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Abstract. The topological derivative provides the sensitivity of a given cost function with
respect to the insertion of a hole at an arbitrary point of the domain. Classically, this derivative
comes from the second term of the topological asymptotic expansion, dealing only with infinites-
imal holes. However, for practical applications, we need to insert holes of finite size. Therefore,
we consider one more term in the expansion which is defined as the second order topological
derivative. In order to present these ideas, in this work we apply the Topological-Shape Sen-
sitivity Method as a systematic approach to calculate first as well as second order topological
derivative for the Poisson’s equations, taking the total potential energy as cost function and
the state equation as constraint. Furthermore, we also study the effects of different boundary
conditions on the hole: Neumann and Dirichlet (both homogeneous). Finally, we present some
numerical experiments showing the influence of the second order topological derivative in the
topological asymptotic expansion, which has two main features: it allows us to deal with hole
of finite size and provides a better descent direction in optimization process.

1. Introduction

The topological derivative provides the sensitivity of a given cost function with respect to
the insertion of an infinitesimal hole at an arbitrary point of the domain [4, 5, 19, 23]. This
derivative has been used as a descent direction to solve several problems, among others: topology
optimization and inverse problems [1, 2, 7, 8, 9, 10, 16, 20, 22]. Classically, the topological
derivative comes from the second term of the topological asymptotic expansion, dealing only
with infinitesimal holes. However, for practical applications, we need to insert holes of finite size.
Therefore, as a natural extension of the topological derivative concept, we can consider higher
order terms in the expansion. In particular, we define the next one as the second order topological
derivative. This term provides a more accurate estimation for the size of the holes and also it
may be used to improve the optimality conditions given by the first order topological derivative
(see, for instance, [4]). These features are essential in the context of topology optimization and
inverse problems, for instance.

In order to present the basic idea, let us consider an open bounded domain Ω ⊂ R
2, with a

smooth boundary ∂Ω and a cost function ψ (Ω). If the domain Ω is perturbed by introducing a
small hole Bε of radius ε at an arbitrary point x̂ ∈ Ω, we have a new domain Ωε = Ω\Bε, whose
boundary is denoted by ∂Ωε = ∂Ω ∪ ∂Bε. From these elements, the topological asymptotic
expansion of the cost function may be expressed as

ψ(Ωε) = ψ(Ω) + f1(ε)DTψ + f2(ε)D
2
Tψ +R(f2(ε)) , (1.1)

where f1(ε) and f2(ε) are positive functions that decreases monotonically such that f1(ε) → 0,
f2(ε) → 0 when ε→ 0+ and

lim
ε→0

f2(ε)

f1(ε)
= 0 , lim

ε→0

R(f2(ε))

f2(ε)
= 0 . (1.2)

Dividing eq. (1.1) by f1(ε) and after taking the limit ε→ 0 we obtain

DTψ = lim
ε→0

ψ(Ωε)− ψ(Ω)

f1(ε)
, (1.3)

where term DTψ is classically defined as the (first order) topological derivative of ψ. In addition,
if we divide eq. (1.1) by f2(ε) and after taking the limit ε → 0, we can recognize term D2

Tψ as
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the second order topological derivative of ψ, which is given by

D2
Tψ = lim

ε→0

ψ(Ωε)− ψ(Ω)− f1(ε)DTψ

f2(ε)
. (1.4)

In this work we apply the Topological-Shape Sensitivity Method developed in [19] as a sys-
tematic approach to calculate first as well as second order topological derivative for the Poisson’s
equations, taking the total potential energy as cost function and the state equation as constraint.
Furthermore, we also study the effects of different boundary conditions on the hole: Neumann
and Dirichlet (both homogeneous). Finally, we present some numerical experiments showing
the influence of the second order topological derivative in the topological asymptotic expansion,
which has two main features: it allows us to deal with hole of finite size and provides a better
descent direction in optimization process.

2. Topological-Shape Sensitivity Method

In [19] was proposed an alternative procedure to calculate the (first order) topological de-
rivative called Topological-Shape Sensitivity Method. This approach makes use of the whole
mathematical framework (and results) developed for shape sensitivity analysis (see, for instance,
the pioneering work of Murat & Simon [18]). The main result obtained in [19] is given by the
following Theorem:

Theorem 1. Let f1(ε) be a function chosen in order to 0 < |DTψ| < ∞, then the (first order)
topological derivative given by eq. (1.3) can be written as

DTψ = lim
ε→0

1

f ′1(ε)

d

dε
ψ (Ωε) , (2.1)

where the derivative of the cost function with respect to the parameter ε may be seen as its
classical shape sensitivity analysis.

