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Abstract

The increasing complexity in several fields of science and technology has moti-
vated the use of techniques originally conceived in other areas of applications. An
illustrative example of this is given by the Topological Derivative which quanti-
fies the sensitivity of a problem when the domain under consideration is perturbed
by changing its topology. This concept, initially conceived to deal with topology
optimization problems, has also been successfully applied to inverse problems and
material properties characterization. Our aim in this paper is to present an other
field of application for the topological derivative: image processing. An appropriate
functional and a variational problem are associated to the cost endowed to an spe-
cific image processing application. Thus, the corresponding topological derivative
can be used as an indicator function that leads, through a minimization process, to
the processed image. We focus our attention on two image processing application.
In the first, the topological derivative is used in image restoration i.e. to restore
an image that was somehow degraded (acquisition process, transmission, storage,
etc.). Moreover, a novel fully discrete algorithm based on the topological derivative
concept is presented. In the second application, we use the topological derivative to
derive a ”continuous” and a fully discrete novel image segmentation algorithm, i.e.
for objects identification in an image. Finally and in order to show the performance
of these algorithms, several numerical examples are also presented in this work.

Key words: Topological derivative, image restoration, image segmentation.

1 Introduction

As a consequence of the technological advance a variety of instruments and
tools have been introduced in medicine. For instance, we can refer to med-
ical imaging devices. More specifically, techniques like Computed Tomography

11 December 2006



(CT), Magnetic Resonance Imaging (MRI), Single Photon Emission Tomog-
raphy (SPECT), Positron Emission Tomography (PET) and Ultrasound (US)
among others, have provided useful information (anatomical and functional)
to specialists, no matter which is the area of interest (practical medicine, re-
search, etc.). Therefore, the demand for tools to manipulate medical images
has grown considerably since the appearance of these technologies. Also dif-
ferent issues have appeared in this field, and to recall some of them we can
mention volume data visualization, image restoration, image segmentation,
image registration, pattern recognition, etc.

The inherent complexity of this area has motivated interdisciplinary research
and the use of techniques actually born in other areas into medical imaging,
as is the case of image processing. In this work, we focus our attention in
the Topological Derivative as a tool for image processing, specifically in image
restoration and segmentation. As it is known, the topological derivative allows
us to quantify the sensitivity of a problem when the domain under consider-
ation is perturbed by changing its topology, for example by the introduction
of an arbitrary shaped hole, an inclusion or a source term. Early work on this
subject can be found in papers by Masmoudi, Sokolowsky and their co-workers
(Masmoudi, 1987; Sokolowski and Żochowski, 1999). This derivative has been
originally conceived as a tool to solve topology optimization problems. Never-
theless, this concept is wider and has shown interesting results when applied
in inverse problems. See also Novotny (2003); Amstutz (2003); Céa et al.
(2000); Eschenauer et al. (1994); Novotny et al. (2003); Masmoudi (2002) for
applications of the topological derivative to the above equations topology opti-
mization and inverse problems considering Navier, Laplace, Poisson, Helmoltz,
Stokes and Navier-Stokes equations among others.

In this paper another field of application for the topological derivative namely
image restoration and image segmentation is studied. In particular, the topo-
logical derivative has proven to be a powerful tool in this field of research (Au-
roux et al., 2006; Belaid et al., 2007; Hintermüler, 2005). We can also mention
the work of He and Osher (2006), where a connection is made between level set
and the topological derivative. More specifically, appropriated functionals and
variational formulations associated to the cost endowed to image restoration
and segmentation are proposed. The corresponding topological derivatives can
be used as an indicator function that allow us to obtain, through a minimiza-
tion process, the processed image. Following this approach, novel algorithms
for image restoration and segmentation are proposed.

This article is organized as follows. In Section 2 the concept of topological
derivative is introduced. The context of image restoration using the topolog-
ical derivative is analyzed and a fully discrete algorithm that removes noise
preserving details (edges) is proposed in Section 3. Furthermore several nu-
merical applications are also presented in this section showing the effectiveness
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of this new algorithm for image restoration. In Section 4, the image segmenta-
tion problem is tackled defining an appropriate functional and calculating its
topological derivative. As shown in this section,“continuous” and fully discrete
novel algorithms are also presented and used in segmenting several images with
excellent performance.

2 The Topological Derivative

As mentioned above, the topological derivative (DT ) allows us to quantify the
sensitivity of a problem when the domain under consideration is perturbed,
for example by the introduction of an arbitrary shaped hole, an inclusion or
a source term at an arbitrary point.

Then, let Ω be a bounded open set in RN (N = 2, 3) and ω be a fixed bounded
domain containing the origin. Let also J (u) = J (u(Ω)) be the cost functional
to be minimized and u(Ω) the solution of a variational problem defined over
the domain Ω. For a small parameter ε ≥ 0, let Ωε = Ω−ωε be the perturbed
domain defined by inserting a small hole at point x̂ ∈ Ω given by ωε = x̂+ ε ω.
Let also uε be the corresponding solution of the same variational problem but
now defined over the perturbed domain Ωε.

For small values of ε the topological asymptotic expansion for Jε(uε) reads

Jε(uε) = J (u) + f(ε)DT (x̂) + o(f(ε)) , (1)

where f(ε) is a known positive function going to zero with ε and DT (x̂) is
the topological derivative at point x̂. Since f is positive, by introducing a
perturbation at any point x̂ where DT is negative the cost function J will
be decreased. Then, DT can be taken as an indicator function defining the
best places where the perturbations could be introduced in order to reduce
the value of the cost function. As will be shown in the next sections, this
information can be used to develop fast algorithms for image restoration and
segmentation.

Furthermore, dividing Eq. (1) by f(ε) and after taking the limit ε → 0 we
obtain

DT (x̂) = lim
ε→0

Jε(uε) − J (u)

f(ε)
. (2)

The numerator of the right hand side of the above expression is associated
with the total variation of the cost function. This information will be used to
derive a fully discrete algorithm for image restoration and segmentation.
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3 Image Restoration via Topological Derivative

For visual analysis, clarity of details and object visibility are important fea-
tures in medical images, but when the interest is to use more advanced image
processing procedures like segmentation, a high signal-to-noise (SNR) is manda-
tory to reduce errors as much as possible.

