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Abstract. Micro-seismic events, naturally occurring within geological formations and quasi-
brittle engineered systems, provide a powerful window into the evolving processes of material
degradation and failure. Accurate characterization of these events is critical for a comprehen-
sive understanding of the underpinning fracturing mechanisms and potential implications. In
this work, we present an algorithm for the spatial reconstruction and characterization of micro-
seismic events in a three-dimensional bounded elastic body (with known geometry and nominal
material properties) via combined source location and moment tensor inversion. Assuming avail-
ability of the full-waveform “acoustic emission” traces whose spectral content can be exposed via
Fourier transform, the inverse solution is based on (i) a time-harmonic (forward) elastodynamic
model and (ii) the concept of topological derivative as a framework for robust event reconstruc-
tion. On exploiting an equivalence between the elastic wavefield generated by the creation of a
new micro-surface and that stemming from a suitable set of dipoles and double-couples (whose
strengths are synthesized via the seismic moment tensor), we formulate the inverse problem as
that for the real (in-phase) and imaginary (out-of-phase) components of the moment tensor at
trial grid locations. In this way the optimal solution is obtained via a combinatorial search over
a prescribed grid, inherently allowing for successive refinements of event reconstruction over the
region(s) of interest. The analysis is illustrated by numerical experiments highlighting the key
features of the inversion scheme including the reconstruction of multiple (i.e. contemporaneous)
events, localization of the “off-grid” micro-seismic events, and the ability to handle noisy data.
The results in particular highlight the utility of multi-frequency event reconstruction toward
reducing the demand on the number of sensing locations.

1. Introduction

Accurate reconstruction of the source locations and affiliated moment tensors characterizing
micro-seismic events is of paramount importance in seismology, geophysics, reservoir engineering,
mining operations, maintaining civil infrastructure, and the advancement of geological CO2

storage [11, 15, 21, 30]. In particular, such information helps elevate our understanding of the in
situ stress distribution, fault mechanics, evolution of a (localized or diffuse) failure event, or the
progress of reactive flow. On the laboratory scale, acoustic emission sensing is equally essential
to the fundamental understanding of fracturing processes in quasi-brittle materials [12, 14].

Conventional approaches to the interpretation of acoustic emission signals [e.g. 5, 22] often
provide limited spatial resolution in terms of the event location and lack the ability to fully
characterize the source mechanism. The latter can be effectively synthesized via the seismic
moment tensor [1], which furnishes information about the kinematics of a displacement field
discontinuity giving rise to the newly generated micro-crack surface. To overcome the limitations
of conventional analyses, the concept of full-waveform inversion (FWI) has emerged as a lynchpin
that leverages the entirety of recorded seismic traces in the pursuit of parameter estimation. In
short, FWI aims to find the best-fit model that minimizes the discrepancy between observed and
synthetic waveforms (i.e. traces) under the constraint of e.g. Navier equations. The inclusion of
moment tensor information in the FWI inversion opens the path toward both elevated location
accuracy and in-depth understanding of the observed micro-seismic events.

The essential framework behind reconstructing the seismic moment tensor from the full-
waveform observations of a (vector) displacement field at several remote points was established
by Gilbert [9] using the theory of linear elastic wave propagation. In this vein, Rice [27] in-
troduced the theory of “acoustic” i.e. elastic wave emission from a damage processes due to
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micro-cracking by describing the elastic wavefield emanating from a damage event in terms of
seismic moment tensor densities supported over the source region. The authors in [32] stud-
ied the inverse problem of estimating the seismic moment tensor characterizing a point source
in the context of FWI, where a non-quadratic (and generally non-convex) misfit functional is
minimized via gradient-based optimization. An application of FWI moment tensor reconstruc-
tion to hydrofracture monitoring can be found in [34], where the cost functional (quantifying
the misfit between observed and synthetic time traces) is minimized via a grid search in the
event-origin-time-and-location space. Related field applications targeting the seismic moment
tensor include monitoring of micro-seismicity due to CO2 injection [26], and analysis of the 2020
El-Negalah earthquake [7]. More recently, the authors in [2] proposed a full-waveform inversion
technique for the spatial reconstruction and moment-tensor characterization of two-dimensional
(2D) micro-seismic events in the frequency domain. An attempt at simultaneous source and
(heterogeneous) medium reconstruction by way of frequency-domain FWI can be found in [33];
however the authors consider the scalar wave equation which voids the need for reconstructing
the seismic moment tensor.

In this work we focus on the source location and moment tensor inversion of micro-seismic
events in a 3D finite elastic body, catering for the laboratory investigation of damage and
fracture processes in natural and engineered materials, e.g. rock and concrete [23, 28]. To
this end, we assume (sparse) full-waveform, acoustic emission sensing on the boundary of a
finite specimen with known geometry, dimensions, and material (elastic) properties. In this
setting, we consider relevant frequency-domain components of the recorded time traces, whereby
the forward elastodynamic system is governed by the time-harmonic Navier equations. The
micro-seismic events are described as combinations of dipoles and double couples [1], whose
respective amplitudes are compiled by a complex-valued seismic moment tensor. The basic
idea consists in rewriting the inverse problem as an optimization problem whose functional
(measuring a misfit between the observed and predicted time-harmonic data) is minimized with
respect to the set of admissible source characteristics – leading to a non-iterative, grid-search
reconstruction algorithm. The key advantages over the earlier FWI strategies [e.g. 34] include
reduced dimension of the search domain (space vs. space-time) and accelerated computation of
the forward problem (frequency- vs. time-domain) for a finite elastic body. Since any micro-
seismic event by definition entails creation of a new infinitesimal fracture surface, the proposed
reconstruction algorithm is seen as a specialization of the topological derivative method described
for instance in [3, 4, 6, 16]. For an account of the theoretical basis and applications of the latter
asymptotic framework, the reader is referred to [18, 19].

