]. In the
present context, the variational setting for the multi-scale modelling methodology as described
in [14] is found to be particularly well-suited for the application of the topological derivative
formalism. The final format of the proposed analytical formula is strikingly simple and can be
potentially used in applications such as the synthesis and optimal design of microstructures to
meet a specified macroscopic behavior.

The paper is organised as follows. Section 2 briefly describes the multi-scale constitutive
framework adopted in the estimation of the macroscopic elasticity tensor. The modelling ap-
proach is cast within the variational setting described in [14]. The main contribution of the
paper – the closed formula for the sensitivity of the macroscopic elasticity tensor to topological
microstructural perturbations – is presented in Section 3. Here, an overview of the topological
derivative concept is given, followed by its application to the problem in question. This leads to
the identification of the required sensitivity tensor field. Numerical confirmation of the derived
analytical formula is provided by means a simple finite element-based example. Finally, some
concluding remarks are made in Section 4.

2. Multi-scale modelling

This section describes a homogenisation-based variational multi-scale framework for classical
elasticity problems which allows the macroscopic elasticity tensor to be estimates from the given
geometrical and elastic properties of a local Representative Volume Element (RVE) of material.
This constitutive modelling approach has been proposed by Germain et al. [19] and has been
exploited in the computational context, among others, by Michel et al. [37] and Miehe et al.
[38]. Its variational structure is described in detail in [14]. For related multi-scale approaches
based on asymptotic analysis, the reader may refer to [3, 48].

The starting point of the multi-scale constitutive theory adopted to estimate the macroscopic
elastic properties of the continuum is the assumption that any material point x of the macro-
scopic continuum (refer to Fig. 1) is associated to a local Representative Volume Element (RVE)
whose domain Ωµ has characteristic length lµ, much smaller than the characteristic length l of
the macro-continuum domain, Ω. For the purposes of the analysis conducted in this paper, we
shall consider the RVE to consist of a matrix, denoted by domain Ωm

µ , containing inclusions of

different materials occupying a domain Ωi
µ, see Fig. 1.
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Crucial to the present approach is the assumption that the macroscopic strain tensor E at a
point x of the macroscopic continuum is the volume average of its microscopic counterpart Eµ

over the domain of the RVE:

E ≡
1

Vµ

∫

Ωµ

EµdΩµ, (2.1)

where Vµ is a total volume of the RVE, i.e. Vµ = V m
µ +V i

µ, with V
m
µ and V i

µ denoting the matrix
and inclusion volume of the RVE and

Eµ ≡ ∇suµ (y) , (2.2)

with uµ denoting the microscopic displacement field of the RVE. The use of Green’s Theorem
in definition (2.1,2.2) gives the following equivalent expression for E

E =
1

Vµ

∫

∂Ωµ

uµ ⊗s nd∂Ωµ, (2.3)

where n is the outward unit normal to the boundary of the RVE and ⊗s denotes the usual
symmetric tensor product of vectors.

Without loss of generality, it is possible split uµ into a sum

uµ (y) = u (x) +Ey + ũµ (y) , (2.4)

of a constant (rigid) RVE displacement coinciding with the macro displacement u(x), a homo-
geneous strain displacement field, linear in y, and a displacement fluctuation field ũµ (y).

Following (2.4) the microscopic strain field (2.2) can be expressed as a sum

Eµ = E+∇sũµ, (2.5)

of a homogeneous strain (uniform over the RVE) coinciding with the macroscopic strain, and
a field ∇sũµ corresponding to a fluctuation of the microscopic strain about the homogenised
(average) value.

2.1. Admissible and virtual microscopic displacement fields. Assumption (2.1, 2.2)
places a constraint on the admissible displacement fields of the RVE. That is, only fields uµ

that satisfy (2.1, 2.2) can be said to be kinematically admissible. This condition can be formally
expressed by requiring the (as yet not defined) set Kµ of kinematically admissible displacements
of the RVE to satisfy

Kµ ⊂ K∗
µ ≡

{

v ∈
[

H1(Ωµ)
]2

:
∫

Ωµ
vdΩµ = Vµ u,

∫

∂Ωµ
v ⊗s n d∂Ωµ = VµE, JvK = 0 on ∂Ωi

µ

}

,
(2.6)

where K∗
µ is named the minimally constrained set of kinematically admissible RVE displacement

fields – the most general set of microscopic displacement fields compatible with the strain aver-
aging assumption – and JvK denotes the jump of function v across the matrix/inclusion interface
∂Ωi

µ:

[[(·)]] ≡ (·)|m − (·)|i , (2.7)

with subscriptsm and i associated, respectively, with quantity values on the matrix and inclusion
sides of the interface.

In view of (2.4) and assuming that the origin of the coordinate system coincides with the
centroid of the RVE, constraint (2.6) can, without loss of generality, be made equivalent to

requiring that the space K̃µ of admissible displacement fluctuations of the RVE be a subspace

of the minimally constrained space of displacement fluctuations, K̃∗
µ:

K̃µ ⊂ K̃∗
µ ≡

{

v ∈
[

H1(Ωµ)
]2

:
∫

Ωµ
vdΩµ = 0,
∫

∂Ωµ
v ⊗s nd∂Ωµ = 0, [[v]] = 0 on ∂Ωi

µ

}

.
(2.8)
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Trivially, we have that the space of virtual displacement of the RVE, defined as

Vµ = Vµ(Ωµ) ≡
{

η ∈
[

H1(Ωµ)
]2

: η = v1 − v2; ∀v1,v2 ∈ Kµ

}

, (2.9)

coincides with the space of microscopic displacement fluctuations, i.e. Vµ = K̃µ.

