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Abstract. The topological derivative gives the sensitivity of the problem when the domain under
consideration is perturbed by the introduction of a hole. Alternatively, this same concept can also be
used to calculate the sensitivity of the problem when, instead of a hole, a small inclusion is introduced
at a point in the domain. In the present paper we apply the Topological-Shape Sensitivity Method to
obtain the topological derivative for inclusion in two-dimensional linear elasticity problems, adopting
the total potential energy as the cost function and the equilibrium equation as a constraint. For the sake
of completeness, initially we present a brief description of the Topological-Shape Sensitivity Method.
Then, we calculate the topological derivative for the problem under consideration in two steps: firstly
we perform the shape derivative and next we calculate the limit when the perturbation vanishes using
classical asymptotic analysis around a circular inclusion. In addition, we use this information as a
descent direction in a topology design algorithm which allows to simultaneously remove and insert
material. Finally, we explore this feature showing some numerical experiments of structural topology
design within the context of two-dimensional linear elasticity problem.

1. Introduction

As it is understood, the topological derivative furnishes the sensitivity of the problem when the do-
main under consideration is perturbed by the introduction of a hole [8, 9, 26, 29]. This methodology
has been recognized as an alternative and at the same time a promising tool to solve topology opti-
mization problems (see, for instance, [10] and references therein). Moreover, this is a broad concept.
In fact, the topological derivative may also be applied to analyze any kind of sensitivity problem in
which, instead of a hole, discontinuous changes defined in an infinitesimal region are allowable; for
example, discontinuous changes on the shape of the boundary, on the boundary conditions, on the
load system and/or on the parameters of the problem. In particular when the parameter is related to
material property, we can calculate the topological derivative for inclusion [25], instead of a hole.

Therefore, the information provided by the topological derivative is also very effective to solve
problems such as image processing (enhancement and segmentation) [4, 5, 20, 21], inverse problems
(domain, boundary conditions and parameters characterization) [3, 6, 7, 14, 19, 23] and in the me-
chanical modeling of problems with changes on the configuration of the domain like fracture mechanics
and damage.

Several methods were proposed to calculate the topological derivative [1, 8, 25, 29]. In the present
work we extend the application of the Topological-Shape Sensitivity Method developed in [25] to
obtain the topological derivative for inclusion in two-dimensional linear elasticity problems, adopting
the total potential energy as the cost function and the equilibrium equation as the constraint. Next,
we apply this result to devise a topology design algorithm which allows us to simultaneously remove
and insert material. This feature is demonstrated in numerical experiments that we exhibit.

This study is organized in the following manner. In section 2, we present a brief description of
the Topological-Shape Sensitivity Method. In section 3, we calculate the topological derivative for
inclusion for the problem under consideration. Lastly, in section 4, we show some numerical results
concerning structural topology design.

Key words and phrases. topological derivative for inclusion, shape sensitivity analysis, topology design, asymptotic
analysis.
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2. Topological-Shape Sensitivity Method

Let us consider an open bounded domain Ω ⊂ R
2 with a smooth boundary ∂Ω. If the domain Ω is

perturbed by introducing a small inclusion represented by Bε, which is a ball of radius ε centered at
point x̂ ∈ Ω, we have a perturbed domain Ωε ∪ Bε, where Ωε = Ω − Bε, as shown in fig. (1). Thus,
considering a cost function ψ defined in both domains Ω and Ωε ∪ Bε, its topological derivative is
written as

DT (x̂) = lim
ε→0

ψ (Ωε ∪Bε)− ψ (Ω)

f (ε)
, (1)

where f (ε) is a function that decreases monotonically so that f (ε)→ 0 with ε→ 0+.
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Figure 1. Topological derivative concept.