The paper is organized as follows. In Section 2, we introduce the forward problem and inverse
source problem for an elastic body, including the formulation of the non-iterative inverse solu-
tion. The latter includes the sensitivity analysis of the misfit functional with respect to source
perturbations within the set of admissible solutions, and an algorithm for the reconstruction
and characterization of micro-seismic events in a 3D elastic body. Numerical experiments are
presented in Section 3, showing the efficiency and accuracy of the reconstruction algorithm. In
particular, the results highlight the ability of the inverse solution to handle multiple (i.e. contem-
poraneous) events, noisy data, and accurate localization of the “off-grid” micro-seismic events.
We also demonstrate that the use of multi-frequency data carries a significant potential toward
reducing the demand on the number of sensing locations.

2. Seismic moment tensor inversion

Consider a finite elastic body Ω⊂R3 with Lipschitz boundary ∂Ω that is endowed with the mass
density ρ and elasticity tensor C ∈ R3×3×3×3. Let ΓN ⊂ ∂Ω and ΓD = ∂Ω\ΓN denote the bound-
ary segments subjected to the homogeneous Neumann and homogeneous Dirichlet boundary
conditions, respectively. In the sequel, we consider time-harmonic motions with implicit time
factor e−iωt, where t is the time variable, ω denotes the frequency of wave motion and i =

√
−1

is the imaginary unit. Letting further σ denote the Cauchy stress tensor in Ω whereby

σ[u] = C :ε[u], (2.1)
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where the strain tensor ε is given by the symmetric part of the gradient of u, namely

ε[u] = 1
2

(
∇u +∇Tu

)
. (2.2)

Letting n denote the unit outward normal on ∂Ω, we are now in position to specify ΓD and ΓN

as the parts of boundary where u = 0 and n·σ = 0, respectively.
In this setting, we are interested in the inverse source problem of reconstructing the source

density f̂ , such that 
−∇·σ[u]− ρω2u = f̂ in Ω,

u = uobs on Γobs ⊂ ΓN,
u = 0 on ΓD,

n·σ[u] = 0 on ΓN,

(2.3)

where u: Ω 7→ C3 is the elastodynamic displacement field; n is the unit outward normal vector
on ∂Ω; Γobs ⊂ ΓN is the measurement surface, and uobs are the (time-harmonic) “acoustic

emission” data from which we aim to resolve f̂ . Hereon, we assume the elastic body Ω to be
homogeneous and isotropic, in which case the elasticity tensor reads

C = 2µI + λ I⊗I, (2.4)

where λ and µ are the Lamé moduli, while I and I denote respectively the second-order and
symmetric fourth-order identity tensor. Using the Einstein summation convention over repeated
indices i, j, k, l = 1, 3, we specifically have I = δij ei⊗ej and I = 1

2 (δikδjl + δilδjk) ei⊗ej⊗ek⊗el,
where ej is the unit vector in the (Cartesian) jth coordinate direction. For future reference, we
recall the expressions for the Lamé parameters

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
, (2.5)

in terms of the Young’s modulus E and Poisson’s ratio ν.
Motivated by the application to acoustic emission problems, we next describe the source

density f̂ via the superposition of a finite number of dipoles and double couples [1]. More

precisely, we assume that f̂ ∈ Cδ(Ω), where

Cδ(Ω) =
{
f : Ω→ C3 | f(x) =

N∑
n=1

M (n) ·∇x(n)δ(x− x(n)), x(n)∈ Ω
}

(2.6)

for some finite N . Here, δ(·) is the three-dimensional Dirac delta function; N denotes the number

of point sources located at x(n) ∈ Ω, and M (n)∈ C3×3 is a (symmetric) seismic moment tensor

characterizing the nth point source (n=1, N). A more detailed structure of M (n) corresponding
to various dipoles and double couples will be discussed shortly. On the basis of (2.6), we write
the sought source density satisfying (2.3) as

f̂(x) =
N̂∑

n=1

M̂
(n)
· ∇x(n)δ(x− x̂(n)). (2.7)

In this setting, our task consists in reconstructing f̂ ∈ Cδ(Ω) in terms of the micro-seismic event

locations x̂(n) and moment tensors M̂
(n)

(n = 1, 2, . . . N̂), from pointwise boundary measure-
ments uobs.

Assuming the inverse problem (2.3) to be over-determined, we rewrite it as a constrained
optimization problem featuring the least-squares functional

J (u) = 1
2

∫
Γobs

s(x) ∥u− uobs∥2 dΓ, (2.8)

where ∥v∥ =
√
v ·v∗, with (·)∗ denoting complex conjugation of (·);

s(x) =
∑
m

δ(x− xobs
m ), (2.9)
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xobs
m ∈ Γobs are the coordinates of the measurement points, and u : Ω 7→ C3 solves the boundary

value problem  −∇·σ[u]− ρω2u = f in Ω,
u = 0 on ΓD,

n·σ[u] = 0 on ΓN.
(2.10)

As a result, the optimization problem at hand can be stated as

Minimize
f∈Cδ(Ω)

J (u), subject to (2.10). (2.11)

Remark 1. In what follows, we assume that ω is not an eigenfrequency of the eigenproblem
given by (2.10) with f = 0. This ensures the well-posedness of (2.10) and its descendants
appearing in the sequel.