A remarkable fact concerning the Topological-Shape Sensitivity Method is that it can be
easily extended to calculate higher order topological derivatives. In particular, following the
same idea presented in theorem 1, it is straightforward to show that:

Theorem 2. Let f2(ε) be a function chosen in order to 0 <
∣∣D2

Tψ
∣∣ <∞, then the second order

topological derivative is given by

D2
Tψ = lim

ε→0

1

f ′2(ε)

(
d

dε
ψ (Ωε)−f

′
1(ε)DTψ

)
. (2.2)

In general the cost function ψ(Ω) := JΩ(u) may depends explicitly and implicitly on the
domain Ω. This last dependence comes from the solution of a variational problem associated to
Ω: find u ∈ U(Ω), such that

a (u,η) = l (η) ∀η ∈ V(Ω) , (2.3)

where U(Ω) and V(Ω) respectively are the sets of admissible functions and admissible variations
defined on Ω and a (·, ·) : U × V → R is a bilinear form and l (·) : V → R is a linear functional,
which will be characterized later according to the problem under analysis. Likewise, the state
equation written in the original configuration Ω (without hole) must also be satisfied in the
perturbed configuration Ωε (with the introduction of a hole at point x̂ ∈ Ω). Therefore, we have
the following variational problem associated to Ωε: find uε ∈ Uε(Ωε), such that

aε (uε,η) = lε (η) ∀η ∈ Vε(Ωε) , (2.4)

where aε (·, ·) : Uε × Vε → R, lε (·) : Vε → R and Uε(Ωε) and Vε(Ωε) respectively are the sets
of admissible functions and admissible variations defined on Ωε, which will also be defined later
according to the problem under analysis, the boundary condition on the hole and also the order
of the topological derivative which is being calculated.

Formally, the shape derivative of the cost function ψ(Ωε) := JΩε
(uε) in relation to the pa-

rameter ε reads {
Calculate :

d

dε
JΩε

(uε)

Subject to : aε (uε, η) = lε(η) ∀ η ∈ Vε(Ωε)
. (2.5)
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In general, this derivative can be expressed as

d

dε
JΩε

(uε) =

∫

∂Ωε

Σεn · vdS , (2.6)

where n is the outward normal unit vector and Σε can be interpreted as a generalization of the
Eshelby energy-momentum tensor [6, 13, 24]. As a consequence, tensor Σε plays a central role
in the Topological-Shape Sensitivity Method and should be clearly identified according to the
problem under consideration. In addition, the shape change velocity v may be defined on the
boundary ∂Ωε as [25, 3] {

v = −n on ∂Bε

v = 0 on ∂Ω
. (2.7)

Then, only the part of the boundary ∂Ωε associated to ∂Bε is submitted to a perturbation (a
uniform expansion of the ball Bε in this case). Thus, the shape derivative of the cost function,
given by eq. (2.6), results in an integral on the boundary ∂Bε. Therefore, considering theorem
1, the (first order) topological derivative can be written as

DTψ = − lim
ε→0

1

f ′1(ε)

∫

∂Bε

Σεn · ndS . (2.8)

Analogously, from theorem 2, the second order topological derivative results in

D2
Tψ = − lim

ε→0

1

f ′2(ε)

(∫

∂Bε

Σεn · ndS + f ′1(ε)DTψ

)
. (2.9)

In order to calculate the limit ε→ 0, we need to make an asymptotic analysis to estimate the
behavior of the solution in the neighborhood of the hole.

3. Topological Derivative for Poisson’s Problem

In this section we will calculate the topological derivative for steady-state heat conduction
considering homogeneous Neumann and Dirichlet boundary conditions on the hole and adopting
the total potential energy as cost function.

The variational formulation of the problem associated to the original domain Ω can be stated
as: find u ∈ U (Ω) , such that

∫

Ω
∇u · ∇ηdV +

∫

ΓN

qηdS = 0 ∀η ∈ V (Ω) , (3.1)

where U (Ω) and V (Ω) are respectively defined, for n choosing in order to ensure a sufficient
regularity of function u, as

U (Ω) := {u ∈ Hn (Ω) : u|ΓD
= ϕ}, V (Ω) := {η ∈ Hn (Ωε) : η|ΓD

= 0} , (3.2)

In addition, ∂Ω =ΓD ∪ ΓN with ΓD ∩ ΓN =, when ΓD and ΓN are Dirichlet and Neumann
boundaries, respectively. Thus ϕ is a Dirichlet data on ΓD and q is a Neumann data on ΓN ,
both assumed to be smooth enough.