Recently an alternative procedure to calculate the topological derivative, called Topological-Shape
Sensitivity Method, have been introduced by the authors (see, for instance, [12, 26]). This approach
makes use of the whole mathematical framework (and results) developed for shape sensitivity analysis
(see, for instance, the pioneering work of Murat & Simon [24]). The main result obtained in [12, 26]
may be briefly summarized in the following Theorem (see also [25]):

Theorem 1. : Let f (ε) be a function chosen in order to 0 < |DT (x̂)| < ∞, then the topological
derivative given by eq. (1) can be written as

DT (x̂) = lim
ε→0

1

f ′ (ε)

d

dτ
ψ (Ωτ )

∣

∣

∣

∣

τ=0

, (2)

where τ ∈ R
+ is used to parameterize the domain. That is, for τ small enough, we have

Ωτ :=
{

xτ ∈ R
2 : xτ = x+ τv, x ∈ Ωε ∪Bε

}

. (3)

Therefore, xτ |τ=0 = x and Ωτ |τ=0 = Ωε ∪ Bε. In addition, considering that n is the outward normal
unit vector (see fig. 1), then we can define the shape change velocity v, which is a smooth vector field
in Ωε ∪Bε assuming the following values on the boundary ∂Bε and ∂Ω

{

v = −n on ∂Bε

v = 0 on ∂Ω
(4)

and the shape sensitivity of the cost function in relation to the domain perturbation characterized by
v is given by

d

dτ
ψ (Ωτ )

∣

∣

∣

∣

τ=0

= lim
τ→0

ψ (Ωτ )− ψ(Ωε ∪Bε)

τ
. (5)

Proof. The reader interested in the proof of this result may refer to [12, 25, 26]. �
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3. The topological derivative for inclusion

To highlight the potentialities of the Topological-Shape Sensitivity Method, it will be applied to
calculate the topological derivative for inclusion in two-dimensional linear elasticity problems consid-
ering the total potential energy as the cost function and the equilibrium equation in its weak form as
the constraint. Therefore, considering the above problem, initially we perform the shape sensitivity
of the adopted cost function with respect to the shape change of the inclusion and lastly we calculate
the associated topological derivative.

3.1. Shape sensitivity analysis . Let us choose the total potential energy stored in the elastic solid
under analysis as the cost function. For simplicity, we assume that the external load remains fixed
during the shape change. As it is well-known, different approaches can be applied to obtain the shape
derivative of the cost function. However, in our particular case, as the cost function is associated with
the potential of the state equation, the direct differentiation method will be adopted to calculate its
shape derivative. Therefore, considering the total potential energy already written in the configuration
Ωτ , eq. (3), then ψ(Ωτ ) := JΩτ

(uτ ) : Uτ 7→ R can be expressed by

JΩτ
(uτ ) =

1

2

∫

Ωτ

Tτ (uτ ) · Eτ (uτ )dΩτ −

∫

ΓN

q̄ · uτdΓτ , (6)

where the admissible displacements set Uτ is given by

Uτ =
{

uτ ∈ H
1 (Ωτ ) : uτ = u on ΓD

}

. (7)

The strain and stress tensors Eτ (uτ ) and Tτ (uτ ) are respectively given by

Eτ (uτ ) = ∇
s
τuτ and Tτ (uτ ) = Cδ∇

s
τuτ , (8)

with ∇τ (·) used to denote

∇τ (·) :=
∂

∂xτ
(·) , (9)

and the elasticity tensor Cδ is defined as following

Cδ =
Kδ

1− ν2
[(1− ν) II+ ν (I⊗ I)] (10)

where I and II are respectively the second and fourth order identity tensors, ν is the Poisson’s ratio
and, for δ ∈ R

+, Kδ is the Young’s modulus given by

Kδ =

{

K if x ∈ Ωε

δK if x ∈ Bε
(11)

In addition, uτ is the solution of the variational problem defined in the configuration Ωτ , that is:
find the displacement vector field uτ ∈ Uτ such that

∫

Ωτ

Tτ (uτ ) ·Eτ (ητ )dΩτ =

∫

ΓN

q̄ · ητdΓτ ∀ ητ ∈ Vτ , (12)

where

Vτ =
{

ητ ∈ H
1 (Ωτ ) : ητ = 0 on ΓD

}

. (13)