2.2. Macroscopic stress and the Hill-Mandel Principle. Similarly to the macroscopic
strain tensor (2.1), the macroscopic stress tensor, T, is defined as the volume average of the
microscopic stress field Tµ, over the RVE:

T ≡
1

Vµ

∫

Ωµ

TµdΩµ. (2.10)

Let us consider a generic RVE with body force field bµ = bµ(y) in Ωµ and an external
traction field qµ = qµ(y) on ∂Ωµ. The Hill-Mandel Principle of Macro-Homogeneity [27, 35]
establishes that the power of the macroscopic stress tensor at an arbitrary point of the macro-
continuum must equal to the volume average of the power of the microscopic stress over the
RVE associated with that point for any kinematically admissible motion of the RVE. As shown
in [14], as a consequence of the the Hill-Mandel principle, bµ and qµ must satisfy the variational
equations

∫

Ωµ

bµ · ηdΩµ = 0 and

∫

∂Ωµ

qµ · ηd∂Ωµ = 0 ∀η ∈ Vµ. (2.11)

That is, the body force and external traction fields of the RVE belong to the functional space
orthogonal to the chosen Vµ – they are reactions to the constraints imposed upon the possible
displacement fields of the RVE, embedded in the choice of Vµ (or Kµ). Hence, once the space
Vµ of microscopic displacement fluctuations is chosen, the space of admissible body force and
external traction fields is automatically defined so that these fields cannot be independently
prescribed [14].

2.3. The RVE equilibrium problem. In the present analysis, we shall assume the materials
of the RVE matrix and inclusions to satisfy the classical linear elastic constitutive law:

Tµ = CµEµ, (2.12)

where Cµ is the fourth order elasticity tensor defined as:

Cµ = Cµ (y) =

{

Cm if y ∈ Ωm
µ

Ci if y ∈ Ωi
µ,

(2.13)

with Cm and Ci denoting, respectively, the elasticity constitutive tensors of the matrix and
inclusion parts of the RVE:

Cm =
Em

1− ν2m
[(1− νm) II+ νm (I⊗ I)] , Ci =

Ei

1− ν2i
[(1− νi) II+ νi(I ⊗ I)] . (2.14)

In the above, we have assumed the matrix and inclusion materials to be isotropic. The parame-
ters Em and Ei are the Young’s moduli of the matrix and inclusions, νm and νi the corresponding
Poisson’s ratios and I and II are the second and fourth order identity tensors, respectively. If the
RVE has more than one inclusion, the parameters Ei and νi are constant within each inclusion,
but may differ between inclusions.

The linearity of (2.12) together with the additive decomposition (2.5), allows the microscopic
stress field to be split as

Tµ = T̄µ + T̃µ, (2.15)

where T̃µ is the stress fluctuation field associated with ũµ (y), i.e. T̃µ = Cµ∇
sũµ; and T̄µ is

the microscopic stress field induced by the uniform strain E, i.e. T̄µ = CµE.
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Figure 2. RVE geometries for periodic media. Square and hexagonal cells.

Tacking into account (2.15) and in view of (2.11), this leads to the definition of the RVE
equilibrium problem which consists of finding, for a given macroscopic strain E, an admissible
microscopic displacement fluctuation field ũµ ∈ Vµ, such that

∫

Ωµ

T̃µ (ũµ) · ∇
s
ηdΩµ = −

∫

Ωµ

CµE · ∇s
ηdΩµ ∀η ∈ Vµ. (2.16)

By means of standard arguments, it can be shown that the above variational form leads to
the following Euler-Lagrange equations



































divT̃µ (ũµ) = 0 in Ωµ

T̃µ (ũµ) = Cµ∇
sũµ in Ωµ

∫

Ωµ
ũµ dΩµ = 0

∫

∂Ωµ
ũµ ⊗s n d∂Ωµ = 0

JũµK = 0 on ∂Ωi
µ

JT̃µ(ũµ)nK = −J(CµE)nK on ∂Ωi
µ.

(2.17)

Remark 1. Condition (2.17)4 is naturally satisfied due to the choice of space K̃µ according
to (2.8). Also note that, trivially, the mean value of the right hand side of (2.17)6 vanishes.
Then from (2.17)3 and the Lax-Milgram Lemma we have that there exists an unique solution for
(2.16).

2.4. Classes of multi-scale constitutive models . To completely define a constitutive model
of the present type, the choice of a space Vµ ⊂ K̃∗

µ of variations of admissible displacement must
be made. We list below four classical possible choices:

(a) Taylor model or Rule of Mixtures (homogeneous strain over the RVE). This class of
models is obtained by simply defining

Vµ = VT
µ ≡ {0} . (2.18)

In this case, the strain is homogeneous over the RVE, i.e. Eµ = E in Ωµ. The reac-

tive RVE body force and external traction fields, (qµ,bµ) ∈
(

VT
µ

)⊥
, may be arbitrary

functions.
(b) Linear boundary displacement model . For this class of models the choice is

Vµ = VL
µ ≡

{

ũµ ∈ K̃µ : ũµ (y) = 0 ∀y ∈ ∂Ωµ

}

. (2.19)

The only possible reactive body force over Ωµ orthogonal to VL
µ is bµ = 0. That is,

only a zero microscopic body force is compatible with this class of models. On ∂Ωµ, the

resulting reactive external traction, qµ ∈
(

VL
µ

)⊥
, may be any function.

(c) Periodic boundary fluctuations model . This class of constitutive models is appropriated
to represent the behavior of materials with periodic microstructure. Typical examples
of periodic RVEs in two dimensions are square and hexagonal cells (see Figure 2). In
this case the RVE boundary is composed for N pairs of equally sized sets of sides

∂Ωµ =
N
∪
j=1

(

Γ+
j ,Γ

−
j

)

, (2.20)
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such that, each point y+ ∈ Γ+
j has a corresponding point y− ∈ Γ−

j , and that the normal

vectors to the sides (Γ+
j ,Γ

−
j ) at the points (y+,y−) satisfy

n+
j = −n−

j . (2.21)

The space of displacement fluctuations is defined as

Vµ = VP
µ ≡

{

ũµ ∈ K̃µ : ũµ(y
+) = ũµ(y

−) ∀pair (y+,y−) ∈ ∂Ωµ

}

. (2.22)

Again, only the zero body force field is orthogonal to the chosen space of fluctuations.
The external traction fields – in this case orthogonal to VP

µ – satisfy

qµ(y
+) = −qµ(y

−) ∀pair (y+,y−) ∈ ∂Ωµ. (2.23)

That is, the external traction is anti-periodic.
(d) Minimally constrained or Uniform RVE boundary traction model. In this case, we chose,

Vµ = VU
µ ≡ K̃∗

µ. (2.24)

Again only the zero body force field is orthogonal to the chosen space. The boundary
traction orthogonal to the space of fluctuations in this case can be shown (refer to [14],
for instance) to satisfy the uniform boundary traction condition:

qµ (y) = Tn (y) ∀y ∈ ∂Ωµ, (2.25)

where T is the macroscopic stress tensor (2.10) at point x of the macro-continuum.