Now, let us state the variational problem associated to the perturbed domain Ωε, that is: find
uε ∈ Uε (Ωε) , such that

∫

Ωε

∇uε · ∇ηεdV +

∫

ΓN

qηεdS = 0 ∀ηε ∈ Vε (Ωε) , (3.3)

where Uε (Ωε) and Vε (Ωε) are given, respectively, by

Uε (Ωε) := {uε ∈ U (Ωε) : α uε|∂Bε
= 0}, Vε (Ωε) := {ηε ∈ V (Ωε) : α ηε|∂Bε

= 0} , (3.4)

with α ∈ {0, 1}. This notation should be interpreted as follows: when α = 1, uε = 0 and ηε = 0
on ∂Bε, and when α = 0, uε and ηε are free on ∂Bε. Therefore, according to the values of α, we
have Dirichlet or Neumann boundary condition on the hole.

As already mentioned, the total potential energy associated to the problem under analysis is
adopted as cost function, that is

ψ(Ωε) = JΩε
(uε) =

1

2

∫

Ωε

|∇uε|
2 dV+

∫

ΓN

quεdS . (3.5)
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Considering the Reynold’s transport theorem and the concept of material derivative of spatial
field (see for instance [12]) the Eshelby tensor Σε is given by

Σε =
1

2
|∇uε|

2
I− (∇uε ⊗∇uε) . (3.6)

The gradient ∇uε defined on the boundary ∂Bε can be decomposed into a normal and tan-
gential components, that is

(∇uε · n)n =
∂uε
∂n

n and (∇uε · t) t =
∂uε
∂t

t , (3.7)

where n and t are respectively the normal and tangential unit vectors, which define a curvilinear
coordinate system on the boundary ∂Bε. Therefore, substituting eq. (3.6) in eqs. (2.8, 2.9) and
after a simple manipulation, we respectively obtain the following results:

DTψ = − lim
ε→0

1

f ′1(ε)

∫

∂Bε

1

2

[(
∂uε
∂t

)2

−

(
∂uε
∂n

)2
]
dS , (3.8)

and

D2
Tψ = − lim

ε→0

1

f ′2(ε)

{∫

∂Bε

1

2

[(
∂uε
∂t

)2

−

(
∂uε
∂n

)2
]
dS + f ′1(ε)DTψ

}
. (3.9)

Finally, in order to calculate the final expression for DTψ and D2
Tψ, we need to know the

behavior of the solution uε in the neighborhood of the hole. Therefore, from an asymptotic
analysis of uε, whose justification is given in Appendix A [11, 15, 17], we can choose functions
f1(ε) and f2(ε) depending on each type of boundary condition on ∂Bε, that allow us to calculate
the limit ε→ 0 in eqs. (3.8, 3.9).

3.1. Neumann boundary condition on the hole. Taking α = 0 in eq. (3.3), we have homo-
geneous Neumann boundary condition on the hole. Then, the following asymptotic expansion
holds (see Appendix A)

uε (x) = u (x) +
ε2

‖x−x̂‖2
∇u (x̂) · (x−x̂) +

ε4

2 ‖x−x̂‖4
∇∇u (x̂) (x−x̂) · (x−x̂) +O(ε2) . (3.10)

In addition, from eq. (3.8), we have

DTψ = − lim
ε→0

1

f ′1(ε)

∫

∂Bε

1

2

(
∂uε
∂t

)2

dS . (3.11)

Thus, considering the expansion given by eq. (3.10) in eq. (3.11), we observe that f1(ε) =
πε2. Then, after computing the limit ε → 0, we get the final expression for the first order

topological derivative, which is given by

DTψ = −∇u (x̂) · ∇u (x̂) ∀x̂ ∈ Ω , for f1(ε) = πε2 . (3.12)

Remark 3. The result given by eq. (3.12) can be continuously extended to the boundary with
homogeneous Neumann condition [21], then

DTψ = −∇u (x̂) · ∇u (x̂) ∀x̂ ∈ ∂Ω , for f1(ε) =
1

2
πε2 . (3.13)

Furthermore, according to eq. (3.9), we have

D2
Tψ = − lim

ε→0

1

f ′2(ε)

[∫

∂Bε

1

2

(
∂uε
∂t

)2

dS + f ′1(ε)DTψ

]
. (3.14)