Observe that from the well-known terminology of ContinuumMechanics, the domains Ωτ |τ=0 = Ωε∪
Bε and Ωτ can be interpreted as the material and the spatial configurations, respectively. Therefore,
in order to calculate the shape derivative of the cost function JΩτ

(uτ ), at τ = 0, we may use the
Reynolds’ transport theorem and the concept of material derivatives of spatial fields, that is [17]

d

dτ

∫

Ωτ

ϕτ

∣

∣

∣

∣

τ=0

=

∫

Ωε∪Bε

( ϕ̇τ |τ=0
+ ϕτ |τ=0

divv) dΩε , (14)

where ϕτ is a spatial scalar field and ˙(·) is used to denote

˙(·) :=
d (·)

dτ
. (15)
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Taking into account the cost function defined through eq. (6) and assuming that the parameters
K, ν, ū, and q̄ are constants in relation to the perturbation represented by τ , we have, from eq. (14)
and following Theorem 1, eqs. (3,4), that

d

dτ
JΩτ

(uτ )

∣

∣

∣

∣

τ=0

=
1

2

∫

Ωε∪Bε

[

d

dτ
(Tτ (uτ ) ·Eτ (uτ ))

∣

∣

∣

∣

τ=0

+Tε(uε) · Eε(uε) divv

]

dΩε

−

∫

ΓN

q̄ · u̇εdΓε , (16)

where, according to the material derivatives of spatial fields [17], we have

d

dτ
(Tτ (uτ ) · Eτ (uτ ))

∣

∣

∣

∣

τ=0

= 2 (Tε(uε) ·Eε(u̇ε)−Tε(uε) · (∇uε∇v)
s) . (17)

Substituting eq. (17) in eq. (16) we obtain

d

dτ
JΩτ

(uτ )

∣

∣

∣

∣

τ=0

=

∫

Ωε∪Bε

[

1

2
Tε(uε) · Eε(uε) divv −Tε(uε) · (∇uε∇v)

s

]

dΩε

+

∫

Ωε∪Bε

Tε(uε) ·Eε(u̇ε)dΩε −

∫

ΓN

q̄ · u̇εdΓε . (18)

Since uε is the solution of the variational problem given by eq. (12) for τ = 0 and considering that
u̇ε ∈ Vε, eq. (18) becomes

d

dτ
JΩτ

(uτ )

∣

∣

∣

∣

τ=0

=

∫

Ωε∪Bε

Σε · ∇vdΩε , (19)

whereΣε is the Eshelby energy-momentum tensor (see, for instance, [11, 18, 30]) given in this particular
case by

Σε =
1

2
(Tε(uε) ·Eε(uε)) I− (∇uε)

T
Tε(uε) . (20)

Taking into account eq. (19) and considering the tensorial relation

div(ΣT
ε v) = Σε · ∇v+divΣε · v , (21)

we can apply the divergence theorem to obtain

d

dτ
JΩτ

(uτ )

∣

∣

∣

∣

τ=0

=

∫

∂Ω

Σεn · vd∂Ω+

∫

∂Bε

[[Σεn]] · vd∂Bε −

∫

Ωε∪Bε

divΣε · vdΩε . (22)

In addition, it is straightforward to verify that, in this particular case, the Eshelby tensor has null
divergence, that is divΣε = 0. Therefore, the shape derivative of the cost function JΩτ

(uτ ) defined
through eq. (6), at τ = 0, becomes an integral defined on the boundary ∂Bε since v = 0 on ∂Ω (see
eq. 4), that is,

d

dτ
JΩτ

(uτ )

∣

∣

∣

∣

τ=0

=

∫

∂Bε

[[Σεn]] · vd∂Bε . (23)

In other words, the shape sensitivity of the cost functional only depends on the jump of the Eshelby
tensor through the boundary ∂Bε.