2.1. Sensitivity Analysis. To minimize (2.8), the idea is to perturb the trial source term
f ∈ Cδ(Ω) in (2.10) by a fixed number N of point sources as

f̃(x) = f(x) +

N∑
n=1

M (n) ·∇x(n)δ(x− x(n)), (2.12)

so that f̃ ∈ Cδ(Ω) is the perturbed source term. From (2.3) and (2.12), we can introduce the
perturbed forward solution ũ : Ω 7→ C3 as −∇·σ[ũ]− ρω2ũ = f̃ in Ω,

ũ = 0 on ΓD,
n·σ[ũ] = 0 on ΓN,

(2.13)

which yields the affiliated misfit functional as

J (ũ) = 1
2

∫
Γobs

s(x) ∥ũ− uobs∥2 dΓ. (2.14)

Relationship with the topological derivative approach. In principle, the present treat-
ment could be cast within a broad class of methods based on the concept of topological derivative
(TD) [4, 17, 16] which postulates the nucleation of an infinitesimal new boundary (e.g. a void
of a crack), at a prescribed location, in a reference body. The main distinction here is that
the majority of TD studies inherently focus on the perturbation of a given cost functional due
to a newly created (trial) boundary, when a reference body is subjected to an external stim-
ulus. In the context of inverse problems, such configurations are often referred to as active
imaging configurations, which puts an emphasis on the scattering effect due to a newly created
boundary (i.e. scatterer) interacting with a prescribed incident field. By contrast, the present
approach links via (2.7) the TD framework with a source reconstruction problem, where the
leading-order perturbation of a cost functional is generated by the strain energy released dur-
ing the act of creation of a new infinitesimal boundary – as opposed to its interaction with an
externally-generated incident field.

Since uobs ∈ C3 is interpreted as the Fourier transform of the time traces captured on Γobs,
the analogous interpretation is applied to the reconstructed point (dipole and double-couple)

sources. In this vein, it is convenient to decompose the seismic moment tensor M (n) ∈ C3×3

into its (in-phase) real and (out-of-phase) imaginary components as

M (n) = A(n) + iB(n), A(n),B(n) ∈ R3×3. (2.15)

On writing

A(n) = A
(n)
kl ek ⊗ el, B(n) = B

(n)
kl ek ⊗ el, (2.16)

the perturbed solution ũ can be parsed as

ũ(x) = u(x) +

N∑
n=1

(
A

(n)
kl v

(n)
kl (x) + iB

(n)
kl v

(n)
kl (x)

)
(2.17)
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where v
(n)
kl (k, l = 1, 3) solve the canonical problem

−∇·σ[v
(n)
kl ]− ρω2v

(n)
kl = (ek⊗el)·∇x(n)δ(x− x(n)) in Ω,

v
(n)
kl = 0 on ΓD,

n·σ[v
(n)
kl ] = 0 on ΓN.

(2.18)

Remark 2. One may observe that both v
(n)
kl and its complex conjugate solve the same boundary

value problem thanks to the fact that the source term is real-valued. Since (2.18) is well-posed by

premise (see Remark 1), we obtain a key result that v
(n)
kl : Ω 7→ R3. In physical terms, this feature

reflects the fact that v
(n)
kl signifies the (in-phase) standing wavefield in a finite elastic body Ω.

For unbounded domains, on the other hand, this conclusion does not hold due to the appearance
of the radiation conditions at infinity which (for time-harmonic problems) entail complex-valued
coefficients and so phase-varying wavefields.

For future reference, we introduce an auxiliary set of vector functions v
(n)
ℓ : Ω 7→ R3 (ℓ = 1, 6)

defined as

v
(n)
1 = v

(n)
11 , v

(n)
2 = v

(n)
22 , v

(n)
3 = v

(n)
33 ,

v
(n)
4 = v

(n)
12 + v

(n)
21 , v

(n)
5 = v

(n)
13 + v

(n)
31 , v

(n)
6 = v

(n)
23 + v

(n)
32 .

(2.19)

On substituting (2.17) into (2.14), we obtain

J (ũ) = J (u)

+
N∑

n=1

A(n)
pq

∫
Γobs

sv(n)
pq ·Re(u− uobs) dΓ + 1

2

N∑
m=1

N∑
n=1

A(m)
pq A(n)

rs

∫
Γobs

sv(m)
pq ·v(n)

rs dΓ

+
N∑

n=1

B(n)
pq

∫
Γobs

sv(n)
pq ·Im(u− uobs) dΓ + 1

2

N∑
m=1

N∑
n=1

B(m)
pq B(n)

rs

∫
Γobs

sv(m)
pq ·v(n)

rs dΓ, (2.20)

assuming implicit summation over repeated indexes p, q, r, s = 1, 3.
For a systematic treatment of (2.20), we next introduce the vector of trial source locations

ξ = (x(1),x(2), . . . ,x(N))T ∈ R3N , (2.21)

and the affiliated strength vectors

α = (α(1),α(2), . . . ,α(N))T ∈ R6N , (2.22)

β = (β(1),β(2), . . . ,β(N))T ∈ R6N , (2.23)

with

α(n) = (A
(n)
11 , A

(n)
22 , A

(n)
33 , A

(n)
12 , A

(n)
13 , A

(n)
23 )T, (2.24)

β(n) = (B
(n)
11 , B

(n)
22 , B

(n)
33 , B

(n)
12 , B

(n)
13 , B

(n)
23 )T, (2.25)

which take advantage of the symmetry of A(n) and B(n). From these elements, the expansion
of (2.14) can be rewritten more compactly as

Ψ(α,β) = J (ũ)− J (u)

= g ·α + 1
2Hα·α + h·β + 1

2Hβ ·β. (2.26)

With reference to (2.9), vectors g,h ∈ R6N and matrix H ∈ R6N×6N are given by

g =


g(1)

g(2)

...

g(N)

 , h =


h(1)

h(2)

...

h(N)

 and H =


H(11) H(12) . . . H(1N)

H(21) H(22) . . . H(2N)

...
...

. . .
...