Note that the spaces of displacement fluctuations (and virtual displacement) listed above
satisfy

VT
µ ⊂ VL

µ ⊂ VP
µ ⊂ VU

µ . (2.26)

The variational framework adopted in the estimation of the macroscopic response allows
different predictions (including an upper and a lower bound) of macroscopic behavior to be
obtained according to the constraints imposed upon the chosen functional space displacement
fluctuations of the RVE.

2.5. The homogenised elasticity tensor . Crucial to the developments presented in Section
3, which form the main contribution of the present paper, is the derivation of formulae for
the macroscopic elasticity tensors obtained by means of the multi-scale modelling procedure
discussed in the above. This is addressed in the following.

With the notation introduced in (2.12), the variational problem defined by (2.16) can be
equivalently written as

∫

Ωµ

Cµ∇
sũµ · ∇s

ηdΩµ = −

∫

Ωµ

CµE · ∇s
ηdΩµ ∀η ∈ Vµ. (2.27)

To derive a compact expression of the macroscopic elasticity tensor it is convenient to re-write
(2.27) as a superposition of linear problems associated with the individual Cartesian components
of the macroscopic strain tensor as suggested by Michel et al. [37]. We start by writing the
macroscopic strain in Cartesian component form:

E = (E)ijei ⊗ ej , (2.28)

where {ei} is an orthonormal basis of the two-dimensional Euclidean space and the scalars (E)ij
are the corresponding Cartesian components of the macroscopic strain, i.e. (E)ij = E · (ei⊗ej).

Since (2.27) is linear, its solution ũµ ∈ Vµ can be constructed as a linear combination of the
components of the macroscopic strain, (E)ij, as

ũµ = (E)ij ũµij
, (2.29)

where the vector fields ũµij
∈ Vµ are the solutions to the linear variational equations

∫

Ωµ

Cµ∇
sũµij

· ∇s
ηdΩµ = −

∫

Ωµ

Cµ(ei ⊗ ej) · ∇
s
ηdΩµ ∀η ∈ Vµ, (2.30)
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for i, j = 1, 2 (in the two-dimensional case). The above equation is obtained by combining (2.27),
(2.28) and (2.29).

By combining (2.5), (2.28) and (2.29) we can write the microscopic strain as a linear combi-
nation of the Cartesian components of the macroscopic strain

Eµ = (E)ij
(

ei ⊗ ej +∇sũµij

)

= (E)ij Eµij
. (2.31)

Then we can define the canonical stress and strain tensors as

Tµij
= CµEµij

with Eµij
= ei ⊗ ej +∇sũµij

. (2.32)

With the introduction of the additive decomposition (2.15) and the constitutive law (2.12)
into (2.10) and by making use of (2.29), the macroscopic stress tensor T can be written as

T = C
T E+

(

1

Vµ

∫

Ωµ

Cµ∇
sũµij

dΩµ

)

(E)ij , (2.33)

where C
T is the homogenised (volume average) macroscopic elasticity tensor associated with

the Taylor model, given by

C
T =

1

Vµ

∫

Ωµ

CµdΩµ. (2.34)

Now, note that the second order tensor Cµ∇
sũµij

can be expressed as

Cµ∇
sũµij

= (Cµ)klpq (∇
sũµij

)pq (ek ⊗ el) . (2.35)

Also, let us assume that, at the macroscopic level, the constitutive law for linear elasticity reads

T = C
HE, (2.36)

where CH can be recognized as the homogenised elasticity tensor. In fact, by replacing the above
into (2.33), we obtain

C
HE = C

T E+ C̃E, (2.37)

where C̃ is given by

C̃ ≡

[

1

Vµ

∫

Ωµ

(Cµ)ijpq (∇
sũµkl

)pqdΩµ

]

(ei ⊗ ej ⊗ ek ⊗ el) (2.38)

Finally, with the above at hand, we arrive at the following compact canonical mathematical
expression for the homogenised elasticity tensor

C
H = C

T + C̃. (2.39)

Note that only the contribution of C̃ depends on the choice of space Vµ (the solutions ũµij
of

(2.30) taking part in (2.38) depend of this choice). Obviously, under Taylor assumption ũµij
= 0

for all i, j. In this case, C̃ = 0 and C
H = C

T .

3. The topological sensitivity of the homogenised elasticity tensor

This section presents the main result of this paper. Here, we derive a closed formula for
the sensitivity of the homogenised elasticity tensor (2.39) to the introduction of a circular hole
centered at an arbitrary point of the RVE domain.

The result is valid for two-dimensional problems. The sensitivity in the present case is the
fourth order tensor field over Ωµ (the original domain of the RVE, without the hole) given by

S(y) = −
1

E(y)

(

HTµij
·Tµkl

)

ei ⊗ ej ⊗ ek ⊗ el ∀y ∈ Ωµ, (3.1)

where Tµij
is defined in (2.32)1 and H is the fourth order tensor

H = 4II− I⊗ I. (3.2)
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The tensor S(y) is the (topological) sensitivity of the macroscopic elasticity tensor C
H with

respect to the topological change of the RVE produced by the introduction of a hole centered
at point y ∈ Ωµ.

To gain some insight into the meaning of S, let δCH
ε denote the difference

δCH
ε = C

H
ε − C

H, (3.3)

between the homogenised elasticity tensor CH
ε of the RVE topologically perturbed by the intro-

duction of a hole of radius ε and the elasticity tensor C
H of the unperturbed (original) RVE.

The approximation to δCH
ε linear in the volume fraction πε2/Vµ of perturbation is given by

δCH
ε =

πε2

Vµ
S+ o

(

ε2
)

. (3.4)

The sensitivity tensor (3.1) provides a first order sensitivity of how the macroscopic elasticity
tensor varies when a topological perturbation is added to the RVE. Each Cartesian component
Sijkl(y) represents the derivative of the component ijkl of the macroscopic elasticity tensor with
respect to the volume fraction πε2/Vµ of a circular hole of radius ε inserted at an arbitrary point
y of the RVE.