3.2. Topological sensitivity analysis . In order to calculate the topological derivative for inclusion
using the Topological-Shape Sensitivity Method, we substitute eq. (23) in the result of Theorem 1 (eq.
2). Therefore, from the definition of the velocity field (eq. 4) and considering the shape derivative of
the cost function (eq. 23), we have

d

dτ
JΩτ

(uτ )

∣

∣

∣

∣

τ=0

= −

∫

∂Bε

[[Σεn]] · nd∂Bε . (24)
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Considering a curvilinear coordinate system defined on the boundary ∂Bε, the stress tensor Tε(uε)
and the strain tensor Eε(uε), when defined on the boundary ∂Bε, can be decomposed in the following
way

Tε(uε)|∂Bε
= T nn

ε (n⊗ n) + T nt
ε (n⊗ t) + T tn

ε (t⊗ n) + T tt
ε (t⊗ t) , (25)

Eε(uε)|∂Bε
= Enn

ε (n⊗ n) + Ent
ε (n⊗ t) + Etn

ε (t⊗ n) + Ett
ε (t⊗ t) , (26)

where n and t are respectively the normal and tangential unit vectors (n · t = 0) defined on ∂Bε.
Thus, the jump condition on the boundary ∂Bǫ can be written as

[[Tε(uε)n]] = (T nn
ε |e − T nn

ε |i)n+ (T tn
ε

∣

∣

e
− T tn

ε

∣

∣

i
)t = 0

⇒ T nn
ε |e = T nn

ε |i and T tn
ε

∣

∣

e
= T tn

ε

∣

∣

i
on ∂Bε . (27)

In the same way, the displacement field uε defined on the boundary ∂Bε can be decomposed as

uε|∂Bε
= unεn+ utεt . (28)

Therefore, its continuity condition results in

[[uε]] = 0 ⇒ uε|e = uε|i and
∂(·)

∂t

∣

∣

∣

∣

e

=
∂(·)

∂t

∣

∣

∣

∣

i

on ∂Bε , (29)

or in terms of the strain tensor components, we have

Ett
ε

∣

∣

e
= Ett

ε

∣

∣

i
. (30)

Using the decompositions defined through eqs. (25, 26,28), the Eshelby tensor flux in the normal
direction is given by

Σεn · n =
1

2
(Tε(uε) ·Eε(uε))−Tε(uε)n · (∇uε)n

=
1

2

[

T tt
ε E

tt
ε − T

nn
ε Enn

ε + T tn
ε

(

∂unε
∂t
−
∂utε
∂n

)]

. (31)

From the jump and continuity conditions on the boundary ∂Bε given by eqs. (27, 29, 30) and
considering the constitutive relation given by eq. (8) for τ = 0, the jump of the Eshelby tensor flux
in the normal direction results in

[[Σεn]] · n = (Σε|e − Σε|i)n · n

=
1

2

[

(

T tt
ε

∣

∣

e
− T tt

ε

∣

∣

i

)

Ett
ε

∣

∣

i
− T nn

ε |i (E
nn
ε |e − Enn

ε |i)− T tn
ε

∣

∣

i

(

∂utε
∂n

∣

∣

∣

∣

e

−
∂utε
∂n

∣

∣

∣

∣

i

)]

. (32)

where, from a simple manipulation, we obtain

T tt
ε

∣

∣

e
− T tt

ε

∣

∣

i
= K(1− δ) Ett

ε

∣

∣

i
(33)

Enn
ε |e − Enn

ε |i = −(1− δ)
(

Enn
ε |i + ν Ett

ε

∣

∣

i

)

(34)

∂utε
∂n

∣

∣

∣

∣

e

−
∂utε
∂n

∣

∣

∣

∣

i

= −2(1− δ) Ent
ε

∣

∣

i
(35)

Thus, eq. (32) becomes

[[Σεn]] · n =
1− δ

2

[

K
(

Ett
ε

∣

∣

i

)2
+ T nn

ε |i
(

Enn
ε |i + ν Ett

ε

∣

∣

i

)