Over the years different techniques have been studied to improve the SNR of a
degraded image. These methods can be classified as those affecting acquisition
time or pixel size (time averaging over pixels for repeated acquisitions, scan-
ning with larger image elements), and methods not affecting these parameters
(for example, improvement of the acquisition hardware and postprocessing the
image data after acquisition, that is image processing techniques). The former
techniques have the advantage of not affecting the acquisition process (Jain,
1989; Gonzalez and Woods, 2001). To this end different approaches have been
proposed over the years. In particular, we can mention techniques based on
the framework of variational approaches and energy minimization (Aubert and
Kornprobst, 2002). The following energy was considered by these authors

J (u) =
1

2

∫
Ω
(v − u)2dΩ + λ

∫
Ω

φ(|∇u|) dΩ. (3)

In the above expression the first term measures the misfit between the (de-
graded) image data v and the restored image u and the second term is associ-
ated to the smoothing process. The parameter λ is used to control the weight
given to each term. Moreover, the Euler equation for this functional is given
by

−λ div

{
φ′(|∇u|)
|∇u|

∇u

}
+ u = v (4)

together with homogeneous Newmann boundary condition on ∂Ω. The authors
also impose several restrictions over φ in order to ensure satisfactory noise re-
duction, as well as existence and uniqueness of the solution u which minimizes
the functional in Eq. (3). Another approach for image restoration is based on
nonlinear diffusion methods. In this case the evolution of the (restored) image
u = u(x, t) is processed by a nonlinear anisotropic diffusion governed by a
partial differential equation (PDE)

∂u

∂t
= div (k(|∇u|)∇u) (5)

with initial condition u0 = v and where k(|∇u|) is a tensor field called dif-
fusivity and is designed to steer the direction of the diffusion process. When
k(|∇u|) is reduced to a constant k0 the linear isotropic diffusion method is
obtained. In order to improve the outcome of linear isotropic diffusion filter-
ing, specially edge preservation, in Perona and Malik (1990) is introduced a
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monotonically decreasing function φ(|∇u|) instead of the constant k0 such that
the diffusion flux is reduced over edges. Despite the fact that a number of dif-
ferent alternatives for function φ can be found in the literature, this approach
is still limited due to the isotropic nature of the diffusion equation. In fact only
the intensity of the diffusion flux is controlled preserving noise along edges.
This highly undesirable property of the nonlinear isotropic diffusion method
is partly reduced when a nonlinear anisotropic diffusivity tensor is introduced
(see Frangakis and Hegerl (2001)). In that case, the diffusivity tensor k(|∇u|) is
constructed from the eigenvectors and corresponding eigenvalues of the tensor
J = (∇u⊗∇u) and also satisfying that k(x) → 0 as x → ∞. These conditions
provoques denoising along edges and reduction of the diffusion in the presence
of large gradients, for example, across boundaries. However, and since the dif-
fusion across edges is not completely avoided, heuristic stop criteria must be
introduced during the evolution in time otherwise details of the image may
not be preserved. On the other hand and as will be shown in this paper, the
methods based on the topological derivative also introduce anisotropic diffu-
sion tensors with components taking a value k0 in the direction diffusion is
allowed (homogeneous regions of the image) and null otherwise (i.e., in the
ortogonal direction of boundaries inside the image).

3.1 DT image restoration - Continuum approach

An image restoration algorithm based on the topological derivative was pro-
posed by Masmoudi and his collaborators in (Belaid et al., 2005, 2007; Auroux
et al., 2006). The cost functional associated to the edge detection adopted by
these authors is given by

J (u) =
∫
Ω
∇u · ∇u dΩ (6)

where u ∈ H1(Ω) is the solution of the following variational equation∫
Ω
(k0∇u · ∇η + u η) dΩ =

∫
Ω

v η dΩ ∀η ∈ H1(Ω) (7)

and v is the noisy image data. At any point x ∈ Ω, the topological derivative
of the cost functional (Eq. (6)) when the domain perturbation is characterized
by a straight crack with unit normal vector n orthogonal to the crack direction
is obtained by these authors and is given by

DT (x,n) = Mn · n = −π (∇u ⊗s ∇p + ∇u ⊗∇u)n · n (8)

where p ∈ H1(Ω) is the solution of the adjoint equation∫
Ω
(k0∇p · ∇η + p η) dΩ =

∫
Ω

∂J (u)

∂u
η dΩ ∀η ∈ H1(Ω) . (9)
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Moreover, the orientation n of the crack at each point x ∈ Ω is taken such that
produces the minimum value for DT (x,n). This is attained when n coincides
with the eigenvector associated to the lowest eigenvalue, λmin, of the symmetric
tensor M. Using this information the authors propose that the restored image
u ∈ H1(Ω) is the solution of the variational problem (isotropic/anisotropic
diffusion) ∫

Ω
(k∇u · ∇η + u η) dΩ =

∫
Ω

v η dΩ ∀η ∈ H1(Ω) (10)

where the diffusivity tensor k(x) is adopted as

• Isotropic diffusion based on DT :
· k(x) = εI if DT ≤ αDT,MIN ;
· k(x) = k0I otherwise.

• Anisotropic diffusion based on DT :
· k(x) = ε(n ⊗ n) + k0(t ⊗ t) if DT ≤ αDT,MIN ;
· k(x) = k0I otherwise.

Then, to find the restored image u we must compute the solution of 3 systems
of equations corresponding to the scalar fields u, p and u.

At this point one question arises: is it possible to use the information given
by the topological derivative in order to derive a fully discrete algorithm for
image restoration without loss of quality when compared to the continuous
approach?. The answer is affirmative and will be presented in the next section.

3.2 A fully discrete DT based approach

Typically, medical images as CT or MRI, are three dimensional data sets. For
the sake of simplicity we consider only one slice of the whole image volume 1 ,
extending this idea to 3D is straightforward. The 2D image is characterized
by a matrix of pixels, with an intensity associated to each one of them. More
specifically, let us consider a two dimensional image v given by a set of M ×N
pixels s. At each pixel s the intensity of image v will be denoted vs. Then, any
medical image belongs to the space Ud

Ud :={v; vs = constant in ωs, s = 1 · · ·M × N} , (11)

with Ω = ∪sωs, being ωs the domain of pixel s. The set ns of neighbors of a
pixel s was defined as the 4 pixels 2 (see Fig. 1(a)) sharing a side with s.