H(N1) H(N2) . . . H(NN)

 , (2.27)
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with the components of g(n),h(n) ∈ R6 and H(mn)∈ R6×6 (m,n = 1, N) defined as

g
(n)
ℓ =

∫
Γobs

sv
(n)
ℓ ·Re(u− uobs) dΓ, (2.28)

h
(n)
ℓ =

∫
Γobs

sv
(n)
ℓ · Im(u− uobs) dΓ, ℓ = 1, 6, (2.29)

and

H
(mn)
ℓκ =

∫
Γobs

sv
(m)
ℓ ·v(n)

κ dΓ, ℓ, κ = 1, 6. (2.30)

2.2. Reconstruction Algorithm. The micro-seismic fault reconstruction algorithm has been
introduced in [2] within the context of two-dimensional elastodynamic problems. In this work,
these ideas are extended to the inverse (seismic) source reconstruction problem into three spatial
dimensions.

Note that Ψ from (2.26) is a quadratic form with respect to α and β. After applying the
optimality conditions with respect to (α,β), for each fixed pair (N, ξ), we retrieve the following
linear systems

Hα = −g and Hβ = −h. (2.31)

The solutions to the above linear systems become implicit functions of the locations ξ, namely
α = α(ξ) and β = β(ξ). Therefore, substituting (2.31) in (2.26), we can define a minimization
problem with respect to the locations ξ, namely

ξ⋆ = argmin
ξ⊂X

{
Ψ(α(ξ),β(ξ)) = 1

2(g ·α(ξ) + h·β(ξ))
}
. (2.32)

The optimal vector of source locations ξ⋆ can be obtained via a combinatorial search over a
prescribed grid X of trial source locations. For more specialized search procedures from the
computational point of view, see e.g. [13, 2].

Now, we have all elements to introduce a Newton-type reconstruction algorithm. With ref-
erence to Algorithm 1 listed below, the input to the inverse analysis are the number N of

micro-seismic point sources, the grid X of trial source locations, and the canonical solutions v
(n)
kl

evaluated at each grid point x(n)∈X, n=1, N . The algorithm returns the optimal source loca-
tions ξ⋆, the respective moment tensor components in terms of optimal vectors α⋆ = α(ξ⋆) and
β⋆ = β(ξ⋆) and the objective functional value Ψ⋆ = Ψ(α⋆,β⋆). The associated reconstructed

nth moment tensor is denoted as M
(n)
rec . For completeness, we note that the computational

effort C due to Algorithm 1 scales with card{X} and N as

C(card{X}, N) ∝ card{X}!N3

N !(card{X} −N)!
; (2.33)

a function that, for given card{X}, reaches the maximum value for N = 1
2card{X}. We also

remark that: (a) when the number N̂ of actual sources is unknown beforehand, the algorithm

could be rerun with an increasing a priori number, N , of target sources; for N > N̂ , the

algorithm then in principle returns (N − N̂) trial sources with negligible intensities; (b) if the

locations ξ̂ of actual sources do not belong to the set X of admissible locations, the algorithm

returns a vector ξ⋆⊂X of optimal locations that is “the closest” (in the sense of Ψ) to ξ̂; (c)
such obtained estimate ξ⋆ can be improved by performing a refined grid search over the region
containing sources with non-negligible intensities; and (d) since a combinatorial search over all
elements forming the set X has to be performed, the search becomes rapidly infeasible as N →
1
2card{X}. In the ensuing numerical examples, we have N≪card{X}, so that Algorithm 1 runs
in a few seconds for all cases. For a more detailed discussion on the complexity of Algorithm 1,
we refer to [13].
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Algorithm 1: Micro-seismic fault reconstruction.

1: input : N , X, H, g, h;
2: output: the optimal solution ξ⋆, (α⋆,β⋆), Ψ⋆;
3: initialization: ξ⋆ ← 0, (α⋆,β⋆)← (0,0), Ψ⋆ ←∞;
4: for n1 ← 1 to card{X} do
5: for n2 ← n1 + 1 to card{X} do

6:
...

7: for nN ← nN−1 + 1 to card{X} do
8:

g ←


g(n1)

g(n2)

...

g(nN )

 , h←


h(n1)

h(n2)

...

h(nN )

 , H ←


H(n1,n1) H(n1,n2) · · · H(n1,nN )

H(n2,n1) H(n2,n2) · · · H(n2,nN )

...
...

. . .
...

H(nN ,n1) H(nN ,n2) · · · H(nN ,nN )

 ;

9: α← −H−1g, β ← −H−1h, Ψ← 1
2(g ·α + h·β);

10: I ← (n1, n2, · · · , nN ), ξ ← Π(I);
11: if Ψ < Ψ⋆ then
12: ξ⋆ ← ξ, (α⋆,β⋆)← (α,β), Ψ⋆ ← Ψ;
13: end if
14: end for
15: end for
16: end for

3. Numerical Results

With reference to Fig. 1(a), the elastic body Ω used for numerical simulations is taken as a
cubical block of size ℓ that is fixed across the bottom face. More precisely, the homogeneous
Dirichlet boundary ΓD (where u = 0) is given by the bottom face of the block, whereas the
traction-free Neumann boundary ΓN (where n ·σ = 0) is formed by the remaining five faces of
the block. In what follows, the pointwise motion sensors are located on ΓN as described in the
sequel, see also Fig. 2. The dimensionless frequency of acoustic emission is taken as