Taking into account eqs. (3.10, 3.12) in eq. (3.14) and choosing f2(ε) = πε4, we can calculate
limit ε→ 0 to obtain the final expression for the second order topological derivative, that
is

D2
Tψ = −

1

4

(
∇∇u (x̂) · ∇∇u (x̂)−

1

2
tr2∇∇u (x̂)

)
∀x̂ ∈ Ω , for f2(ε) = πε4 , (3.15)

and since ∆u = 0 in Ω, we finally obtain

D2
Tψ =

1

2
det∇∇u (x̂) ∀x̂ ∈ Ω , for f2(ε) = πε4 . (3.16)
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3.2. Dirichlet boundary condition on the hole. Taking α = 1 in eq. (3.3), we have homo-
geneous Dirichlet boundary condition on the hole. Then, the following asymptotic expansion
holds (see Appendix A)

uε (x) = u (x)− u (x̂)

(
1−

log (‖x−x̂‖ /ε)

log (R/ε)

)
+

ε2

‖x−x̂‖2
∇u (x̂) · (x−x̂) +O(ε2) , (3.17)

which is restricted to a ball BR, where R >> ε, with Bε ⊂ BR ⊂ Ω.
According to eq. (3.8), we have

DTψ = lim
ε→0

1

f ′1(ε)

∫

∂Bε

1

2

(
∂uε
∂n

)2

dS . (3.18)

Thus, considering the expansion given by eq. (3.17) in eq. (3.18), we observe that

f1(ε) = −
π

log ε
, and since R >> ε, log (R/ε) ≃ − log ε . (3.19)

Then, after computing the limit ε → 0, we get the final expression for the first order topo-

logical derivative, which is given by

DTψ = u2 (x̂) ∀x̂ ∈ Ω , for f1(ε) = −
π

log ε
. (3.20)

Remark 4. The result given by eq. (3.20) cannot be continuously extended to the boundary. In
fact, the first order topological derivative calculated on the boundary with homogeneous Dirichlet
condition is given by [21]

DTψ = ∇u (x̂) · ∇u (x̂) ∀x̂ ∈ ∂Ω , for f1(ε) =
1

2
πε2 . (3.21)

In addition, from eq. (3.9), we have

D2
Tψ = lim

ε→0

1

f ′2(ε)

[∫

∂Bε

1

2

(
∂uε
∂n

)2

dS − f ′1(ε)DTψ

]
. (3.22)

Taking into account eqs. (3.17, 3.20) in eq. (3.22) and choosing f2(ε) = πε2, we can calculate
limit ε→ 0 to obtain the final expression for the second order topological derivative, that
is

D2
Tψ = ∇u (x̂) · ∇u (x̂) ∀x̂ ∈ Ω , for f2(ε) = πε2 . (3.23)

4. Numerical Experiments

In this work the Topological-Shape Sensitivity Method has been used as a systematic proce-
dure to calculate the first (Theorem 1) and the second (Theorem 2) order topological derivatives
for the Poisson’s problem, taking the total potential energy as cost function and the state equa-
tion as constraint. Furthermore, two boundary conditions on the hole, Neumann and Dirichlet
(both homogeneous), were also considered. Therefore, the topological asymptotic expansions
(eq. 1.1) are given respectively by:

• for homogeneous Neumann boundary condition on the hole (eqs. 3.12 and 3.16)

ψ(Ωε) = ψ(Ω)− πε2∇u (x̂) · ∇u (x̂) +
1

2
πε4 det∇∇u (x̂) +R(ε4) ; (4.1)

• for homogeneous Dirichlet boundary condition on the hole (eqs. 3.20 and 3.23)

ψ(Ωε) = ψ(Ω)−
π

log ε
u2 (x̂) + πε2∇u (x̂) · ∇u (x̂) +R(ε2) . (4.2)

Our main objective with the numerical experiments presented in this section is to compare
the above asymptotic expansions (4.1, 4.2) with the value of the cost functional computed in
the perturbed domain Ωε, considering or not the term associated to the second order topological
derivative. In doing so, it will be possible to obtain, for example, an insight concerning the
influence of the second topological derivative on the estimation of the cost function associated
to the perturbed domain with a hole of finite size.