1 A 3D medical image is composed of a stack of 2D images.
2 That is west, east, north and south of pixel s.
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The functional adopted for this fully discrete approach is taken as

J d(us
t) =

∑
s

∑
p∈ns

ks,p∆̂us,p
t · ∆̂us,p

t , (12)

which could be interpreted as a discrete approximation of the square of the
energy norm of the field u. In the above expression the term ks,p is the diffusion
coefficient of pixel s with neighbor p, ns = {w, e, n, s} stands for the neighbors
of pixel s and ∆̂us,p

t is defined as

∆̂us,p
t = up

t − us
t . (13)

In this case, us
t is not the solution of a variational problem, but is explicitly

computed using the following expression

us
t(k

s) = us
t−1 + λ

∑
p∈ns

ks,p∆̂us,p
t−1 (14)

where subindex t ≥ 1 represents the iteration number, being us
0 = vs the

intensity of the original image at pixel s, ks = {ks,w, ks,e, ks,n, ks,s} denotes
the set of diffusion coefficients associated to pixel s, λ = ∆t is the artificial
time step size and with the notation us

t(k
s) we want to emphasize that us

t is
an explicit function of the diffusion coefficients associated to pixel s. Finally,
Eq. (14) can be seen as a finite difference approximation for Eq. (5).

3.3 Topological Derivative Computation

In the continuum approach, the introduction of a null (or very small) diffusion
coefficient was interpreted as the creation of a hole or a crack. This will also
be the case for the discrete approach. The fact that ks,p = 0 for pixel s with
neighbor p is interpreted as introducing a crack along the edge they share (no
diffusion occurs across this edge). Then, we want to find the best configuration
for ks that most preserve image details and remove noise when we compute us

t .
As in this case us

t is an explicit function of the set ks, we are able to compute
the exact total variation of the cost functional for a given perturbation in ks,p.
Moreover, let us denote by ks

ε the perturbed configuration on the diffusivity
coefficients considered at pixel s then, the value of the cost functional when
this perturbation is introduced is given by

J d(us
t(k

s
ε)) = J d(us

t(k
s)) + DT (s,ks

ε) (15)

where DT (s,ks
ε) represents the total variation of the functional due to the

perturbation on the diffusivity coefficients at pixel s characterized by the set
ks

ε . As in the continuum approach, by introducing a perturbation at pixel s
where DT is negative the cost functional J d will be decreased. Then, using this
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information we are able to select the best pixels for which this perturbation
could be introduced.

(a) Pixel s neighborhood
and diffusion coefficient
ks.

(b) Neighborhood cases.

Fig. 1. Pixel neighborhood considered.

To this end, we assume ks,p ∈ {0, k0}. Then, the set of all possible configura-
tions for ks can be defined as

C(s) :={ks = (ks,w, ks,e, ks,n, ks,s); ks,p ∈ {0, k0}, p = {w,e,n,s}} (16)

It is easy to notice that 16 different combinations are possible for ks (the
possibilities are ks,p = 0 or ks,p = k0, for each neighbor, so 24 = 16 cases are
possible). The case ks,w = ks,e = ks,n = ks,s = 0 is discarded because, for
this case, the cost function assumes the value 0 (and the original image is not
changed). The remaining 15 combinations are

• do not apply diffusion with one neighbor,
• do not apply diffusion with two neighbors that share a vertex,
• do not apply diffusion with three neighbors,
• apply diffusion in x-direction,
• apply diffusion in y-direction,
• apply diffusion in all the directions (isotropic diffusion).

The last combination corresponds to isotropic diffusion and is defined by
ks

iso = {k0, k0, k0, k0}. Since, the non perturbed configuration corresponds to
the isotropic case we will denote by Cσ the subset of C containing the remaining
Nc = 14 cases (Fig. 1(b)).

In order to compute the value of the DT for a specific pixel, we need to
introduce a perturbation. This is done by changing at a particular pixel s the
set ks

iso by ks
ε ∈ Cσ. Hence, the cost function J d

ε (εu
s
t) takes the form

J d
ε (εu

s
t) = J d(us

t)−
∑
p∈ns

ks,p∆̂us,p
t · ∆̂us,p

t +
∑
p∈ns

ks,p
ε ∆̂ εu

s,p
t · ∆̂ εu

s,p
t ,

(17)
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for εu
s
t = us

t(k
s
ε) and us

t = us
t(k

s
iso) calculated using Eq. (14) and ∆̂ εu

s,p
t =

up
t −ε us

t .

Then, from Eqs. (15) and (17) the total variation of the cost function J d due
to the perturbation ks

ε can be written as

DT (s,ks
ε) =

∑
p∈ns

ks,p
ε ∆̂ εu

s,p
t · ∆̂ εu

s,p
t −

∑
p∈ns

ks,p∆̂us,p
t · ∆̂us,p

t . (18)

As in the continuum approach, the perturbation ks
ε (orientation of the crack

at pixel s) is taken such that minimizes the value of DT (s,ks
ε). Using this

information we propose the following fully discrete image restoration algorithm
based on the topological derivative (Algorithm 1).

Algorithm 1 Image restoration based on fully discrete version of the topo-
logical derivative

Require: A 2D image v ∈ U and the parameter α
Ensure: The restored image us ∈ U

set us
0 = vs, t=1, Stop = FALSE

ks = ks
iso, s = 1..M × N

while Stop = FALSE do
for every pixel s do

for every ks
ε ∈ Cσ do

compute DT (s,ks
ε) following Eq. (18)

end for
end for
set DT (s) = min

ε∗
{DT (s,ks

ε),k
s
ε ∈ Cσ}

for every pixel s ∈ Mα do
set ks = ks

ε∗ the diffusivity coefficients associated to DT (s)
end for
compute us

t(k
s) using Eq. (14).

if |J d
ε (εu

s
t) − J d

ε (εu
s
t−1)| > tol then

t = t + 1
else

us = us
t , s = 1, · · · , M × N , Stop = TRUE

end if
end while

The set Mα is defined as

Mα := {DT (s) : DT (s) < 0

and DT (s) is in the α% most negative values of the DT}. (19)

As in the continuum approach, in the above algorithm the α parameter allows
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us to control the values of the topological derivative that will produce changes
in ks. In the next section we present some results obtained using this technique.