+ 2 T tn
ε

∣

∣

i
Ent

ε

∣

∣

i

]

. (36)

Finally, considering this last result (eq. 36) in eq. (24) and substituting it in the result of the
Theorem 1 (eq. 2), the topological derivative written in terms of the stress components, becomes

DT (x̂) = −
1− δ

2δ2K
lim
ε→0

1

f ′ (ε)

∫

∂Bε

[

δ(1− ν2) (T nn
ε |i)

2 +
(

T tt
ε

∣

∣

i
− ν T nn

ε |i
)2

+ 2δ(1 + ν)(T tn
ε

∣

∣

i
)2
]

. (37)
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Let us introduce a polar coordinate system (r, θ) centered in x̂ ∈ Ω, then we have the following
stress distribution around a circular inclusion in a two-dimensional elastic body [28]

T nn
ε |∂Bε

=
δ

(1− ν) + δ(1 + ν)
(σ1 (u) + σ2 (u))

+
2δ

(1 + ν)(1 + δα)
(σ1 (u)− σ2 (u)) cos 2θ +O(ε) ,

T tt
ε

∣

∣

∂Bε

=
δ

(1− ν) + δ(1 + ν)
(σ1 (u) + σ2 (u))

−
2δ

(1 + ν)(1 + δα)
(σ1 (u)− σ2 (u)) cos 2θ +O(ε) ,

T tn
ε

∣

∣

∂Bε

= −
2δ

(1 + ν)(1 + δα)
(σ1 (u)− σ2 (u)) sin 2θ +O(ε) , with α =

3− ν

1 + ν
, (38)

where σ1 (u) and σ2 (u) are the principal stress values of the tensor T (u), associated to the original
domain without inclusion Ω (τ = 0 and ε = 0), evaluated in the point x̂ ∈ Ω, that is T (u)|

x̂
.

Substituting the asymptotic expansion given by eq. (38) in eq. (37) we observe that function f (ε)
must be chosen such that

f ′ (ε) = |∂Bε| = 2πε ⇒ f (ε) = |Bε| = πε2 (39)

in order to take the limit ε→ 0 in eq. (37), where |Bε| is used to denote the measure of Bε.
Therefore, from this choice of function f (ε) shown in eq. (39), the final expression for the topological

derivative becomes a scalar function that depends on the solution u associated to the original domain
Ω (without inclusion), that is:

• in terms of the principal stress values σ1 (u) and σ2 (u) of tensor T (u)

DT (x̂) = −
1− δ

2K

[

1− ν

1− ν + δ(1 + ν)
(σ1 (u) + σ2 (u))

2 +
2

1 + δα
(σ1 (u)− σ2 (u))

2

]

; (40)

• in terms of the stress tensor T (u)

DT (x̂) = −
1− δ

2K

[

4(1 − ν)

1− ν + δ(1 + ν)
T (u) ·T (u)−

1

1 + δα
(trT (u))2

]

; (41)

• in terms of the stress T (u) and strain E (u) tensors

DT (x̂) = −
1− δ

4

1 + α

1 + δα

[

2T (u) · E (u)−
(1− δ)(α − 2)

2δ + α− 1
trT (u) trE (u)

]

, (42)

which was obtained from a simple manipulation considering the constitutive relation given by eq.
(8) for τ = 0 and ε = 0. Furthermore from eq.(40) it follows that DT is negative for soft material
inclusion in a hard matrix (δ < 1) and positive for hard material inclusion in a soft matrix (δ > 1).
This means that the cost functional decreases (increases) whenever inclusions of soft (hard) material
are introduced in the configuration.