To this end, we consider a domain Ω = (0, 1)×(0, 1) and a perturbed one Ωε = Ω\Bε, whereBε

has center at point x∗ = (0.5, 0.5) and radius ε ∈ {0.01, 0.02, 0.04, 0.08}. The solutions u and uε,
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respectively associated to Ω and Ωε, are approximated using the standard three node triangular
finite element. In particular and for all cases, the meshes were constructed maintaining the same
number of elements ne = 120 along the boundary of the hole for whichever value of its radius ε.
Since an automatic mesh generation was used, the following expected size he for the elements
was adopted for all meshes

he ≈
2π

ne
‖x∗ − x‖ . (4.3)

Moreover, we firstly compute the topological asymptotic expansion associated to the domain Ω
at the point x∗ for the above values of ε. Then we effectively create the holes with center at
the fixed point x∗ and compute the cost function ψ(Ωε) for each ε. Finally, we compare the
obtained numerical results.

4.1. Example 1. In this example, we have a body submitted to a temperature u = 0 on ΓD1

and ΓD2
, and a heat flux q1 = 1 on ΓN1

and q1 = 2 on ΓN2
, as shown in Fig. (1, where a = 0.2).

In addition, the remainder part of the boundary remains insulated.

W

a
a

a
a

GD
2

GD
1

GN
2

GN
1

x*

Figure 1. example 1.

4.1.1. Neumann boundary condition on the hole. Considering Neumann boundary condition on
the hole, the topological asymptotic expansion obtained for the original domain Ω and for the
perturbed one Ωε are shown in Fig. (2) and Fig. (3) respectively. We observe that f2(ε)D

2
Tψ

does not produce significant changes in the results, at least from the qualitative point of view.
However, this term furnishes an important correction factor for the expansion as clearly depicted
in Fig. (4) showing, at the point x∗, the behavior of the topological asymptotic expansion as a
function of ε. Therefore, when finite holes are introduced, which is an important requirement
in several applications, we can use, for example, this information to estimate:

• the size of the holes, according to the energy to be dissipated;
• the energy when creating holes of finite size.
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(a) f1(0.01)DTψ (b) f1(0.01)DTψ + f2(0.01)D
2

Tψ

(c) f1(0.02)DTψ (d) f1(0.02)DTψ + f2(0.02)D
2

Tψ

(e) f1(0.04)DTψ (f) f1(0.04)DTψ + f2(0.04)D
2

Tψ

(g) f1(0.08)DTψ (h) f1(0.08)DTψ + f2(0.08)D
2

Tψ

Figure 2. topological asymptotic expansion in the original domain Ω.
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(a) f1(0.01)DTψ (b) f1(0.01)DTψ + f2(0.01)D
2

Tψ

(c) f1(0.02)DTψ (d) f1(0.02)DTψ + f2(0.02)D
2

Tψ

(e) f1(0.04)DTψ (f) f1(0.04)DTψ + f2(0.04)D
2

Tψ

(g) f1(0.08)DTψ (h) f1(0.08)DTψ + f2(0.08)D
2

Tψ

Figure 3. topological asymptotic expansion in the perturbed domain Ωε.
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0.00 0.02 0.04 0.06 0.08

-0.2110

-0.2109

-0.2108

-0.2107

-0.2106

-0.2105

Figure 4. estimation of ψ(Ωε) considering first and second order terms of the
topological asymptotic expansion.

Remark 5. Considering a larger variation of ε ∈ {0.08, 0.16, 0.24, 0.32}, we observe in Fig. (5)
that the estimation becomes bad only for very large holes.

0.08 0.16 0.24 0.32

-0.26

-0.25

-0.24

-0.23

-0.22

-0.21

Figure 5. estimation of ψ(Ωε) considering the second order term of the topo-
logical asymptotic expansion for ε ∈ {0.08, 0.16, 0.24, 0.32}.

4.1.2. Dirichlet boundary condition on the hole. For Dirichlet boundary condition on the hole,
the influence of the first and second order term in the topological asymptotic expansion are shown
in Fig. (6) and Fig. (7) for original and perturbed domains respectively. From these figures,
we observe that f2(ε)D

2
Tψ produces significant changes in the results only for the perturbed

domain Ωε (this issue will be discussed again in the next example).
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(a) f1(0.01)DTψ (b) f1(0.01)DTψ + f2(0.01)D
2

Tψ

(c) f1(0.02)DTψ (d) f1(0.02)DTψ + f2(0.02)D
2

Tψ

(e) f1(0.04)DTψ (f) f1(0.04)DTψ + f2(0.04)D
2

Tψ

(g) f1(0.08)DTψ (h) f1(0.08)DTψ + f2(0.08)D
2

Tψ

Figure 6. topological asymptotic expansion in the original domain Ω.
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(a) f1(0.01)DTψ (b) f1(0.01)DTψ + f2(0.01)D
2

Tψ

(c) f1(0.02)DTψ (d) f1(0.02)DTψ + f2(0.02)D
2

Tψ

(e) f1(0.04)DTψ (f) f1(0.04)DTψ + f2(0.04)D
2

Tψ

(g) f1(0.08)DTψ (h) f1(0.08)DTψ + f2(0.08)D
2

Tψ

Figure 7. topological asymptotic expansion in the perturbed domain Ωε.