3.4 Results

In order to show the performance of the proposed technique, in Figure 2 is
presented the Lena image (size 256 × 256 pixels, polluted with σ = 25 White
Gaussian Noise) processed with the nonlinear isotropic diffusion technique
(Perona and Malik, 1990), the continuous DT image restoration technique and
the fully discrete version proposed in this work. In this case the following two
alternatives for the function k(|∇u|) (nonlinear isotropic diffusion coefficient)
where adopted

• Perona and Malik function (1990):

k(x) =
1

1 + x2

σ2

(20)

• Tukey error norm function (Black et. al. (1998)):

k(x) =


1
2

(
1 − x2

σ2

)2
|x| < σ

0 otherwise.
(21)

As can be seen, the results for the proposed method (DT Discrete) are sim-
ilar to the results for the other methods. Moreover, using the proposed fully
discrete algorithm two different images were also processed. The first of these
images (which will be referred as Case 1) is a phantom image with 200 × 204
pixels and composed of a series of elipses of sizes and shapes similar to the
structures that could be found in a real medical image (see Kak and Roberts
(1986) for more details about this image). Five different regions are present
in this image: bg, intensity = 0; r1, intensity = 70; r2, intensity = 120; r3,
intensity = 170; r4, intensity = 210. The non polluted image is presented
in Fig. 3(b). This image was polluted using additive White Gaussian Noise
(WGN) with different standard deviations σ (σ = 18 for Fig.3(c) and σ = 25
for Fig.3(d)).

These images were processed using different values for parameter α and the
results are presented in Fig. 4. The first and second row correspond to the
WGN σ = 18 and σ = 25 respectively. The columns correspond to the different
values of parameter α (respectively and from left to right: 0.05, 0.10 and 0.15).

As we dispose of the original image, we are able to compute the error after
the restoration process. To measure the quality of the results we use different
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(a) Original Lena Image (b) Polluted Lena Image (c) DT Continuous

(d) DT Discrete (e) Perona and Malik (f) Tukey function

Fig. 2. Results for Lena Image.

error measures. Let v0 be the original unpolluted image and u be the restored
image, then

• Mean Square Error(MSE):

MSE(v0, u) =

∑
s
(vs

0 − us)2

(N × M)
(22)

• Peak Signal-to-Noise Ratio (PSNR):

PSNR(v0, u) = 10 ∗ log10

(
max(us)2

MSE(v0, u)

)
(23)

• Signal-to-Noise Ratio (SNR):

SNR(v0, u) = 10 ∗ log10

 1
N×M

∑
s

(us)2

MSE(v0, u)

 (24)

Also, we are able to compute the mean µ(e) and standard deviation σ(e) of
the error e(s), being:

e(s) = vs
0 − us, (25)

µ(e) =

∑
s
e(s)

(N × M)
, (26)
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(a) Phantom image regions. (b) Phantom image.

(c) Phantom image with
σ = 18 WGN.

(d) Phantom image with
σ = 25 WGN.

Fig. 3. Synthetic image - Case 1.

PSNR SNR µ(e) σ(e)

WGN with σ = 18 23.156610 61.855321 -0.250686 17.728266

Result for α = 0.05 34.160666 72.859376 0.227721 4.989477

Result for α = 0.10 34.030855 72.729566 0.257525 5.063332

Result for α = 0.15 33.016007 71.714718 0.201765 5.694655

WGN with σ = 25 20.334903 59.033613 -0.908284 24.518690

Result for α = 0.05 31.595765 70.294476 -0.378824 6.699753

Result for α = 0.10 31.075751 69.774462 -0.401863 7.113128

Result for α = 0.15 30.068495 68.767206 -0.407647 7.990077
Table 1
Comparison table for Case 1.

σ(e) =

√√√√∑s [µ(e) − e(s)]2

(N × M)
. (27)
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(a) σ = 18, α = 0.05. (b) σ = 18, α = 0.10. (c) σ = 18, α = 0.15.

(d) σ = 25, α = 0.05. (e) σ = 25, α = 0.10. (f) σ = 25, α = 0.15.

Fig. 4. Results for synthetic image - Case 1.

From the results presented in Table 1, we can observe that this method actu-
ally removes noise from the polluted image. When we analyze the statistical
indicators, we observe that the mean of the error was reduced and the standard
deviation σ was improved in ≈ 70% in all cases.

As a second example we present another synthetic image with 256 × 256 pixels,
in this case we also try to reproduce a medical image but with more compli-
cated structures. Also the different structures present a smaller difference in
their intensities. In this case 4 different regions are present: bg, intensity =
30; r1, intensity = 50; r2, intensity = 100; r3, intensity = 150 (Fig. 5). As in
the former case, this image was also polluted with different levels of WGN
(σ = 18 for Fig.5(c) and σ = 25 for Fig.5(d)).

Following the same steps as in the first case, these images were processed
using the proposed algorithm. Again, the same values for parameter α were
tested. In Fig. 6 are presented the restored images for σ = 18 (first row) and
σ = 25 (second row). In the columns are presented the images obtained for
the different values of the parameter α (0.05, 0.10 and 0.15 from left to right
respectively).

Again, the error was analyzed statistically and the results are presented in
Table 2. In particular the statistical indicators point out an interesting im-
provement: the mean error remains close to 0 and the standard deviation σ
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(a) Synthetic image regions. (b) Synthetic image.

(c) Synthetic image with
σ = 18 WGN.

(d) Synthetic image with
σ = 25 WGN.

Fig. 5. Synthetic image - Case 2.

PSNR SNR µ(e) σ(e)

WGN with σ = 18 23.211969 60.561232 -0.168213 17.616593

Result for α = 0.05 33.723066 71.072329 0.330505 5.242344

Result for α = 0.10 33.064043 70.413307 0.327698 5.657319

Result for α = 0.15 32.427279 69.776542 0.363342 6.087008

WGN with σ = 25 20.473755 57.823018 -0.940674 24.128072

Result for α = 0.05 31.515300 68.864563 -0.431549 6.759146

Result for α = 0.10 30.561596 67.910859 -0.396591 7.548520

Result for α = 0.15 29.791046 67.140309 -0.364975 8.252082
Table 2
Comparison table for Case 2.

was improved in ≈ 65%.

As mentioned above, the topological derivative is used in an optimization
process where we are interested in finding the optimal distribution for the
diffusivity coefficients such that, in the presence of noise, will preserve image
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(a) σ = 18, α = 0.05. (b) σ = 18, α = 0.10. (c) σ = 18, α = 0.15.

(d) σ = 25, α = 0.05. (e) σ = 25, α = 0.10. (f) σ = 25, α = 0.15.

Fig. 6. Results for synthetic image - Case 2.

details eliminating noise. This process is stopped when the cost functional
stabilizes and its variation in two consecutive iterations is smaller than a
certain tolerance (denoted by tol). Fig. 7 presents the evolution of the cost
functional as a function of iterations. As the number of iterations increase, the
cost functional value stabilizes. This behavior also indicates that the restored
image is stable with the number of iterations and no further degradation occurs
as usually happens when nonlinear isotropic/anisotropic diffusion algorithms
are used.