ωℓ√
µ/ρ

= 10π, (3.1)

resulting in the specimen-size-to-shear-wavelength ratio of ℓ/λs = 5.
The forward elastodynamic problem is solved via Galerkin finite element method by using the

open software package Netgen/NGSolve [29]. The cube-shaped domain from Fig. 1(a) is split
into 512 equisized cubes. The set of admissible locations X is obtained by selecting 343 interior
vertices from the resulting grid, see Fig. 1(b). In order to fulfill the numerical condition presented
in [10], each small cube is divided into tetrahedral finite elements, leading to 196608 elements
and 35937 nodes. For the purpose of numerical simulations, the dipoles are approximated by a
Gaussian distribution

δ(x− x(n)) = lim
ε→0

1

ε3
exp

(
−∥x− x(n)∥2

2ε2

)
, (3.2)

whose gradient with respect to x(n) can be obtained as

∇x(i)δ(x− x(n)) = lim
ε→0

x− x(n)

ε5
exp

(
−∥x− x(n)∥2

2ε2

)
. (3.3)

In the sequel, we assume ε = 10−2×he, where he denotes the size of the smallest finite element.
Finally, a number of 3, 7, and 9 triaxial accelerometers are distributed along the boundary

of the elastic body as shown in Fig. 2(a), 2(b), and 2(c), respectively. After performing an
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exhaustive numerical study in the idealized scenario with no noise and assuming ξ̂ ⊂ X, we note
that at least 2N + 1 sensors are needed to reconstruct perfectly the locations and associated
moment tensors of a number N of faults.

(a) (b)

Figure 1. Working domain: (a) cube-shaped elastic body and (b) set X of admissible
point source locations.

(a) (b) (c)

Figure 2. Surface sensing configurations featuring: (a) three accelerometers, (b) seven
accelerometers, and (c) nine accelerometers. All sensors are attached to the traction-free
part, ΓN, of the specimen’s boundary.

3.1. Reconstruction of a single event. In the first example, we deal with a selection of
moment tensors and affiliated focal mechanisms described in the book by Stein and Wysession
[35]. We consider an isotropic elastic block of size ℓ = 0.3 m, endowed with the Young’s modulus
E = 70GPa, Poisson’s ratio ν = 0.3, and mass density ρ = 2300kg/m3. The acoustic emission
is captured by three triaxial accelerometers attached to the surface of the block as shown in
Fig. 2(a). The frequency of the acoustic emission is 57 kHz according to (3.1). The “true”
micro-seismic event location to be reconstructed is given by x̂ = (0.15, 0.15, 0.15) m. The fea-
tured moment tensors (normalized to unit magnitude) and their fault mechanisms (pictorially
described by the beach-ball scheme) are listed in Table 1.
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Table 1. Identification of a single micro-seismic event at x̂ = (0.15, 0.15, 0.15), where

M̂ and M rec denote respectively the “true” and reconstructed moment tensors. The
system north, west, and up (NWU) is used to represent the moment tensors as in [35].

Moment Tensor M̂ M rec Moment Tensor M̂ M rec

1√
3

 1 0 0
0 1 0
0 0 1

 − 1√
3

 1 0 0
0 1 0
0 0 1


− 1√

2

 0 1 0
1 0 0
0 0 0

 1√
2

 1 0 0
0 −1 0
0 0 0


− 1√

2

 0 0 1
0 0 0
1 0 0

 − 1√
2

 0 0 0
0 0 1
0 1 0


1√
2

 −1 0 0
0 0 0
0 0 1

 1√
2

 0 0 0
0 −1 0
0 0 1


1√
6

 1 0 0
0 −2 0
0 0 1

 1√
6

 −2 0 0
0 1 0
0 0 1


1√
6

 1 0 0
0 1 0
0 0 −2

 − 1√
6

 1 0 0
0 1 0
0 0 −2



3.2. Reconstruction of three contemporaneous events. In the next example, we consider
the reconstruction of cavitation, tensile, and shear events overlapping in time. A description of
the featured micro-seismic events is shown in Fig. 3. A generic seismic moment tensor M can
be written as

M = aΞC([[u]]⊙ η) = aΞ(2µ([[u]]⊙ η) + λ([[u]]·η)I), (3.4)

where aΞ is the area of a newly created micro-fault Ξ giving rise to the acoustic emission; η
is the unit normal to the micro-fault surface; [[u]] is the average displacement jump across the
micro-fault; C the elasticity tensor, and u⊙v is the symmetrized tensor product between vectors
u and v, namely

u⊙ v = 1
2(u⊗ v + v ⊗ u). (3.5)

The quantity aΞ is replaced by the fault strength γ ∈ C to account for out-of-phase events.
Three micro-seismic moment tensors are considered according to the sketch in Fig. 3 and one
additional which combines two of them, namely:

(a) Cavitation: For η = [[u]] = ei, with i ∈ 1, 3, there is

M̂ = γ

2µ + 3λ 0 0
0 2µ + 3λ 0
0 0 2µ + 3λ

 ; (3.6)

(b) Tensile crack: For η = (1, 0, 0) and [[u]] = (1, 0, 0), we have

M̂ = γ

2µ + λ 0 0
0 λ 0
0 0 λ

 ; (3.7)
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(c) Shear crack: For η = (1, 0, 0) and [[u]] = (0, 1, 0), we have

M̂ = γ

 0 2µ 0
2µ 0 0
0 0 0

 ; (3.8)

(d) Mixed-mode crack: By combining (3.7) and (3.8), we have

M̂ = γ

2µ + λ 2µ 0
2µ λ 0
0 0 λ

 . (3.9)

Figure 3. Elemental types of micro-seismic events: (a) cavitation, (b) mode I crack,
and (c) and mode II crack.

In this example, we consider an elastic block with the Poisson’s ratio ν = 0.2. In physical
terms, this configuration could correspond to e.g. a block of sandstone with ℓ = 0.16m, E =
20GPa, ρ=2300kg/m3 and, according to (3.1), the frequency of acoustic emission f = ω/(2π)≈
60kHz [31].