On the other hand, the behavior at x∗ of the topological asymptotic expansion as a function
of ε is shown in Fig. (9). From this figure it follows that the asymptotic expansion gives a bad
estimation for the cost function for values of ε greater than 0.01. However, Fig. (9) also suggests
that the estimation, even though imprecise, furnishes a good decent direction in optimization
problems.

Remark 6. From a comparison between Fig. (4) and Fig. (9) we observe that the estimation
in the case of Neumann boundary condition on the hole is quite better than the one for Dirichlet
boundary condition. This behavior was expected for this example because the perturbation in the
solution is more severe for the last case than for the first one as can be seen in Fig. (8).
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(a) without hole (b) Neumann b.c. on ∂Bε (c) Dirichlet b.c. on ∂Bε

Figure 8. solutions u and uε for ε = 0.01.

0.00 0.02 0.04 0.06 0.08

-0.22

-0.20

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

Figure 9. estimation of ψ(Ωε) considering first and second order terms of the
topological asymptotic expansion.

4.2. Example 2. In this example, the problem considered can be seen in Fig. (10), where we
have a body submitted to a temperature u = 0 on ΓD and a heat flux given by a piecewise
linear distribution on ΓN , with q1 = 1 and q2 = 2. Further, homogeneous Dirichlet boundary
condition on the holes will be considered. Due to the periodical symmetry of the problem, only
a part, denoted by Ω, is considered.

GN

W

GD

. . .. . .

q
2q

1

x*

a

Figure 10. example 2.

In this case, the holes can be interpreted as cooling channels in a heat exchanger. Then, we
will estimate the variation of the energy when the cooling channels (holes) are centered at the
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point x∗ and, in a next step, at any point of the line defined by a = 0.5, which can be seen as a
constraint in the problem.

The effects of the first and second order terms in the topological asymptotic expansion are
shown in Fig. (11) and Fig. (12) for the original and perturbed domains respectively. From the
last figure, we observe that, for ε = 0.04 and ε = 0.08, while f1(ε)DTψ suggests the creation
of a new hole, the term f1(ε)DTψ + f2(ε)D

2
Tψ suggests a growth of the cooling channel (see a

detail for ε = 0.04 in Fig. (13)).

(a) f1(0.01)DTψ (b) f1(0.01)DTψ + f2(0.01)D
2

Tψ

(c) f1(0.02)DTψ (d) f1(0.02)DTψ + f2(0.02)D
2

Tψ

(e) f1(0.04)DTψ (f) f1(0.04)DTψ + f2(0.04)D
2

Tψ

(g) f1(0.08)DTψ (h) f1(0.08)DTψ + f2(0.08)D
2

Tψ

Figure 11. topological asymptotic expansion in the original domain Ω.
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(a) f1(0.01)DTψ (b) f1(0.01)DTψ + f2(0.01)D
2

Tψ

(c) f1(0.02)DTψ (d) f1(0.02)DTψ + f2(0.02)D
2

Tψ

(e) f1(0.04)DTψ (f) f1(0.04)DTψ + f2(0.04)D
2

Tψ

(g) f1(0.08)DTψ (h) f1(0.08)DTψ + f2(0.08)D
2

Tψ

Figure 12. topological asymptotic expansion in the perturbed domain Ωε.
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Figure 13. detail of term f1(0.04)DTψ+f2(0.04)D
2
Tψ of the topological asymp-

totic expansion.

Nonetheless, it is important to mention that, formally the topological derivatives calculated
in this work are defined only for interior points of the domain. Thus, according to Remark
4, we need to compute the topological derivative defined in interior (∀x̂ ∈ Ω) and boundary
(∀x̂ ∈ ∂Bε) points. Taking into account the above consideration, the results obtained with only
the first order topological derivative for ε = 0.08 are shown in Fig. (14), which was enough to
suggest that the cooling channel should be expanded.

Figure 14. correct values for the term f1(ε)DTψ for x̂ ∈ Ω and x̂ ∈ ∂Bε, for ε = 0.08.