4 Image Segmentation via Topological Derivative

Medical imaging data provides information otherwise unavailable for clinical
specialists to analise. Quantitative information such as organ size and shape
can be extracted from these images in order to support different activities, as
surgical planning, disease diagnosis and monitoring among others. The first
step in this process is to identify the different tissues and anatomical structures
present in the image. This process, called segmentation, subdivides an image
into its constituent regions or objects and must be accurate and repeatable
in order to be clinically useful. On the other hand, the level to which the
subdivision is done depends on the particular application.
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25.
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(c) Cost function for Case 2 and σ =
18.
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(d) Cost function for Case 2 and σ =
25.

Fig. 7. Cost function for the restoration problem (cost function value vs. iteration
number).

Classical image segmentation techniques are based on two basic pixel char-
acteristics: discontinuities and similarities. Many of this classical techniques
(e.g., multiple thresholds, region growing, morphologic filtering and others
(Jain, 1989; Gonzalez and Woods, 2001)) have been applied to try to solve
this problem with variable outcomes (Suri et al., 2001; Hohne et al., 1990).
Such techniques tend to be unreliable when segmenting a structure that is sur-
rounded by others with similar image intensity (e.g., low-contrast structures).

More sophisticated techniques, like Level Sets, use powerful numerical compu-
tations for tracking the evolution of moving surface fronts. These techniques
are based on computing linear/nonlinear hyperbolic equation solutions for
the appropriate equations of motion. An initial approximation of the solu-
tion (seed) evolves until it gets the limits of the region of interest. In this
case user interaction is needed to introduce one or more seeds for the algo-
rithm to evolve from (Sethian, 1999; Malladi and Sethian, 1997). Although
this approach brings good results, the computational cost may become too
high. A wide variety of works present the Active Contour (also called Snakes)
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technique as the most robust for medical image segmentation (Xu et al., 2000,
1999; Li et al., 1995; Boscolo et al., 2002). With this technique good results are
obtained, in particular for brain MRI segmentations. In this case input data
must be pre-processed to extract spurious structures before the segmentation
algorithm is started.

By means of Markov Random fields, in Held et al. (1997) and Zhang et al.
(2001) fully automatic 3D-segmentation techniques especially designed for
brain MRI images are described. These techniques capture three main spa-
tial features of MRI images: non-parametric distribution of tissue intensi-
ties, neighborhood correlations and signal inhomogeneities. Once these fields
are calculated (using suitable probabilistic models), an iterative optimization
algorithm (Iterated Conditional Modes, Simulated Annealing, Expectation-
Maximization, etc.) is used to recalculate them until convergence is achieved.
Again, the limitation of this technique is its excessive computational cost.

In the next section we propose a novel image segmentation method based on
the topological derivative. To this end an appropriate functional associated to
the cost of a specific segmentation is proposed and the corresponding topo-
logical derivative is calculated in order to use it in a segmentation algorithm
called DT segmentation continuum approach. As was done in image restora-
tion, in this section we also develop a discrete version of this method. Finally,
several image segmentations with different levels of noise are presented and
compared to classical methods in order to show the performance and capabili-
ties of these two new methods (for a more exhaustive comparison see Larrabide
et al. (2006)).

4.1 DT image segmentation - Continuum approach

In this work the following cost functional is adopted (Larrabide et al., 2006)

J (ϕ) =
1

2

∫
Ω
k∇ϕ · ∇ϕ dΩ +

1

2

∫
Ω

(ϕ − (v − u))2 dΩ, (28)

where the diffusivity tensor k could be adopted as k = k0I (isotropic and
homogeneous tensor) or, tensor k could be taken equal to the one obtained
using the restoration algorithms proposed in Section 3. Also in the above
expression v ∈ V is the image data, u ∈ U is the segmented image and V and
U are defined respectively by

V :={w ∈ L2(Ω) : ws constant at s-pixel/voxel level}, (29)

U :={u ∈ V : u(x) ∈ C,∀x ∈ Ω}. (30)
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The set C characterizes the number of classes (Nc) for which the original image
v will be segmented, and is defined as

C:={ci ∈ R : i = 1...Nc} , (31)

where ci is the intensity associated to the ith class. Moreover, ϕ is the solution
of the following variational problem: Find ϕ ∈ H1(Ω) such that a(ϕ, η) = l(η) ∀η ∈ H1(Ω),

ϕ ∈ H1(Ω)

with a(·, ·) : H1(Ω) × H1(Ω) → R and l(·) : H1(Ω) → R

a(ϕ, η) :=
∫
Ω
k∇ϕ · ∇η dΩ +

∫
Ω

ϕη dΩ, (32)

and

l(η) := β
∫
Ω
(v − u)η dΩ. (33)

To identify a class different alternatives can be used. The values defined for the
classes will depend on the specific application of the segmentation. Therefore,
we will obtain different results according to the criteria adopted to define the
set of classes C (for instance, mean intensity inside a region). Other image in-
formation can be used to determine this values. In the case of CT the brighter
intensities represent bone and darker areas represent soft tissues as inner or-
gans or muscles. This a priori information can be used to determine classes
values.

Associated to ϕ is defined the function ϕε that is the solution of the same
variational formulation but now defined on the perturbed problem. The per-
turbation is introduced by changing the segmented image u with a new one
uT which is identical to u at every point of the domain Ω except in the small
region Bε centered at point x̂ ∈ Ω. In Bε, uT assumes one of the values ci ∈ C.
Then, the perturbed cost functional becomes

Jε(ϕε) =
1

2

∫
Ω

(ϕε − (v − uT ))2 dΩ +
1

2

∫
Ω
k∇ϕε · ∇ϕε dΩ, (34)

where the field ϕε is the solution of the perturbed variational problem: Find
ϕε ∈ H1(Ω) such that  a(ϕε, η) = lε(η) ∀η ∈ H1(Ω),

ϕε ∈ H1(Ω)

with a(·, ·) : H1(Ω) × H1(Ω) → R defined as before and lε(·) : H1(Ω) → R
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defined as

lε(η) = β
∫
Ω
(v − uT )η dΩ. (35)

The associated adjoint problem is given by: Find pε ∈ H1(Ω) such that

 a(pε, η) = −
〈

∂
∂ϕε

Jε(ϕε), η
〉

∀η ∈ H1(Ω),

pε ∈ H1(Ω)

Is easy to verify that

pε =
(1 − β)

β
ϕε. (36)

Using topological shape sensitivity analysis, the topological derivative for this
problem is computed (Larrabide et al., 2006). In this case, the DT (x̂) is given
by

DT (x̂) =
1

2
(ci − u) [(ϕ (x̂) − (v − u)) + (ϕ(x̂) − (v − ci)) +

+ 2 (1 − β) ϕ (x̂)] ∀x̂ ∈ Ω. (37)

and the topological asymptotic expansion reads

J (ϕε) = J (ϕ) + f(ε)DT (x̂) + o(f(ε)). (38)

Then, introducing a perturbation at points where DT is negative the cost func-
tional will be decreased. Using this information, the Algorithm 2 (continuum
approach) for image segmentation is proposed.