Remark 2. The remarkable simplicity of the closed form sensitivity given by (3.1) is to be
noted. Once the vector fields ũµij

have been obtained as solutions of (2.30) for the original RVE
domain, the sensitivity tensor can be trivially assembled. The information provided by (3.1)
can be potentially used in a number of practical applications such as, for example, the design of
microstructures to match a specified macroscopic constitutive response. �

The derivation of (3.1)–(3.4) is based on the mathematical concept of topological derivative
[50, 12, 18, 40, 43] and is presented in detail in Sections 3.3–3.5. Before proceeding to the
derivation, however, we find convenient to present below some background material on this
relatively new topic which should be particularly helpful to those unfamiliar with the topological
derivative concept.

3.1. Topological derivative. Preliminaries. Let ψ be a functional that depends on a given
domain and let it have sufficient regularity so that the following expansion is possible

ψ (ε) = ψ (0) + f (ε)DTψ + o (f (ε)) , (3.5)

where ψ(0) is the functional evaluated for the given original domain and ψ(ε) denotes the func-
tional evaluated for a domain obtained by introducing a topological perturbation in the original
domain. The parameter ε is a small positive scalar defining the size of the topological pertur-
bation, so that the original domain is retrieved when ε=0. In addition, f(ε) is a regularising
function defined such that

lim
ε→0+

f(ε) = 0, (3.6)

and o (f (ε)) contains all terms of higher order in f(ε).
Expression (3.5) is named the topological asymptotic expansion of ψ. The term DTψ is defined

as the topological derivative of ψ at the unperturbed (original) RVE domain. The term f(ε)DTψ
is a correction of first order in f(ε) to the functional ψ(0), evaluated for the original domain,
to obtain ψ(ε) – the functional value for the perturbed domain. Analogously to (3.3) let δψε

denote the difference
δψε = ψ(ε) − ψ(0), (3.7)

then, similar to (3.4), we have the linear approximation

δψε = f(ε)DTψ + o (f (ε)) . (3.8)

The concept of topological derivative is an extension of the classical notion of derivative. It
has been rigorously introduced in 1999 by Sokolowski & Zochowski [50] in the context of shape
optimisation for two-dimensional heat conduction and elasticity problems (for an introduction
to the shape optimisation concept see [39, 52]). In their pioneering paper, these authors have
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considered domains topologically perturbed by the introduction of a hole subjected to homoge-
neous Neumann boundary condition. Since then, the notion of topological derivative has proved
extremely useful in the treatment of a wide range of problems in mechanics, optimisation, inverse
analysis and image processing and has become a subject of intensive research (Céa et al. [12],
Garreau et al. [18], Guillaume & Sid Idris [22], Novotny et al. [43], Feijóo et al. [17], Nazarov
& Sokolowski [40], Lewinski & Sokolowski [33], Samet et al. [47], Sokolowski [49], Guillaume &
Sid Idris [23], Burger et al. [11], Nazarov & Sokolowski [41], Feijóo [16], Amstutz [4], Amstutz
et al. [6], Sokolowski & Zochowski [51], Hintermüller [28], Masmoudi et al. [36], Amstutz &
Andrä [5], Bonnet [10], Auroux et al. [7]). More recent developments include the use of the
topological derivative in two- and three-dimensional optimisation of elastic structures [45, 21],
image processing [8, 32] with application to breast cancer diagnosis [26] and the extension of the
original concept to the definition of a second order topological derivative [13].

3.2. Application to the multi-scale elasticity model. Our purpose here is to derive the
closed formula for the topological sensitivity of the macroscopic elasticity tensor. To this end,
it is appropriate to define the following functional

ψ(ε) ≡ VµT
ε ·E, ⇒ ψ(0) = VµT ·E, (3.9)

where Tε denotes the macroscopic stress tensor resulting from a macroscopic strain E at a point
of the macro-continuum associated with a RVE topologically perturbed by a small hole defined
by Hε and T denotes the macroscopic stress tensor associated to the original (unperturbed)
domain Ωµ. More precisely, the perturbed RVE domain Ωµε is defined as follows (refer to Fig.
3). The hole Hε of radius ε is introduced at an arbitrary point ŷ ∈ Ωµ of the original RVE

y^x^
e

nŷ

RVEmacro-continumm perturbed RVE hole

Figure 3. Microstructure perturbed with a hole Hε.

domain Ωµ = Ωm
µ ∪ Ω

i
µ of Section 2. The topologically perturbed domain is then defined as

Ωµε = Ωµ\Hε. (3.10)

The asymptotic topological expansion of the functional (3.9) reads

Tε ·E = T · E+
1

Vµ
f (ε)DTψ + o (f (ε)) , (3.11)

or, equivalently, by making use of the macroscopic constitutive law used in Section 2.5 (Tε =
C
H
ε E, T = C

HE) and definition (3.3),

δCH
ε E · E =

1

Vµ
f (ε)DTψ + o (f (ε)) . (3.12)

The sensitivity tensor will be determined as follows. Once the asymptotic expansion of ψ leading
to an explicit closed form for (3.12) has been carried out, the sensitivity tensor will be identified
by comparing the resulting expression with (3.4).
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3.3. Topological derivative calculation . In order to obtain a closed form expression of
the asymptotic expansion (3.11), we start here by deriving a closed formula for the associated
topological derivative DTψ. To this end, we define the functional

ψ(ε) ≡ JΩµε
(uµε) =

∫

Ωµε

Tµε(uµε) · ∇
suµεdΩµ, (3.13)

where
uµε = u+Ey + ũµε , (3.14)

is the microscopic displacement field that solves the equilibrium problem for the perturbed RVE,
ũµε is the corresponding displacement fluctuation and Tµε – also a functional of uµε – is the
microscopic stress field, that is

Tµε = CµEµε with Eµε = ∇suµε . (3.15)

In particular, ũµε∈Vµε is the solution of the following variational equation:
∫

Ωµε

T̃µε (ũµε) · ∇
s
ηεdΩµ = −

∫

Ωµε

CµE · ∇s
ηεdΩµ ∀ηε ∈ Vµε , (3.16)

where Vµε = Vµ(Ωµε) is the chosen space of kinematically admissible displacement fluctuations
of the perturbed RVE.