5. Conclusions

In this work, we have considered one more term in the topological asymptotic expansion
that can be recognized as the second order topological derivative. Then, we have applied the
Topological-Shape Sensitivity Method as a systematic procedure to calculate the first and second
order topological derivative. In particular, we have considered the Poisson’s equation, taking
into account homogeneous Neumann and Dirichlet boundary condition on the hole and the
total potential energy as cost function. Finally, we have presented some numerical experiments
showing the influence of the second order topological derivative in the topological asymptotic
expansion. From these results, we have observed that the second order correction term plays
an important role in the analysis, allowing a more accurate estimation for the size of the holes
and also a better decent direction in optimization problems than the one given only by the first
order correction term.
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[20] A.A. Novotny, R.A. Feijoó, C. Padra & E. Taroco. Topological Derivative for Linear Elastic Plate Bending

Problems. Control and Cybernetics. 34(1):339-361, 2005.
[21] A.A. Novotny. Análise de Sensibilidade Topológica. Ph.D. Thesis, LNCC–MCT, Petrópolis, Brazil, 2003.
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Appendix A. Asymptotic Analysis

In this section we give a justification for the asymptotic expansions (eqs. 3.10 and 3.17)
adopted to calculate the final expressions for the first and second order topological derivatives.
The Euler-Lagrange equations associated to the variational problems given by eq. (3.1) and eq.
(3.3) are respectively stated as





∆u = 0 in Ω
u = ϕ on ΓD

− ∂u
∂n = q on ΓN

, (A.1)

and 



∆uε = 0 in Ωε

uε = ϕ on ΓD

−∂uε

∂n = q on ΓN

αuε + (1− α) ∂uε

∂n = 0 on ∂Bε

. (A.2)

Our goal is to observe the asymptotic behavior of uε (x) in confrontation with u (x), which will be
represented by power series of ε (or log ε). These kind of solutions provide good approximations
when ε→ 0.
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Let us assume that uD and uN are solutions of Dirichlet and Neumann boundary-value prob-
lems, given respectively by

PD :

{
∆uD = 0 in Ω
uD = ϕ on ∂Ω

and PN :

{
∆uN = 0 in Ω

−∂uN

∂n = q on ∂Ω
, (A.3)

where q satisfies the compatibility condition. Then we can define the Steklov-Poincaré operator:

Definition 7. Let uD be solution of the Dirichlet problem PD, then the associated Steklov-
Poincaré operator Λ : H1/2(∂Ω) → H−1/2(∂Ω) is defined as

Λ (ϕ) :=
∂uD

∂n

∣∣∣∣
∂Ω

, (A.4)

that can be analogously defined for any part of ∂Ω with a Dirichlet data.

From these elements, we have that:

Proposition 8. Let uD be solution of the Dirichlet problem (PD) and q = −Λ (ϕ) , then uN =
uD, where uN is solution of the Neumann problem (PN ).

Proof. The proof of this result came immediately from the well-poseness of problems PD and
PN �

Therefore, we can transform the mixed problem given by eq. (A.2) in a Neumann problem
using the Steklov-Poincaré operator. In addition, we have an estimation for a Neumann problem
given by the following theorem:

Theorem 9. Let vε be solution of a Neumann boundary-value problem given by




∆vε = 0 in Ωε

−∂vε
∂n = q1 on ∂Bε

−∂vε
∂n = q2 on ∂Ω

, (A.5)

where q1, q2 are smooth functions satisfying the compatibility condition
∫

∂Bε

q2dS =

∫

∂Ω
q1dS = 0 . (A.6)

Then the estimative

|vε|H1(Ωε)
≤ C

{
εmax
∂Bε

|q1|+max
∂Ω

|q2|

}
(A.7)

holds, where constant C is independent of ε and |·|H1(Ωε)
is used to denote a semi-nom (energy

norm) in H1 (Ωε) .

Proof. See [15] �

Now we are able to obtain the estimates used in the topological derivative calculation for each
kind of boundary condition on the holes.