Algorithm 2 Image segmentation based on the topological derivative DT

Require: An input image v ∈ L2(Ω), the set of classes C(Ω), an initial guess
u0 ∈ U and the parameters β and k

Ensure: The segmented image u∗ ∈ L2(Ω)
while ∃ DT < 0 do

solve the variational problem (32) to obtain ϕn,
compute DT at each point x̂ ∈ Ω
if min

ī
{DT ((x̂)), i = 1, . . . , Nc} < 0 then

u(x̂) = cī

end if
make n = n + 1 and un+1 = u,

end while
u∗ = un+1
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4.2 A fully discrete DT based approach

In this work is proposed an alternative segmentation algorithm based on a
simplification of the former idea. As we will show, for the discrete case it is
not necessary to compute the field ϕ to obtain the topological derivative.

In fact, taking β = 0 in Eq.(32) we obtain the trivial solution ϕ ≡ 0 for any
segmented image u ∈ U . In this case also the cost functional J (ϕ) reduces to
a functional J (·) : U → R and given by

J (u) =
∫
Ω
(v − u)2 dΩ (39)

With this in mind, let us consider a two-dimensional image 3 characterized by
a set of M × N pixels s with Ω = ∪sωs. For each pixel s we denote by vs

and by u∗s the intensity of the function v ∈ Vd and of the segmented image
u∗ ∈ Ud respectively and where the sets Vd ⊂ V and Ud ⊂ U are defined as

Vd := {v; vs constant in ωs; s = 1...M × N} , (40)

Ud := {u; us ∈ C; s = 1...M × N} . (41)

Furthermore, the following cost functional is adopted

Fd(us) = θJ d(us) + (1 − θ)Bd(us) , with θ ∈ (0, 1] ⊂ R , (42)

where the first term of the cost function Fd(us), denoted by J d(us), is asso-
ciated to the distance between the input image pixels intensities vs and the
segmented image pixels intensities us. This term can be interpreted as the dis-
crete version of the functional given by Eq.(39). The second term Bd(us) can
be seen as a regularization functional that measures (and penalizes) the in-
terface (boundary) length between different regions. These terms respectively
take the form

J d(us) =
∑
s

(vs − us)2 and Bd(us) =
1

4n

∑
s

∑
p={w,e,n,s}

χ(us, up) , (43)

where n = 2 (n = 3) for 2-dimensional (3-dimensional) images and χ(us, up)
is a characteristic function of the boundary that the pixel s shares with the
neighbor pixel p and is defined as taking the value 1 (one) when us 6= up and
0 otherwise. The θ parameter controls the contribution of each term (J d(us)
and Bd(us)) to the cost function Fd. When we are interested in classifying
pixels of the image in homogeneous regions, the size of the interfaces between

3 Extending this idea to 3D is straightforward.
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both regions will produce a higher value of the cost function. This is done by
setting θ < 1.

4.3 Topological Derivative Computation

In order to compute the topological derivative, we need to perturb the cost
function at a given pixel s. This is done by changing the class of pixel s from
us to ci. In this way we obtain the perturbed cost functional Fd(us

T ) given by

Fd(us
T ) = θJ d(us

T ) + (1 − θ)Bd(us
T ) , (44)

where J d(us
T ) and Bd(us

T ) can be written as

J d(us
T ) =J d(us) − (vs − us)2 + (vs − ci)

2,

Bd(us
T ) =Bd(us) − 1

4n

∑
p={w,e,n,s}

(χ(us, up) − χ(ci, u
p))

for i = 1 · · ·Nc. (45)

where us
T is equal to us everywhere but in the pixel s it assumes the value ci.

Then, the total variation of the functional Fd will be denoted by DT and is
given by the difference J d(us

T ) − J d(us), that is

DT (us
T ) = θ

[
(vs − us

T )2 − (vs − us)2
]
+ (1 − θ)

1

4n

∑
p={w,e,n,s}

[χ(us
T , up) − χ(us, up)]

for us
T = ci, i = 1 · · ·Nc. (46)

Moreover, at each pixel s the perturbation us
T will be selected such that pro-

duces the minimum value for the total variation at that pixel.

4.4 An Image Segmentation Algorithm

Using the information given by the total variation, a fully discrete topological
derivative segmentation algorithm for 2D images (Algorithm 3) is proposed in
this work. The algorithm inputs are the 2D image v ∈ Vd to be segmented and
a set of classes in witch image pixels will be classified. The algorithm output
is ū∗ ∈ Ud. As mentioned before, the topological derivative can be used as
a descent criterion in an optimization process. The sufficient local minimum
condition is given by

DT (us
T ) ≥ 0 ∀ s = 1, . . . , N × M (47)
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Algorithm 3 Image segmentation algorithm based on the Topological Deriv-
ative
Require: A 2D image v ∈ Vd, the set of classes C, θ ∈ (0, 1] and an initial

guess u0 ∈ Ud

Ensure: The segmented image ū∗ ∈ Ud

normalize the image and classes values to [0, 1]
while ∃ T and s such that DT (us

T ) < 0 do
for every pixel s do

for every class ci ∈ C do
compute DT (us

T ) following (Eq. 46)
end for
if min

T̄
{DT (us

T ), T = 1, . . . , Nc} < 0 then

us = cī

end if
end for

end while
ū∗s = us, s = 1 . . . N × M

Depending on the case, the stop condition could be substituted by a criteria
associated to the behavior of the cost functional, i.e., if in two consecutive
iterations, the cost function decreased less than a certain given tolerance, the
algorithm stops.

In some cases (e.g., strong noise), changing all the pixels whose topological
derivative is negative, an oscillating behavior was observed. This problem was
solved using the same technique shown in Algorithm 1. That is, only a percent
of the pixels whose topological derivative is negative is taking in each step. This
simple technique stabilizes the algorithm and produces a convergent result in
all the cases.