The Euler-Lagrange equation associated with the variational form (3.16) is given by the
following boundary value problem,











































divT̃µε (ũµε) = 0 in Ωµ\Hε

T̃µε (ũµε) = Cµ∇
sũµε in Ωµ\Hε

∫

Ωµε
ũµεdΩµ = 0

∫

∂Ωµ
ũµε ⊗s nd∂Ωµ = 0

[[ũµε ]] = 0 on ∂Ωi
µ

JT̃µε(ũµε)nK = −J(CµE)nK on ∂Ωi
µ

T̃µε(ũµε)n = −(CµE)n on ∂Hε.

(3.17)

Remark 3. Once again (refer to Remark 1), condition (3.17)4 is naturally satisfied by the
choice of the space Vµε , compatible with the choice for Vµ. In addition, since the mean value of
the right hand sides of (3.17)6,7 vanish, from (3.17)3 and the Lax-Milgram Lemma we have that
there exists an unique solution for (3.16). Finally, from the coercivity of the left-hand side of
(2.16) and (3.16) we have that the following estimate holds for the two-dimensional case under
analysis [2, 4, 51]

‖ũµε − ũµ‖Vµε
= O(ε). (3.18)

It should be noted that the functional (3.13) depends explicitly and implicitly on the domain
Ωµε . Its implicit dependence stems from the fact that the displacement fluctuation field ũµε is
the solution of the RVE equilibrium problem (3.16), for the perturbed RVE domain.

Among the methods for calculation of the topological derivative currently available in the
literature, here we shall adopt the methodology proposed by Sokolowski & Zochowski [51] and
further developed by Novotny et al. [43], whereby the topological derivative is obtained as the
limit

DTψ = lim
ε→0

1

f ′ (ε)

d

dε
JΩµε

(uµε) . (3.19)

The derivative of the functional JΩµε
(uµε) with respect to the perturbation parameter ε can

be seen as the sensitivity of JΩµε
, in the classical sense [39], to the change in shape produced

by a uniform expansion of the hole. Accordingly, we define a sufficiently regular shape change
velocity field, v, over Ωµε , such that

{

v = 0, on ∂Ωµ

v = −n, on ∂Hε.
(3.20)
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3.3.1. Rule of mixtures. Let us start by dealing with the simplest class of multi-scale models
described in Section 2.4 – the rule of mixtures (or Taylor) model. In this case, we combine (3.13)
and the result presented in the Case (a) of Section 2.4 for the perturbed RVE to derive

d

dε
JΩµε

(uµε) =
d

dε

∫

Ωµε

T̄µ ·EµεdΩµ

=
d

dε

∫

Ωµ\Hε

T̄µ · EdΩµ

= T̄µ ·E

∫

∂Ωµ

(v · n)d∂Ωµ + T̄µ ·E

∫

∂Hε

(v · n)d∂Hε

= −2πεT̄µ · E.

(3.21)

By substituting (3.21) into definition (3.19) of the topological derivative and identifying function
f(ε) as

f (ε) = πε2, (3.22)

we find that, for the rule of mixtures model,

DT
T ψ = −T̄µ · E. (3.23)

Note that f(ε) represents the hole area.

3.3.2. Other classes of multi-scale models. The derivation presented in the above is relatively
simple due to the trivial definition (2.18) of the space of variations of admissible displacement
fields for the rule of mixtures model. For the other models of Section 2.4, the derivation is
considerably more elaborated as due account needs to be taken of the fact that ũµε is the
solution of the variational equilibrium problem (3.16) for the perturbed RVE domain.

In order to proceed, it is convenient to introduce an analogy to classical continuum mechanics
[24] whereby the RVE shape change velocity field (3.20) is identified with the classical velocity
field of a deforming continuum and ε is identified as a time parameter (refer to [42, 52] for
analogies of this type in the context of shape sensitivity analysis).

Proposition 4. Let JΩµε
(uµε) be the functional defined by (3.13). Then, the derivative of the

functional JΩµε
(uµε) with respect to the small parameter ε is given by

d

dε
JΩµε

(uµε) =

∫

Ωµε

Σµε · ∇vdΩµ, (3.24)

where v is the RVE shape change velocity field defined in Ωµε and Σµε is a generalisation of the
classical Eshelby momentum-energy tensor [15, 25] of the RVE, given by

Σµε = (Tµε · Eµε)I−2(∇ũµε)
T Tµε . (3.25)

Proof. By making use of Reynolds’ Transport Theorem [24, 52], we obtain the identity

d

dε
JΩµε

(uµε) =

∫

Ωµε

d

dε
(Tµε · Eµε) +Tµε ·EµεdivvdΩµ. (3.26)

Next, by using the concept of material derivative of a spatial field [24, 52], we find that the
first term of the above right hand side integral can be written as

d

dε
(Tµε · Eµε) = 2Tµε · Ėµε , (3.27)

where the superimposed dot denotes the (total) material derivative with respect to ε. Further,
note that the relation

Eµε = E+∇sũµε , (3.28)

gives

Ėµε = (∇sũµε)
·, (3.29)
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which, after some manipulations exploring the relations between the material derivatives of
spatial quantities and their gradients, results in

Ėµε = ∇s ˙̃uµε − (∇ũµε∇v)s . (3.30)

Then, by introducing the above expression into (3.27) we obtain

d

dε
(Tµε · Eµε) = 2Tµε · ∇

s ˙̃uµε − 2Tµε · (∇ũµε∇v)s , (3.31)

which, substituted in (3.26) gives

d

dε
JΩµε

(uµε) =

∫

Ωµε

2Tµε · ∇
s ˙̃uµε − 2Tµε · (∇ũµε∇v)s + (Tµε ·Eµε)I · ∇vdΩµ. (3.32)

where we have made use of the identity, divv = I · ∇v. Now, note that by definition of the
spaces of displacement variations, we have ˙̃uµε ∈ Vµε . This, together with the equilibrium
equation (3.16), implies that the first term of (3.32) vanishes. � �

Proposition 5. Let JΩµε
(uµε) be the functional defined by (3.13). Then, the derivative of the

functional JΩµε
(uµε) with respect to the small parameter ε can be written as

d

dε
JΩµε

(uµε) =

∫

∂Ωµε

Σµεn · vd∂Ωµ, (3.33)

where v is the RVE shape change velocity field and Σµε is given by (3.25).