A.1. Neumann boundary condition on the hole. Taking α = 0 in eq. (A.2), we can
propose an asymptotic expansion given by

uε (x) = u (x) + wε(x/ε) + ũε (x) . (A.8)

Let us expand u (x) around x̂, then its normal derivative on ∂Bε can be expressed as

∂u

∂n

∣∣∣∣
∂Bε

= ∇u (x̂) · n− εD (∇u (x̂)) (n)2+ε2D2 (∇u (ξ)) (n)3

= ∇u (x̂) · n− ε∇∇u (x̂)n · n+ ε2D3u (ξ) (n)3 , (A.9)

where ξ is an intermediate point between x̂ and x. Thus, function wε(y), with y = x/ε, is
solution of an exterior problem given by





∆wε = 0 in R
2\B1

wε → 0 at ∞

−∂wε

∂n = ε∇u (x̂) · n−ε2∇∇u (x̂)n · n on ∂B1

, (A.10)
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which can be solved by separation of variables, that is

wε (x/ε) =
ε2

‖x−x̂‖2
∇u (x̂) · (x−x̂) +

ε4

2 ‖x−x̂‖4
∇∇u (x̂) (x−x̂) · (x−x̂) . (A.11)

In addition, the discrepancy produced by wε on ∂Ω and by the remainder term of the expansion
ε2D3u (ξ) (n)3 on ∂Bε shall be compensated by ũε. Therefore, ũε satisfies





∆ũε = 0 in Ωε

ũε = −wε on ΓD

−∂ũε

∂n = ∂wε

∂n on ΓN

−∂ũε

∂n = ε2D3u (ξ) (n)3 on ∂Bε

. (A.12)

which is equivalent to the following one




∆ũNε = 0 in Ωε

−∂ũN
ε

∂n = Λ(wε) on ΓD

−∂ũN
ε

∂n = ∂wε

∂n on ΓN

−∂ũN
ε

∂n = ε2D3u (ξ) (n)3 on ∂Bε

, (A.13)

that is, considering Proposition 8, we observe that ũNε = ũε. Finally, from Theorem 9, we obtain

|ũε|H1(Ωε)
≤ Cε2. (A.14)

where the constant C is independent of ε.

A.2. Dirichlet boundary condition on the hole. Considering α = 1 in eq. (A.2), we observe
that the technique used in the previous section fails in this case since the Dirichlet boundary
value problem in R

2\B1 does not necessarily has a solution that decays at infinity. In order
to avoid this problem, we will consider a ball BR, such that R >> ε, and Bε ⊂ BR ⊂ Ω. In
addition, let us adopt again the asymptotic expansion written as

uε (x) = u (x) + vε (x) + wε(x/ε) + ũε (x) , (A.15)

where function vε (x) is given by [11]

vε(x) =

{
−u (x̂)

(
1− log(‖x−x̂‖/ε)

log(R/ε)

)
, ∀x ∈BR\Bε

0, ∀x ∈Ω\BR

. (A.16)

Now, considering the expansion of u (x)|∂Bε
around x̂ we have

u (x)|∂Bε
= u (x̂)− εDu (x̂) · n+ ε2D2u (ξ) (n)2 , (A.17)

where ξ is an intermediate point between x̂ and x. We can observe that vε(x)|∂Bε
= −u (x̂).

Therefore, is natural to define wε(y), with y = x/ε, as solution of an exterior problem given by




∆wε = 0 in R
2\B1

wε → 0 at ∞

−∂wε

∂n = ε∇u (x̂) · n on ∂B1

, (A.18)

By separation of variables we have

wε (x/ε) =
ε2

‖x−x̂‖2
∇u (x̂) · (x−x̂) . (A.19)

Thus, the restriction of uε (x) in the ball BR can be expressed as

uε (x)|BR
= u (x)− u (x̂)

(
1−

log (‖x−x̂‖ /ε)

log (R/ε)

)
+ ε2∇u (x̂) ·

(x−x̂)

‖x−x̂‖2
+ ũε (x) , (A.20)

and ũε (x) is solution of the following boundary value problem:




∆ũε = 0 in Ωε

ũε = −wε on ΓD

−∂ũε

∂n = ∂wε

∂n on ΓN

ũε = −ε2D2u (ξ) (n)2 on ∂Bε

. (A.21)
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In analogous way to the previous section, we can consider a new problem ũNε given by




∆ũNε = 0 in Ωε

−∂ũN
ε

∂n = Λ(wε) on ΓD

−∂ũN
ε

∂n = ∂wε

∂n on ΓN

−∂ũN
ε

∂n = Λ
(
ε2D2u (ξ) (n)2

)
on ∂Bε

. (A.22)

Then, taking into account Proposition 8, ũNε = ũε. Finally, from Theorem 9, we obtain the
required estimative given by,

|ũε|H1(Ωε)
≤ Cε2. (A.23)

where the constant C is independent of ε.
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