Remark 2. It is interesting to observe that if we take δ = 0 in eq. (42), the final expression for the
topological derivative for inclusion in terms of T (u) and E (u) becomes

DT (x̂) = −
1 + α

4

[

2T (u) · E (u)−
α− 2

α− 1
trT (u) trE (u)

]

= −
2

1 + ν
T (u) ·E (u) +

3ν − 1

2(1− ν2)
trT (u) trE (u) , (43)

which is the result for circular void (see, for instance, [13, 15, 22])
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4. Numerical Results

As already mentioned in this paper, the topological derivative allow us to quantify the sensitivity of
a given cost function when the domain under consideration is perturbed by introducing an inclusion.
Thus, let us write eq. (2) like a Taylor series expansion, then

ψ (Ωε ∪Bε) = ψ (Ω) + f (ε)DT (x̂) +O (f (ε)) , (44)

where O (f (ε)) contains all higher order terms than f (ε) . From analysis of eq. (44), DT (x̂) may
be seen as a first order correction1 of ψ (Ω) to obtain ψ (Ωε ∪Bε), which allow us to naturally use
this derivative as a descent direction in topology design algorithm. In other words, the topological
sensitivity gives the information on the opportunity to introduce a non-smooth perturbation (an
inclusion in this particular case). Therefore, we may devise a topology design algorithm, based on the
topological derivative given by eqs. (40, 41 or 42), which allows to simultaneously remove and insert
material. Thus, let us define the parameters α, β and vj as:

• α rate change of hard to soft material;
• β rate change of soft to hard material;
• vj volume fraction of hard material at iteration j.

Let γ = 1− α− β , then

vj+1 = γvj + β (45)

Also, we define N as the total number of iterations, thus vN is the volume constraint of hard
material, that is

vN = |Ω̂|/|Ω| (46)

where |Ω̂| is the required volume of hard (bulk) material. The recursive formula (eq. 45) may be
written, for 0 < γ < 1, as

vN = (v0γ + β) γN−1 + β
N−2
∑

j=0

γj

=
γN [β + v0 (γ − 1)]− β

γ − 1
. (47)

Remark 3. For the particular cases v0 = 0 and v0 = 1, eq. (47) becomes

vN |v0=1 =
αγN + β

α+ β
and vN |v0=0 =

(

1− γN
)

β

α+ β
. (48)

Remark 4. The limit N →∞, results

v∞ =
β

1− γ
=

β

α+ β
, (49)

which is independent of the initial volume constraint v0. Therefore, if α = β, v∞ = 1/2.

The behavior of volume fraction vj given by eq. (47) is shown in Fig.2.
For practical situation N <∞ and 0 ≤ v0 ≤ 1. Thus, given the maximum number of iterations N ,

the volume constraint vN , the rate α and the initial volume constraint v0, we can solve the non-linear
equation given by eq. (47) for β. Let us propose a very simple fixed-point algorithm;

βk+1 =
γNk [βk (1− v0)− v0α] + αvN

1− vN
(50)

with β0 = α and γk = 1 − α − βk. This algorithm converges in a few iterations even without
relaxation and it gives an estimate for β to obtain the volume constraint vN at iteration N .

Then, with the above convergent serie (eq. 47) and the estimate for parameter β (eq. 50), the
proposed algorithm may be summarized in the following steps:

1For high order corrections see [27].
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=1/2

j

=1

=0

½

(a) α < β, v∞ > 1/2

j

=1

=0

=1/2
½

(b) α = β, v∞ = 1/2

j

=1

=0

=1/2

½

(c) α > β, v∞ < 1/2

Figure 2. Behavior of volume fraction vj in relation to iteration j.

• Provide the initial domain Ω, the required volume of hard material |Ω̂|, the rate change
material α (hard to soft), the maximum number of iterations N and the tolerance tol.
• Compute the rate change material β (soft to hard).
• While |ψ(Ωj+1)− ψ(Ωj)| > tol do:

: Compute Dj
T (x̂) in Ω

: Interchange the material property, according to Dj
T (x̂) and the parameters α and β,

considering the following rule:
-: K ← δK in Ωj (hard to soft)
-: K ← K/δ in Ω− Ωj (soft to hard)

: Set Ωj+1 = Ωj and j ← j + 1.
• Ensure |Ωj | ≈ |Ω̂|, where |Ωj| is the volume of the hard material at iteration j.