Various external factors may generate meaningful changes in the dynamic response of the
point-wise sensors used to measure uobs on Γobs, such as acoustic noise, temperature variations,
and humidity. In order to verify the robustness of the method with respect to noisy data, the
measurements uobs are corrupted with white Gaussian noise (WGN). In particular, the corrupted
measurement uobs

ζ is given by

uobs
ζ (x) = uobs(x)(1 + ζϕ(x)), (3.10)

where ϕ is a random variable with a uniform distribution over [0, 1), and ζ is the noise level.
Another important feature of an acoustic emission (AE) event exposed by the reconstructed

moment tensor M
(n)
rec is its magnitude, reflected in the Frobenius norm ∥M (n)

rec∥. The latter
quantity provides an implicit information about the “importance” of an event, i.e. the size of

the newly created surface area a
(n)
Ξ . In this vein, we introduce a relative error function of the

form

E(n)rec =
∥M̂

(n)
−M

(n)
rec∥

∥M̂
(n)
∥

. (3.11)

3.2.1. Contemporaneous on-grid events x̂(n) ∈ X. We aim to reconstruct three micro-seismic

sources representing cavitation, tensile crack, and shear crack events. The locations x̂(n) and
intensities γ(n) are reported in Table 3.
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Table 3. Contemporaneous on-grid micro-seismic sources.

nth event γ(n) x̂(n)

1 shear (1.0 + 2.0i)× 10−10 (0.12, 0.12, 0.12)
2 cavitation (1.0 + 1.0i)× 10−10 (0.04, 0.04, 0.04)
3 tensile (2.0 + 1.0i)× 10−10 (0.08, 0.08, 0.08)

We start by considering 7 sensors as reported in Fig. 2(b). The reconstructed fault locations
for 0%, 3% and 4% of noise are shown in Fig. 4. The true (target) and reconstructed micro-faults
locations are represented graphically by (smaller) red and (larger) black balls, respectively. The
found locations are exact up to 3% of noise. However, the locations of two faults are missed for
4% of noise, as shown in Fig. 4(c).

(a) 0% (b) 3% (c) 4%

Figure 4. Contemporaneous on-grid events: Multi-event location results for 0%, 3%
and 4% of noise, assuming 7 sensors distributed as in Fig. 2(b).

Next, we consider 9 sensors as shown in Fig. 2(c). The reconstructed fault locations for 4%,
8%, 9% and 10% of noise are shown in Fig. 5. The true (target) and reconstructed micro-faults
locations are represented graphically by (smaller) red and (larger) black balls, respectively. The
fault locations in Fig. 5 are visually exact up to 9% of noise. However, event location for one out
of the three micro-faults shows an error at 10% of noise. The results indicate that the proposed
reconstruction scheme is (for the present sensing configuration) very robust.

(a) 4% (b) 8% (c) 9% (d) 10%

Figure 5. Contemporaneous on-grid events: Multi-event location results using 4%, 8%,
9% and 10% of noise, assuming 9 sensors distributed as in Fig. 2(c).

The focal mechanisms featured by the reconstructed moment tensors representing the cavita-
tion, tensile crack, and shear crack events are shown in Table 4 and 5 in terms of the (in-phase)
real and (out-of-phase) imaginary components, respectively. As can be seen from the tables, the
reconstructed focal mechanisms for both tensile and shear crack events retain reasonable verac-
ity for the noise levels of up 2%. By contrast, reconstruction of the cavitation (i.e. isotropic
dilation) event seems to be very sensitive to measurement noise and effectively fails at ζ = 2%
and beyond.
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Table 4. Contemporaneous on-grid events: Real component of the reconstructed source
mechanisms for the cavitation, tensile crack, and shear crack event versus the noise level.

target ζ = 0% ζ = 2% ζ = 4% ζ = 6% ζ = 8% ζ = 9% ζ = 10%

Table 5. Contemporaneous on-grid events: Imaginary component of the reconstructed
source mechanisms for the cavitation, tensile crack, and shear crack event versus the
noise level.

target ζ = 0% ζ = 2% ζ = 4% ζ = 6% ζ = 8% ζ = 9% ζ = 10%

The relative error function E(n)rec from (3.11) with respect to the noise level is presented in

Fig. 6. From the display, we observe that for the one out of the three events, E(n)rec exhibits
a sharp jump at the noise level between 9 and 10%, which coincides with the failure of the
algorithm to correctly identify the respective event locations (see Fig. 5). The reconstructed
seismic moment tensors are, however, far more sensitive to noisy data as discussed next.
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Figure 6. Contemporaneous on-grid events: Evolution of E(n)rec with the noise level.

3.2.2. Contemporaneous off-grid events x̂(n) /∈ X. Next, we consider the reconstruction of three

micro-seismic sources representing shear, tensile, and mixed-mode events such that x̂(n) /∈ X.

In particular, the locations x̂(n) and intensities γ(n) are reported in Table 6.

Table 6. Contemporaneous off-grid micro-seismic sources.

nth event γ(n) x̂(n)

1 shear (1.0 + 2.0i)× 10−10 (0.03808, 0.03200, 0.08533)
2 mixed-mode (1.0 + 2.0i)× 10−10 (0.11733, 0.12267, 0.11467)
3 tensile (2.0 + 2.0i)× 10−10 (0.08283, 0.07867, 0.11413)

Next, we consider the reconstruction using nine sensors distributed as in Fig. 2(c). The
reconstructed fault locations for 4%, 8%, 12% and 13% are presented in Fig. 7. The algorithm

finds the locations ξ⋆ ⊂ X closest to the true ones ξ̂ up to 12% of noise.