Proof. Let us compute the shape derivative of the functional JΩµε
using the following version

for the Reynolds’ Transport Theorem [24, 52],

d

dε
JΩµε

(uµε) =

∫

Ωµε

∂

∂ε
(Tµε ·Eµε) dΩµ +

∫

∂Ωµε

(Tµε ·Eµε)v · nd∂Ωµ. (3.34)

Next, by using the concept of spatial derivative [24, 52] and (2.12), we find that the first term
of the above right hand side integral can be written as

∂

∂ε
(Tµε · Eµε) = 2Tµε · E

′
µε
. (3.35)

where the prime denotes the (partial) spatial derivative with respect to ε. Further, note that
the relation (3.28) gives

E′
µε

= ∇sũ′
µε

= ∇s[ ˙̃uµε −∇ũµεv]. (3.36)

Then, by introducing the above expression into (3.35) we obtain

∂

∂ε
(Tµε ·Eµε) = 2Tµε · ∇

s ˙̃uµε − 2Tµε · ∇
s(∇ũµεv). (3.37)

With the above result, the sensitivity of the functional JΩµε
reads

d

dε
JΩµε

(uµε) = 2

∫

Ωµε

Tµε · ∇
s ˙̃uµεdΩµ −

∫

Ωµε

2Tµε · ∇
s(∇ũµεv)dΩµ

+

∫

∂Ωµε

(Tµε · Eµε)v · nd∂Ωµ. (3.38)

Now, note that by definition of the spaces of displacement variations, we have ˙̃uµε ∈ Vµε . This,
together with the equilibrium equation (3.16), implies that the first term of (3.38) vanishes.
Then, we obtain

d

dε
JΩµε

(uµε) = −

∫

Ωµε

2Tµε · ∇
s(∇ũµεv)dΩµ +

∫

∂Ωµε

(Tµε ·Eµε)v · nd∂Ωµ. (3.39)

Using the tensor relation

div
(

TT
µε

[(∇ũµε)v]
)

= Tε · ∇
s [(∇ũµε)v] + div (Tµε) · (∇ũµε)v, (3.40)



13

and the divergence theorem, the expression (3.39) can be written as

d

dε
JΩµε

(uµε) = 2

∫

Ωµε

divTµε · (∇ũµε)vdΩµ − 2

∫

∂Ωµε

(∇ũµε)
T
Tµεn · vd∂Ωµ

+

∫

∂Ωµε

(Tµε · Eµε)v · nd∂Ωµ. (3.41)

Since the stress field Tµε is in equilibrium, from Euler-Lagrange equation (3.17)1, we have that
divTµε = 0 in Ωµε . Therefore, a straightforward rearrangement of the above yields (3.33). � �

Corollary 6. By applying the divergence theorem to the right hand side of (3.24), we obtain

d

dε
JΩµε

(uµε) =

∫

∂Ωµε

Σµεn · vd∂Ωµ −

∫

Ωµε

div (Σµε) · vdΩµ. (3.42)

Since (3.33) and (3.42) remain valid for all velocity fields v of Ωµε , we have that
∫

Ωµε

div (Σµε) · vdΩµ = 0 ∀v ∈ Ωµε ⇒ div (Σµε) = 0 in Ωµε , (3.43)

i.e. Σµε is a divergence-free field. �

Then, from the result (3.33) and taking definition (3.20) into account, together with the defi-
nition of ∂Ωµε , we finally arrive at the following expression for the sensitivity of JΩµε

exclusively
in terms of integrals over the boundary ∂Hε of the hole

d

dε
JΩµε

(uµε) = −

∫

∂Hε

Σµεn · nd∂Hε. (3.44)

We now proceed to derive an explicit expression for the integrand on the right hand side
of (3.44). Then, consider a curvilinear coordinate system n–t along ∂Hε, characterised by the
orthonormal vectors n and t. For convenience we decompose the stress tensor Tµε(uµε) and the
strain tensor Eµε(uµε) on the boundary ∂Hε as follows

Tµε |∂Hε
= Tnn

µε
(n⊗ n) + Tnt

µε
(n⊗ t) + Ttn

µε
(t⊗ n) + Ttt

µε
(t⊗ t) ,

Eµε |∂Hε
= Enn

µε
(n⊗ n) + Ent

µε
(n⊗ t) + Etn

µε
(t⊗ n) + Ett

µε
(t⊗ t) .

(3.45)

Now note that the Neumann condition along ∂Hε gives

T̃µεn|∂Hε
= −T̄µn ⇒ Tµεn|∂Hε

= 0, (3.46)

so that decomposition (3.45)1 reads

Tµεn|∂Hε
= Tnn

µε
n+Ttn

µε
t = 0 ⇒ Tnn

µε
= Ttn

µε
= 0 on ∂Hε. (3.47)

With decomposition (3.45) and boundary condition (3.47), the normal flux of the Eshelby
tensor (3.25) through ∂Hε can be written as

Σµεn · n = (Tµε · Eµε)− 2Tµεn · (∇ũµε)n

= Tnn
µε
Enn
µε

+ 2Tnt
µε
Ent
µε

+Ttt
µε
Ett
µε

= Ttt
µε
Ett
µε
, (3.48)

or, equivalently (using the inverse constitutive relation),

Σµεn · n =
1

E(y)
Ttt
µε
(Ttt

µε
− ν(y)Tnn

µε
) =

1

E(y)
(T̄tt

µ + T̃tt
µε
)2, (3.49)

where T̄tt
µ and T̃tt

µε
are the constant and fluctuation part, respectively, of component Ttt

µε
of the

stress tensor Tµε |∂Hε
, and the parameters E(y) and ν(y) are defined as

E(y) =

{

Em if y ∈ Ωm
µ

Ei if y ∈ Ωi
µ

, ν(y) =

{

νm if y ∈ Ωm
µ

νi if y ∈ Ωi
µ

. (3.50)
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In order to obtain an analytical formula for the boundary integral of (3.44) we make use of a
polar coordinate system (r, θ) centered at point ŷ and the classical asymptotic analysis described
in Appendix A, see for instance [2, 29]. The substitution of (A.4), into (3.49) and then into
(3.44) allows the integral of the normal flux of the Eshelby tensor across ∂Hε to be analytically
integrated, resulting in

d

dε
JΩµε

(uµε) = −
2πε

E(ŷ)

[

4Tµ ·Tµ − (trTµ)
2
]

+ o(ε), (3.51)

where tr(·) denotes the trace of (·).
The substitution of the above expression for the derivative of JΩµε

into (3.19) allows the
function f (ε) to be promptly identified in the same way as (3.22). Finally, by taking the
limit of the resulting formula for ε → 0, we obtain the explicit closed form expression for the
topological derivative of ψ:

DTψ = −
1

E(ŷ)
HTµ ·Tµ, (3.52)

where H is given by (3.2).