The topological derivative depends on the solution u and its gradient. In this work, the displacement
field u is calculated via Finite Element Method and its gradient is obtained by a post-processing
technique. More specifically, the three node triangular finite element is adopted for the discretization
of the variational problem. Furthermore, DT (x̂) is evaluated at the nodal points x̂K of the finite
elements mesh. Then the material property associated to the elements that share the node x̂K will
be changed, as shown in Fig. 3. For more sophisticated topology algorithm based on the topological
derivative see, for instance, [2, 16, 31].

x^K

Figure 3. Sketching of the procedure to change the material property in a finite
element mesh.

Next, we present some numerical results related to structural topology design using the above
methodology. In all the examples the material properties used are given by K = 210 × 103MPa,
ν = 1/3 and δ = 0.01.

4.1. Example 1. In this first example, the design of a bar is performed. This bar is submitted to a
distributed load q̄ = 250 × 103N/m, acting in the half part of each side. In Fig. 4(a) is shown the
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initial domain given by a rectangular panel with L = 30mm, H = 30mm and ρ = 1mm, which is
discretized taking into account the symmetry of the problem.

qq

W

(a) Case A

qq

W

(b) Case B

qq

W

(c) Case C

qq

W

(d) Case D

Figure 4. Example 1 - models and studied cases.

We consider four different initial guess. The first one (Case A) has 100% of hard material, as shown
in Fig. 4(a). The second (Case B) has 100% of soft material, Fig. 4(b). The next two have 50% of
hard material, where the soft part is circular for the first case (Case C) and in two equal strips for
the last one (Case D), as can be seen in Figs. 4(c) and 4(d), respectively. The volume constraint used

in this example are |Ω̂| = 0.50 |Ω| for Case A and B, and |Ω̂| = |Ω| for the last two cases (C and D).
Then, at the end of the iterative process, all cases have 50% of hard material. Finally, the rate of
material to be changed at each iteration is given for α = 0.01

∣

∣Ωj
∣

∣.
In the next sequence of figures (Fig. 5 to Fig. 8) four steps are shown, for each studied case, of

the iterative process described by the topology algorithm introduced at the beginning of this section.
The mentioned steps correspond to iterations j ∈ {40, 80, 120, 160} .

qq

W

(a) j = 40

qq

W

(b) j = 80

qq

W

(c) j = 120

qq

W

(d) j = 160

Figure 5. Example 1 - iterative process for case A.

qq

W

(a) j = 40

qq

W

(b) j = 80

qq

W

(c) j = 120

qq

W

(d) j = 160

Figure 6. Example 1 - iterative process for case B.
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qq

W

(a) j = 40

qq

W

(b) j = 80

qq

W

(c) j = 120

qq

W

(d) j = 160

Figure 7. Example 1 - iterative process for case C.

qq

WW

(a) j = 40

qq qq

W

(b) j = 80

qq

W

(c) j = 120

qq

W

(d) j = 160

Figure 8. Example 1 - iterative process for case D.

The final topology shown in Fig. 9, obtained at iteration j = 200, is the same for all cases.
Therefore, the proposed algorithm is able to find global minimum independent of the initial guess, at
least for this simple example.

Figure 9. Example 1 - obtained topology at j = 200.

The cost function ψ(Ωj) and the volume of the hard material
∣

∣Ωj
∣

∣ throughout the iterative process
are respectively shown in Figs. 10(a) and 10(b), where ψ(Ω∗) is the cost function associated to the
optimal domain Ω∗.
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Case A

Case B

Case C

Case D
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(b) relative volume

Figure 10. Example 1 - obtained results.

4.2. Example 2. The design of a Mitchell structure is performed. In Fig. 11(a) is shown the initial
domain given by a simply supported rectangular panel with L = 100mm, H = 50mm and ρ = 5mm,
submitted to a concentrated load Q̄ = 5000N on the bottom. Due to the symmetry of the problem,
only half of the panel is discretized.