4.5 Experimental Results

The quality of the corresponding segmented images was quantified using the
following metrics (Alonso et al., 2004; Zijdenbos et al., 1994)

• Tanimoto index: This index is calculated as

I(A1, A2) =
n(A1 ∩ A2)

n(A1 ∪ A2)
. (48)

• Overlap index: Is defined as (Zijdenbos et al., 1994):

O(A1, A2) = 2 · n(A1 ∩ A2)

n(A1) + n(A2)
. (49)
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• Mass Center Deviation (MCD): Is computed as the distance from the
exact center of mass of a particular region and the corresponding region
in the segmented image. This computation includes all the pixels in the
segmented image that were classified in that region.

• Distance between borders (DBB): This index is given by

D(C1, C2) =

np1∑
i=1

d(xi
1, C2) +

np2∑
i=1

d(xi
2, C1)

(np1 + np2)
(50)

where d(x, C) means the distance (in pixels) of the point x to the curve C, C1

and C2 are the boundaries of the original and segmented region respectively,
xi

1 and xi
2 denote arbitrary points on the boundaries C1 and C2, finally

np1 and np2 are the number of points which characterize the respective
boundaries.

The DT methods (Continuous and Discrete) where compared to other well
established segmentation methods (Bootstrap, Fuzzy C-Means and K-means)
usually used to segment medical images. In Figure 8 are presented the compar-
isons for the mentioned methods and indexes. As can be seen, only K-means
is able to keep up with the results of both DT methods.

Furthermore, using the Case 1 and Case 2 images shown in Section 3 the
behavior of the DT discrete segmentation method was analyzed for differ-
ent alternatives in the noise roving process. The considered alternatives are:
no processing (NPP), 3 iterations (ISPP3), 6 iterations (ISPP6) of isotropic
smoothing (convolution with a 5 × 5 gaussian kernel), and finally the DT

Restoration method was used to remove noise (DTPP, with α = 0.05, 0.10, 0.15).
The values used to characterize the classes were exactly the intensities of the
corresponding regions in the original synthetic image. For Case 1 the classes
were bg, intensity = 30; c1, intensity =70; c2, intensity = 120; c3, intensity =
170 and c4, intensity = 210 (Fig. 3). The corresponding segmented images are
presented in Fig. 9.

As before, the quality of the segmentation was analyzed using the indexes
presented above. In particular, Table 3 presents the results of the DT Discrete
for Case 1 image with the same level of noise yet considered (σ = 18 and σ =
25). Moreover, Fig. 9 presents the segmented images. In all cases our method
together with the DTPP noise removal has shown good results.

For Case 2 the classes were bg, intensity = 30; c1, intensity = 50; c2, intensity =
100 and c3, intensity = 150. As in the case presented before, 6 different alterna-
tives where studied (NPP, ISPP3, ISPP6 and DTPP, with α = 0.05, 0.10, 0.15)
and in Fig. 10 the obtained segmented images are presented. The quality of
the segmentations using the mentioned indexes is presented in Table 4 and the
obtained segmentations are shown in Fig. 10. Again, the DT Discrete method
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Class MCD Overlap Tanimoto DBB

NPP, σ = 18 bg 0.063243 0.995661 0.994204 2.075105

c1 4.231997 0.896082 0.814241 1.132450

c2 0.044466 0.998734 0.998277 0.057111

c3 4.544380 0.916031 0.861244 0.050032

c4 0.233750 0.993105 0.990374 0.238770

ISPP3, σ = 18 bg 0.165457 0.879011 0.844935 2.063228

c1 9.761395 0.332429 0.200984 0.900806

c2 0.066079 0.927756 0.892451 0.715043

c3 19.784325 0.106437 0.056640 1.058168

c4 0.647279 0.000000 0.000000 1.834747

ISPP6, σ = 18 bg 0.196921 0.821802 0.775725 3.094668

c1 10.422243 0.200105 0.113623 1.296074

c2 0.055267 0.898263 0.851011 1.028865

c3 20.920997 0.056616 0.029343 1.484937

c4 7.043816 0.000000 0.000000 10.256423

DTPP, α = 0.05, σ = 18 bg 0.039016 0.998967 0.998623 0.896736

c1 2.445294 0.840691 0.784946 0.455503

c2 0.028159 0.996661 0.994840 0.076508

c3 8.908987 0.701595 0.574627 0.066256

c4 0.088697 0.981293 0.975212 0.045464

DTPP α = 0.10, σ = 18 bg 0.072224 0.998450 0.997934 1.306487

c1 4.348604 0.925532 0.867110 0.924401

c2 0.015530 0.996873 0.995693 0.333505

c3 5.870391 0.876847 0.798206 0.192099

c4 0.195792 0.993330 0.991051 0.071340

DTPP α = 0.15, σ = 18 bg 0.125568 0.993891 0.988305 4.425880

c1 5.543596 0.000000 0.000000 0.633329

c2 0.067099 0.993930 0.991763 0.678158

c3 6.392879 0.794872 0.661922 0.525449

c4 0.226113 0.984548 0.979353 0.162338

NPP, σ = 25 bg 0.137028 0.980815 0.974099 7.192250

c1 10.198286 0.512255 0.360967 4.887185

c2 0.051609 0.980622 0.973561 1.723486

c3 15.840950 0.690763 0.540881 1.019918

c4 0.367261 0.977055 0.968236 0.910857

ISPP3, σ = 25 bg 0.190733 0.874346 0.839197 2.153920

c1 10.190951 0.327804 0.197442 0.941402

c2 0.085705 0.928545 0.893469 0.710956

c3 19.163325 0.109000 0.058037 1.040971

c4 0.954842 0.000000 0.000000 1.835030

ISPP6, σ = 25 bg 0.211291 0.814928 0.767575 3.210187

c1 10.874960 0.229804 0.131157 1.317803

c2 0.125370 0.904393 0.858668 0.980922

c3 19.937577 0.051317 0.026572 1.427957

c4 8.164308 0.000000 0.000000 7.443467

DTPP α = 0.05, σ = 25 bg 0.093383 0.995172 0.993516 2.781506

c1 8.695588 0.692029 0.589506 1.667984

c2 0.119534 0.987511 0.982133 0.228436

c3 17.063908 0.459215 0.308943 0.145423

c4 0.191939 0.926130 0.903322 0.199796

DTPP α = 0.10, σ = 25 bg 0.086234 0.994540 0.992600 3.307148

c1 7.928047 0.726968 0.609551 2.381302

c2 0.051243 0.988749 0.984102 1.003429

c3 13.530365 0.636183 0.486322 0.638370

c4 0.130446 0.965860 0.953611 0.143955

DTPP α = 0.15, σ = 25 bg 0.099157 0.992988 0.990256 4.545317

c1 6.611247 0.644654 0.511222 3.158723

c2 0.056550 0.984811 0.979095 1.484264

c3 17.314316 0.615970 0.461538 0.928605

c4 0.321158 0.969213 0.958562 0.163003

Table 3
Comparison table for segmentation results - Case 1.
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Fig. 8. Curves for the indexes used to compare the methods. All plots are organized
as index value for y coordinate and noise variance for x coordinate. The variances
varies from 0.01 to 0.1 in 0.01 increments (for the image intensities normalized to
the interval [0, 1]).

performs better when the TDPP preprocessing is adopted.