Remark 7. The topological derivative of ψ given by (3.52) is a scalar field over Ωµ that depends
only on the material properties of matrix (or inclusions) and on the solution uµ for the original
unperturbed domain Ωµ. The striking simplicity of the exact formula (3.52) is to be noted. �

3.4. Numerical verification. In direct analogy with classical finite difference-based methods
for the numerical approximation of the derivative of a generic function, a first order topological
finite difference formula based on (3.8) to approximate numerically the value of DTψ at the
unperturbed RVE configuration can be defined as

dTψε ≡
ψ (ε)− ψ (0)

f (ε)
, (3.53)

with finite ε. The above satisfies
lim
ε→0

dTψε = DTψ. (3.54)

If for a given RVE we calculate ψ(0) and its perturbed counterpart ψ(ε) for a sequence
of decreasing (sufficiently small) inclusion radii ε, the use of formula (3.53) will provide an
asymptotic approximation to the analytical value of DTψ given by (3.52). Here such a procedure
is used to provide a numerical validation of (3.52). The required values of the function ψ are
computed numerically by means of a finite element procedure specially suited to handle the
kinematical constraints of the present multi-scale theory (refer, for instance, to [20]). The
unperturbed RVE considered (refer to Fig. 4) consists of a unit square containing a circular
inclusion of radius 0.1 centred at the point with coordinates (0.35,0.75) – with the origin of
the Cartesian coordinate system located at the bottom left hand corner of the RVE. For the
computation of the values of ψ(ε), a sequence of finite element analyses are carried out for
perturbed RVEs obtained by introducing in the original RVE a circular hole of radii

ε ∈ {0.160, 0.080, 0.040, 0.020, 0.010, 0.005}, (3.55)

centred at ŷ = (0.5, 0.5). Finite element meshes of six-noded isoparametric triangles are used
to discretise the perturbed domains. All meshes are built such that the hole boundary of radius
ε has 80 elements. For example, the mesh with ε = 0.16 (shown in Fig. 4(b)) contains 1864
elements with a total number of 5593 nodes. The macroscopic strain tensor (which can be chosen
arbitrarily) considered to compute ψ in the analyses is

E =

[

1.00 0.05
0.05 2.00

]

. (3.56)

The study is conducted for two different sets of material properties for the matrix and inclusion:

• Case A: Em = 50.0, νm = 1/3, Ei = 5.0 and νi = 1/3.
• Case B: Em = 50.0, νm = 1/5, Ei = 5.0 and νi = 1/5.
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(a) (b)

Figure 4. Numerical verification. (a) RVE geometry, and; (b) Finite element
mesh for ε = 0.16.

In each case, the numerical verification is carried out under the assumptions of:

(a) Linear boundary displacement;
(b) Periodic boundary displacement fluctuations, and;
(c) Uniform boundary traction.

The rule of mixtures (or Taylor) model is not considered. For this model, the solution is
trivial and does not require a finite element analysis. If one insisted in undertaking the present
verification for the rule of mixtures model, the only difference between the exact topological
derivative (3.23), which does not depend on ε, and its numerical counterpart would be the result
of the geometrical approximation of the inclusion domain by the relevant assembly of finite
element subdomains.

The results of the analyses are plotted in Fig. 5. They show the analytical topological
derivative and the corresponding numerical approximation for each value of ε for all classes
of multiscale model considered. The convergence of the numerical topological derivatives to
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(a) Case A.

682,0
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697,0
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0 25 50 75 100 125 150 175 200

(b) Case B.

Figure 5. Numerical verification. Convergence of numerical topological deriva-
tive to analytical value.

their corresponding analytical values with decreasing ε is obvious in all cases and confirms the
estimate (3.18) and also the correctness of formula (3.52).
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3.5. The sensitivity of the macroscopic elasticity tensor . From (3.52) and (3.11) we
have the explicit expression for the topological expansion of ψ:

Tε ·E = T · E−
v(ε)

E(ŷ)
HTµ ·Tµ + o(ε2). (3.57)

where
v(ε) = πε2/Vµ, (3.58)

is the RVE volume fraction occupied by the perturbation.
Introducing (2.31) into (2.12), the microscopic stress tensor Tµ can be written as

Tµ = (E)ij CµEµij
= (Tµij

⊗ ei ⊗ ej)E, (3.59)

where Tµij
is defined in (2.32)1.

With the above expressions at hand, we see after straightforward manipulations that the
topological derivative of ψ given by (3.52) can be represented as

DTψ = −DTµE · E, (3.60)

where DTµ is the fourth order symmetric tensor field over Ωµ defined by

DTµ =
1

E(ŷ)

(

HTµij
·Tµkl

)

ei ⊗ ej ⊗ ek ⊗ el, (3.61)

with i, j, k, l = 1, 2.
Then, by replacing (3.60,3.61) and (3.22) into (3.12) we obtain the explicit form

δCH
ε E · E = −

πε2

Vµ
DTµE ·E+ o(ε2). (3.62)

Finally, the sensitivity tensor (3.1),
S = −DTµ , (3.63)

can be promptly identified by comparing (3.62) with the linear approximation (3.4) that defines
the sensitivity.