Q

W

(a) initial topology (b) topology at j=74 - point a

(c) topology at j=181 - point b (d) topology at j=200 - point c

Figure 11. Example 2 - model and obtained topologies.

Taking |Ω̂| = 0.25 |Ω| and α = 0.01
∣

∣Ωj
∣

∣, we have
∣

∣Ωj
∣

∣ ≈ |Ω̂| for j = 74, whose topology is shown in

Fig. 11(b). Once the volume constraint is reached, we consider α = 0.0025 |Ω̂|. The results obtained
at j = 181 and j = 200 are respectively shown in Figs. 11(c) and 11(d). The cost function ψ(Ωj) and
the volume of the hard material

∣

∣Ωj
∣

∣ are presented in Figs. 12(a) and 12(b), respectively.
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(a) relative cost function
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0 25 50 75 100 125 150 175 200
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(b) relative volume

Figure 12. Example 2 - obtained results.

4.3. Example 3. Now, in this third example, we consider the design of two bridges. In both cases
the initial domain is represented by a rectangular panel with L = 180m, H = 60m and ρ = 0.3m,
submitted to a uniformly distributed traffic loading q̄ = 250 × 103N/m2. This load is applied on the
black strip of height b = 3m, which is positioned at distance c from de top of the design domain.
Taking into account the symmetry of both problems, only half part of the domain will be discretized.
Case A: the initial domain is clamped on the region a = 9m and the strip is positioned at c = 30m,
as can be seen in Fig. 13(a). Taking |Ω̂| = 0.25 |Ω| and α = 0.01

∣

∣Ωj
∣

∣ , the topology obtained at

iteration j = 94 is shown in Fig. 13(b), where
∣

∣Ωj
∣

∣ ≈ |Ω̂|. Next, we consider α = 0.0025 |Ω̂| and the
obtained result are presented in Fig. 13(c) (j = 350).

q

a a

c

b

W

(a) initial topology

(b) topology at j=94 - point a (c) topology at j=350 - point b

Figure 13. Example 3 (Case A) - model and obtained topologies.

Case B: the initial guess is simply supported on the region a = 9m and the parameter c is given by
c = 57m, as shown in Fig.14(a). Considering again |Ω̂| = 0.25 |Ω| and α = 0.01

∣

∣Ωj
∣

∣ , the topology

obtained at iteration j = 83, where
∣

∣Ωj
∣

∣ ≈ |Ω̂|, is presented in Fig. 14(b). Now, we take α = 0.0025

|Ω̂| and the result reached at iteration j = 350 is shown in Fig. 14(c).
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q

a a

W

c

b

(a) initial topology

(b) topology at j=83 - point c (c) topology at j=350 - point d

Figure 14. Example 3 (Case B) - model and obtained topologies.

In the last figure of this work, Fig. 15, we present a comparison between the cost function ψ(Ωj)
for both cases obtained throughout the iterative process.

x10

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

4

Case A

Case B

j

a
b

c
d

Figure 15. Example 3 - cost function.

Finally, it is important to note that the final topologies obtained, in both cases, coincide with the
classical result of a tied arch bridge structure, as it was expected (see Figs. 13(c) and 14(c)).

5. Conclusions

In this work, we have applied the Topological-Shape Sensitivity Method to calculate the topological
derivative for inclusion in two-dimensional linear elasticity problem taking the total potential energy
as the cost function and the state equation in its weak form as the constraint. The explicit formula for
the topological derivative, given by eqs. (40,41,42), was obtained using classical asymptotic analysis
around circular inclusions. The obtained result was used to devise a topology design algorithm which
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allows to simultaneously remove and insert material. This feature is very important to find global or,
at least more than one local minimum. In fact, we have shown through the numerical experiments
that the proposed algorithm is able to find global minimum independent of the initial guess (example
1) and also several local minima (examples 2 and 3).
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(A.A. Novotny) Laboratório Nacional de Computação Cient́ıfica LNCC/MCT, Av. Getúlio Vargas 333,
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