Finally and for Case 1, the behavior of the cost functional given by Eq. (42) as
a function of iterations is presented in Fig. 11 (WGN with σ = 18 and σ = 25
in Fig. 11(a) and 11(b) respectively).

5 Conclusions

In this paper was presented a new area of application for the topological
derivative: image processing, in particular to image restoration and segmenta-
tion. Four algorithms DT continuum approach and DT fully discrete for image
restoration and image segmentation are proposed. These algorithms are based
on computing the topological derivative for an appropriate cost functional and
using this information to characterize the perturbation to be inserted. This
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(a) σ = 18, NPP. (b) σ = 18, ISPP3. (c) σ = 18, ISPP6.

(d) σ = 18, DTPP with

α = 0.05.

(e) σ = 18, DTPP with

α = 0.10.

(f) σ = 18, DTPP with

α = 0.15.

(g) σ = 25, NPP. (h) σ = 25, ISPP3. (i) σ = 25, ISPP6.

(j) σ = 25, DTPP with

α = 0.05.

(k) σ = 25, DTPP with

α = 0.10.

(`) σ = 25, DTPP
with α = 0.15.

Fig. 9. Results for synthetic image - Case 1.

novel approach gives the appropriate diffusivity tensor at any point of the
domain that can be used for noise elimination and gives the most appropriate
pixel classification during the segmentation process.

The algorithms were tested with synthetic images degraded with different noise
levels and compared with methods already used for these issues. In all cases
the proposed algorithms are able to produce excellent results even for images
degraded with strong noise where the others methods generally fails. Finally,
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(a) σ = 18, NPP. (b) σ = 18, ISPP3. (c) σ = 18, ISPP6.

(d) σ = 18, DTPP with α =

0.05.

(e) σ = 18, DTPP with α =

0.10.

(f) σ = 18, DTPP with α =

0.15.

(g) σ = 25, NPP. (h) σ = 25, ISPP3. (i) σ = 25, ISPP6.

(j) σ = 25, DTPP with α =

0.05.

(k) σ = 25, DTPP with α =

0.10.

Fig. 10. Results for synthetic image - Case 2.

concerning the convergence issues for image processing algorithms based on
topological derivative, we refer the reader to Belaid et al. (2005, 2007).
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Class MCD Overlap Tanimoto DBB

NPP, σ = 18 bg 0.498795 0.925491 0.898359 24.988116

c1 2.230574 0.782898 0.686635 11.357807

c2 0.070907 0.989726 0.984340 0.302543

c3 0.214670 0.977240 0.967281 0.079201

ISPP3, σ = 18 bg 0.447994 0.920598 0.896860 2.430799

c1 1.717762 0.895116 0.817590 0.763943

c2 0.396328 0.941890 0.894251 0.519422

c3 0.635437 0.560402 0.487152 0.714340

ISPP6, σ = 18 bg 0.596886 0.891943 0.860933 3.367975

c1 2.186333 0.856791 0.759035 0.987164

c2 0.698385 0.896412 0.815712 0.950743

c3 2.384734 0.000000 0.000000 3.709368

DTPP, α = 0.05, σ = 18 bg 0.028543 0.990160 0.986687 13.555566

c1 0.204234 0.961343 0.937861 5.178683

c2 0.377372 0.980026 0.968986 0.306938

c3 1.234920 0.943759 0.920871 0.219132

DTPP α = 0.10, σ = 18 bg 0.041923 0.987798 0.982859 16.180620

c1 0.148215 0.949456 0.921411 5.628081

c2 0.311331 0.976744 0.965784 0.526392

c3 0.851640 0.949262 0.924965 0.419549

DTPP α = 0.15, σ = 18 bg 0.101573 0.983861 0.977126 18.301397

c1 0.707214 0.927620 0.889621 6.842766

c2 0.098943 0.973103 0.961079 0.853432

c3 0.172514 0.953219 0.929760 0.651386

NPP, σ = 25 bg 1.178724 0.847396 0.796283 26.726824

c1 4.960136 0.511747 0.395506 13.859100

c2 0.192516 0.946047 0.922430 2.105597

c3 0.530470 0.934613 0.898838 1.423971

ISPP3, σ = 25 bg 0.520017 0.914074 0.888571 4.122567

c1 1.884506 0.877452 0.791894 1.313068

c2 0.452387 0.931905 0.881464 0.558374

c3 1.036228 0.553777 0.478422 0.760443

ISPP6, σ = 25 bg 0.660702 0.882783 0.849587 3.672161

c1 2.187299 0.830688 0.725929 1.127844

c2 0.895636 0.891374 0.809281 0.997886

c3 4.484137 0.000000 0.000000 2.595335

DTPP α = 0.05, σ = 25 bg 0.112122 0.986012 0.980894 15.565098

c1 0.561304 0.942178 0.909935 7.348805

c2 0.431706 0.963539 0.945628 1.085454

c3 1.242042 0.921996 0.887155 0.403577

DTPP α = 0.10, σ = 25 bg 0.084423 0.982120 0.975029 18.493928

c1 0.675668 0.920735 0.879487 8.488288

c2 0.508348 0.949835 0.927024 1.770457

c3 1.148880 0.912646 0.872428 0.827229

DTPP α = 0.15, σ = 25 bg 0.064728 0.976656 0.967037 21.434197

c1 0.475470 0.885048 0.831336 9.997039

c2 0.509805 0.934349 0.905783 2.551882

c3 1.186147 0.901604 0.854825 1.333364

Table 4
Comparison table for segmentation results - Case 2.
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Fig. 11. Cost function for Case 1 with σ = 18 and 25, with α = 0.05 (cost function
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