(a) 4% (b) 8% (c) 12% (d) 13%

Figure 7. Contemporaneous off-grid events: Multi-event location results for 4%, 8%,
12% and 13% of noise, assuming 9 sensors distributed as in Fig. 2(c).

Evolution of the relative error E(n)rec for the noise levels between 8% and 16% is shown in Fig. 8,
where we can observe a consequence of the fact that two out of the three event locations are
“lost” by the reconstruction for ζ ≥ 13%, see Fig. 7. The focal mechanisms representing the
moment tensor associated with the shear, tensile and mixed-mode events are shown in Tables 7
and 8 in terms of the (in-phase) real and (out-of-phase) imaginary components, respectively. In
these tables, the first column presents the results for shear, the middle column for tensile, and
the last column for mixed-mode events.
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Figure 8. Contemporaneous off-grid events: Evolution of E(n)rec with the noise level.

Table 7. Contemporaneous off-grid events: real component of the reconstructed source
mechanisms for the shear, tensile, and mixed-mode events versus the noise level.

target ζ = 0% ζ = 2% ζ = 4% ζ = 6% ζ = 10% ζ = 12% ζ = 13%

Table 8. Contemporaneous off-grid events: imaginary component of the reconstructed
source mechanisms for the shear, tensile, and mixed-mode events versus the noise level.

target ζ = 0% ζ = 2% ζ = 4% ζ = 6% ζ = 10% ζ = 12% ζ = 13%
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3.3. Analysis of transient events. For a deeper insight into the performance of the source
reconstruction scheme, we next consider transient micro-seismic events according to

f(x, t) =

N∑
n=1

M(n)(t)·∇x(n)δ(x− x(n)), (3.12)

where

M(n)(t) = M (n) S(n)(t); (3.13)

M (n)∈R3×3 is constant moment tensor, and S(n)(t) is a scalar time trace given by the Morlet
wavelet

S(n)(t) = ane
−(t/ςn)2 cos(ω(n)t) (3.14)

that is characterized by the carrier i.e. center frequency ω(n), amplitude an, and “width” ςn
which controls its temporal localization. In general, M(n)(t) may change its tensor character
during the event and so may not be amenable to decomposition (3.13); for the remainder of this
work, however, we retain this simplifying assumption. To handle (3.12)–(3.14) by the frequency-
domain reconstruction algorithm, we consider the Fourier transform pair

S̆(n)(ω) = 1√
2π

∫ +∞

−∞
S(n)(t) eiωt dt, S(n)(t) = 1√

2π

∫ +∞

−∞
S̆(n)(ω) e−iωt dω. (3.15)

To handle contemporaneous events with different onset times, we consider the shifted time traces

S(n)
τn (t) := S(n)(t− τn), n = 1, N

with τn being a time “delay” of the nth event. In this setting, the Fourier transforms of the
respective moment tensors can be written as

M̆(n)
τn (ω) = M (n) S̆(n)

τn (ω), n = 1, N (3.16)

where

S̆(n)
τn (ω) = S̆(n)(ω) eiωτn , S̆(n)(ω) =

√
2
4 an ςne

− 1
4
ς2n (ω(n)+ω)2

(
1 + eς

2
nω(n)ω

)
, (3.17)

with S̆(n) describing a Gaussian distribution centered at ω = ω(n).
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Figure 9. Wavelets used to generate the fault signals: (a) S
(n)
τn (t) in the time domain,

and (b) |S(n)

τn (ω)| in the frequency domain (n = 1, 3).



16

On the basis of (3.12)–(3.16), our objective consists in reconstructing the multi-frequency
source distribution

f(x;ωj) =

N∑
n=1

S̆(n)
τn (ωj)M

(n) ·∇x(n)δ(x− x(n)), j = 1, J (3.18)

where (i) M (n) is assumed to be frequency-independent according to (3.13), and (ii) the sampling
frequencies ωj are selected to span the spectral content of the (anticipated) micro-seismic events.

Assuming (3.18) as the source of (2.3) evaluated at ω = ωj , we denote by uobs
j (j = 1, J) the

respective sensory data for the multi-frequency inverse problem. In this vein, we introduce the
aggregate cost functional

J (u1, · · · ,uJ) = 1
2

J∑
j=1

∫
Γobs

s(x) ∥uj − uobs
j ∥2 dΓ, (3.19)

where uj is the time-harmonic solution of (2.10) due to f = f(x;ωj) and uobs
j are the sensory

data in (2.3) for computing f̂ = f̂(x;ωj).
In the ensuing numerical example, we consider three contemporaneous events whose intensities

γ(n), locations x̂(n), and wavelet parameters (ωn, ςn, an and τn) are reported in Table 9. We
again consider an elastic block with ℓ=0.16m, E=20GPa, ρ=2300kg/m3 and ν = 0.2.

Table 9. Characteristics of the transient events.

event ωn ςn an τn γ(n) x̂(n)

1: shear 53kHz 0.25 2.0 0.00s 1.0× 10−10 (0.1, 0.06, 0.02)
2: tensile 67kHz 0.34 2.7 0.05s 1.0× 10−10 (0.1, 0.08, 0.04)
3: mixed 60kHz 0.28 1.2 0.22s 1.0× 10−10 (0.1, 0.08, 0.02)

In the experiment, we attempt to reconstruct the three events with a single accelerometer
attached to the top surface of the specimen as shown in Fig. 10(a). Two sensing scenarios
are considered: setup I deploys a uniaxial motion sensor (capturing the acceleration normal to
the boundary), while setup II assumes availability of a triaxial accelerometer. In setup I, the
observation frequencies ωj (j=1, 11) span the range [40,80] kHz with 4kHz separation, while in
setup II we cover the same frequency range with 10kHz separation (ωj , j=1, 5).