4. Conclusion

An analytical expression for the sensitivity of the two-dimensional macroscopic elasticity
tensor to topological microstructural changes of the underlying material has been proposed
in this paper. The derivation of the proposed fundamental formula relied on the concept of
topological derivative, applied within a variational multi-scale constitutive framework for linear
elasticity problems where the macroscopic strain and stress at each point of the macroscopic
continuum are defined as volume averages of their microscopic counterparts over a Representative
Volume Element of material associated with that point. The derived sensitivity – a symmetric
fourth order tensor field over the RVE domain – measures how the estimated macroscopic
elasticity tensor changes when a small circular hole is introduced at the micro-scale. This crucial
information can be potentially used in a number of applications of practical interest such as,
for instance, the design and optimisation of microstructures to achieve a specified macroscopic
behavior. The successful application of analogous ideas in the context of design and optimisation
of load bearing (macroscopic) structures is reported in references [45, 21], for instance. Finally,
we remark that the derivation of analogous formulae for the three-dimensional case as well as for
the sensitivity to the introduction of inclusions in the RVE is currently under way and should
be the subject of a future publication.

Acknowledgements

This research was partly supported by CNPq (Brazilian Research Council) and FAPERJ
(Research Foundation of the State of Rio de Janeiro) under grants 472182/2007-2 and E-
26/171.099/2006. S.M. Giusti was supported by CAPES (Brazilian Higher Education Staff
Training Agency). This support is gratefully acknowledged.



17

References

[1] R.F. Almgreen. An isotropic three-dimensional structure with poisson’s ratio -1. Journal of Elasticity,
15(4):427–430, 1985.

[2] H. Ammari and H. Kang. Reconstruction of small inhomogeneities from boundary measurements. Lectures
Notes in Mathematics vol. 1846. Springer-Verlag, Berlin, 2004.

[3] H. Ammari and H. Kang. Polarization and moment tensors with applications to inverse problems and effective

medium theory. Applied Mathematical Sciences vol. 162. Springer-Verlag, New York, 2007.
[4] S. Amstutz. Sensitivity analysis with respect to a local perturbation of the material property. Asymptotic

Analysis, 49(1-2):87–108, 2006.
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[21] S.M. Giusti, A.A. Novotny, and C. Padra. Topological sensitivity analysis of inclusion in two-dimensional
linear elasticity. Engineering Analysis with Boundary Elements, 32(11):926–935, 2008.

[22] P. Guillaume and K. Sid Idris. The topological asymptotic expansion for the dirichlet problem. SIAM Journal

on Control and Optimization, 41(4):1042–1072, 2002.
[23] P. Guillaume and K. Sid Idris. Topological sensitivity and shape optimization for the stokes equations. SIAM

Journal on Control and Optimization, 43(1):1–31, 2004.
[24] M.E. Gurtin. An introduction to continuum mechanics. Mathematics in Science and Engineering vol. 158.

Academic Press, New York, 1981.
[25] M.E. Gurtin. Configurational forces as basic concept of continuum physics. Applied Mathematical Sciences

vol. 137. Springer-Verlag, New York, 2000.
[26] B.B. Guzina and I. Chikichev. From imaging to material identification: a generalized concept of topological

sensitivity. Journal of the Mechanics and Physics of Solids, 55(2):245–279, 2007.
[27] R. Hill. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids,

13(4):213–222, 1965.
[28] M. Hintermüller. Fast level set based algorithms usind shape and topological sensitivity. Control and Cyber-

netics, 34(1):305–324, 2005.
[29] V.A. Kozlov, W.G. Maz’ya, and A.B. Movchan. Asymptotic analysis of fields in multi-structures. Clarendon

Press, Oxford, 1999.
[30] R. Lakes. Foam structures with negative poisson’s ratio. Science, AAAS, 235(4792):1038–1040, 1987.



18

[31] R. Lakes. Negative poisson’s ratio materials. Science, AAAS, 238(4826):551, 1987.
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Appendix A. Asymptotic analysis

This appendix presents the derivation of the asymptotic formula used in the topological
sensitivity analysis developed in Section 3.3. We start by considering the following expansion of
the stress fluctuation field associated with the solution ũµε to problem (3.17), see [50]:

T̃µε (ũµε) = T̃∞
µε

(ũµε) + o(ε), (A.1)

where T̃∞
µε

denotes the solution of the elasticity system (3.17) in the infinite domain ℜ2\Hε,

such that the stresses T̃∞
µε

tend to a constant value when ‖y‖ → ∞. Then, the exterior problem
can be written as







divT̃∞
µε

(ũµε) = 0 in ℜ2\Hε

T̃∞
µε

→ T̃µ at ∞

T̃∞
µε
n = −T̄µn on ∂Hε,

(A.2)
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where n denotes the outward unit normal to the boundary ∂Hε, T̃µ is the solution of the
unperturbed problem (2.17) and T̄µ is that defined in (2.15).

In a polar coordinate system (r, θ) having its origin at the center of the hole Hε and with the

angle θ measured with respect to one of the principal directions of T̃µ, the components of the
solution of the partial differential equation (A.2), see [46, 34], are given by

(T̃∞
µε
)rr = S̃

(

1−
ε2

r2

)

− S̄
ε2

r2
+ D̃

(

1− 4
ε2

r2
+ 3

ε4

r4

)

cos 2θ

+D̄

(

3
ε4

r4
− 4

ε2

r2

)

cos 2(θ + ϕ), (A.3)

(T̃∞
µε
)θθ = S̄

ε2

r2
+ S̃

(

1 +
ε2

r2

)

− D̃

(

1 + 3
ε4

r4

)

cos 2θ

−3D̄
ε4

r4
cos 2(θ + ϕ), (A.4)

(T̃∞
µε
)rθ = −D̃

(

1 + 2
ε2

r2
− 3

ε4

r4

)

sin 2θ + D̄

(

3
ε4

r4
− 2

ε2

r2

)

sin 2(θ + ϕ), (A.5)

where ϕ denotes the angle between principal stress directions associated to the stress fields T̄µ

and T̃µ. In addition, we denote

S̄ =
σ̄µ1

(ū) + σ̄µ2
(ū)

2
, D̄ =

σ̄µ1
(ū)− σ̄µ2

(ū)

2
, (A.6)

S̃ =
σ̃µ1

(ũµ) + σ̃µ2
(ũµ)

2
, D̃ =

σ̃µ1
(ũµ)− σ̃µ2

(ũµ)

2
, (A.7)

where σ̄µ1,2
(ū) and σ̃µ1,2

(ũµ) are the principal stresses associated with the displacement fields
ū and ũµ of the original (unperturbed) domain Ωµ.
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E-mail address: giustiy@lncc.br
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