Fig. 10(b) and Fig. 10(c) show respectively the event locations for setup I and setup II, where
the red (resp. black) circles represent the exact (resp. reconstructed) locations. Note that the
mutual proximity of micro-seismic events generally creates difficulties in their reconstruction;
despite such an impediment, the algorithm is successful in reconstructing all three events using 11
(resp. 5) probing frequencies captured by a single uniaxial (resp. triaxial) sensor. Here it is useful
to note that due to multiple scattering by the domain boundaries, the use of different frequencies
(and so wavelengths) effectively amounts to having different “vantage points” from which the
micro-seismic events are being observed. In this vein, the drawbacks of having a uniaxial sensor in
setup I are compensated by the use of a denser set of observation frequencies. Such compensation
is facilitated by the premise that (for each event) the seismic moment tensor is time- and thus
frequency-invariant, see (3.13) and (3.16), which then allows different frequencies to “see” the
same event (in terms of both location and seismic moment tensor) and so reinforce each other
in the inversion process.
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(a) (b) (c)

Figure 10. Simultaneous reconstruction of three on-grid transient events, noise-free
data: (a) the placement of a single accelerometer used to capture the data; (b) event lo-
cations for setup I which assumes uniaxial accelerometer and 11 observation frequencies,
and (c) event locations for setup II which assumes triaxial accelerometer and 5 observa-
tion frequencies (red circles: true locations, black circles: reconstructed locations).

Table 10 lists the exact and reconstructed moment tensors for both setups, described in terms
of focal mechanisms. Again, for both setups and all three events, the reconstructed source
mechanism is remarkably close to the true signature.

Table 10. Simultaneous reconstruction of three on-grid transient events, noise-free
data: exact and reconstructed seismic moment tensors, represented as focal mechanisms

Event target reconstruction
(setup I)

reconstruction
(setup II)

1: shear

2: tensile

3: mixed

Reconstructed event locations for the synthetic observations endowed with 0%, 5%, and 6%
random noise are shown in Fig. 11. The reconstruction is performed assuming the sensing
scenario due to setup I (one uniaxial motion sensor and 11 observation frequencies). The true
and reconstructed micro-faults locations are visualised respectively by (smaller) red and (larger)
black balls. As can be seen from the display, the reconstructed event locations are visually
exact for the noise levels of up to 5%. The focal mechanisms representing the moment tensor
associated with the shear, tensile and mixed-mode events are shown in Tables 11.
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(a) 0% (b) 5% (c) 6%

Figure 11. Multi-event reconstruction results for 0%, 5%, and 6% of noise, assuming
11 observation frequencies and one uniaxial accelerometer as shown in Figure 10(a).

Table 11. Simultaneous reconstruction of the source mechanisms for the shear, tensile,
and mixed-mode events versus the noise level, assuming 11 observation frequencies and
one uniaxial accelerometer as shown in Figure 10(a).

target ζ = 0% ζ = 2% ζ = 4% ζ = 5% ζ = 6%

3.4. Perspective. In the above examples, our focus is on the homogeneous, isotropic elastic
solids as a means to illustrate the basic features of the proposed approach. In principle, Algo-
rithm 1 for reconstructing the micro-seismic events applies equally to finite domains occupied by
heterogeneous and anisotropic elastic bodies, with an implicit premise that the relevant elastic
parameters (and their spatial distributions) are known beforehand. In the majority of laboratory
studies involving acoustic emission monitoring of failure in quasi-brittle materials such as rock
and concrete, the common premise behind source inversion is that of medium homogeneity [e.g.
23, 28, 36], whose veracity is aided by the limited size of laboratory specimens – which rarely
exceeds 1 m in the longest direction. An exception to this observation are the laboratory AE in-
vestigations of delamination in composites [e.g. 25], where the material heterogeneity is a result
of engineering design. Another class of problems where the issue of medium heterogeneity is in-
herently more pronounced are those dealing with acoustic emission in unbounded media, namely
geological deposits, with application to e.g. mine safety, hydraulic fracturing, and engineering
seismology [15, 20, 37]. For this class of problems, extensions of the proposed methodology are
possible with the aid of the relevant Green’s functions [e.g. 24] or computational (finite element)
models endowed with absorbing boundaries [8]. Essentially, the main modification consists in
deploying a situation-relevant computational model of elastic wave propagation emanating from
a point-like, moment-tensor source. For the latter class of problems, however, the benefits of
multi-frequency source reconstruction are expected to diminish due to a lack of reflecting domain
boundaries that (in the present case) jointly help “refocus” the waveforms emanating from a
microcrack toward a sparse set of motion sensors placed on the surface of a specimen.
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4. Concluding Remarks

In this study we propose an algorithm for the spatial reconstruction and characterization of
micro-seismic events in a three-dimensional bounded elastic body, whose geometry and material
properties are known beforehand, via combined source location and moment tensor inversion.
Using selected frequency component(s) of the “acoustic emission” traces at sensor locations, the
inverse solution is established on the basis of (i) time-harmonic (forward) elastodynamic model
and (ii) the concept of topological derivative. On exploiting an equivalence between the elastic
wavefield generated by the creation of a new micro-surface and that stemming from a suitable set
of dipoles and double-couples, we formulate the inverse problem as that for the real (in-phase)
and imaginary (out-of-phase) components of the seismic moment tensor at trial grid locations.
In this way, the optimal solution is obtained via a combinatorial search over a prescribed grid –
which caters for successive refinements over the region(s) of interest. The analysis is illustrated
by numerical experiments highlighting the key features of the inversion scheme including the
reconstruction of multiple (i.e. contemporaneous) events, localization of the “off-grid” micro-
seismic events, and the ability to handle noisy data. The results in particular highlight the
utility of multi-frequency event reconstruction toward reducing the demand on the number of
sensing locations.
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