
TOPOLOGY OPTIMIZATION OF THREE DIMENSIONAL STRUCTURES

SUBJECT TO SELF-WEIGHT LOADING

J. M. M. LUZ FILHO AND A. A. NOVOTNY

Abstract. Topology optimization of structures under self-weight loading is a challenging prob-
lem which has received increasing attention in the last years. The use of standard formulations
based on compliance minimization under volume constraint suffers from numerous difficulties
for self-weight dominant scenarios, such as non-monotonic behaviour of the compliance, possible
unconstrained character of the optimum and parasitic effects for low densities in density-based
approaches. In order to overcome the first two issues, a regularized formulation of the classical
compliance minimization problem under volume constraint is adopted, which enjoys two impor-
tant features: (a) it allows for imposing any feasible volume constraint and (b) the standard
(original) formulation is recovered once the regularizing parameter vanishes. The resulting topol-
ogy optimization problem is solved with the help of the topological derivative method, which
naturally overcomes the last issue, since no intermediate densities (grey-scale) approach is nec-
essary. Finally, in order to show the effectiveness of the proposed approach, a set of benchmark
examples into three spatial dimensions is presented, which are: (1) a bridge structure under pure
self-weight loading; (2) a truss-like structure subject to both, self-weight loading and external
forces acting co-linearly and in orthogonal directions and (3) a tower structure under external
loads and dominant self-weight loading.

1. Introduction

Topology optimization of structures has been a subject of intense research over the last
decades. The main goal of topology optimization is to find a material distribution within a
design domain which minimizes a given shape functional. Since the pioneering paper by Bendsøe
and Kikuchi (1988), many approaches have been proposed and successfully applied to solve the
classical compliance minimization under volume constraint problem of structures subject to ex-
ternal loads. On the other hand, the much more challenging problem of topology optimization
of structures under self-weight loading remains a topic of great interest as the use of standard
formulations based on the compliance minimization under volume constraint are not suitable
for this scenario. More precisely, the use of such formulations leads to several difficulties once
the structure’s self-weight becomes dominant, such as non-monotonic behaviour of the compli-
ance, possible unconstrained character of the optimum and parasitic effects for low densities for
density-based models, as pointed out by Bruyneel and Duysinx (2005).

Despite the large amount of works in the context of structural optimization, most develop-
ments in this field are concerned with structural compliance minimization under volume con-
straint and fixed external independent loads. Surprisingly, only a few published works address
topology optimization of structures subject to self-weight loading, despite the important role
played by body forces in many engineering applications. In this sense, let us trace a brief
overview of the developments proposed so far to deal with this problem. Initially, in order to
alleviate the parasitic effects when using density-based models, Bruyneel and Duysinx (2005)
propose a modified discontinuous SIMP model (Solid Isotropic Material Penalization) together
with a novel approach combining the Method of Moving Asymptotes (MMA) with the Gradient
Based Method. In the context of evolutionary approaches, Ansola et al. (2006) applied a modi-
fied Evolutionary Structural Optimization (ESO), in which the convergence of the algorithm is
enhanced by introducing a correction factor to the sensitivities, whereas Huang and Xie (2011)
proposed a modified Bi-directional ESO (BESO) method with the Rational Approximation of
Material Properties (RAMP) model. Alternatively, Xu et al. (2013) propose the guide-weight
approach using the optimality criterium method, and also compares the performance between
SIMP and RAMP in solving body force problems. The work by Chang and Chen (2014) aims
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to apply the Gradient Projection Method (GPM) to topology optimization including density-
dependent force, which is solved as a general nonlinear programming problem. Finally, the
works by Kumar (2022) and Garaigordobil et al. (2022) represent the most recent develop-
ments in topology optimization of structures subject to self-weight loading. In Kumar (2022), a
density-based approach grounded in a novel mass density interpolation strategy using a smooth
Heaviside function is proposed, aiming for a continuous transition between solid and void states
of elements. Finally, the work by Garaigordobil et al. (2022) proposes the integration of topology
optimization procedures and additive manufacturing techniques with overhang constraints.

In contrast to the aforementioned approaches, the recent paper by Novotny et al. (2021) pro-
poses a novel regularized formulation for the compliance minimization under volume constraint
problem of structures subject to self-weight loading. The non-suitability of the standard for-
mulation is confirmed by Novotny et al. (2021) through a simple analysis of a one dimensional
bar subject to self-weight loading, showing that its use leads to trivial solutions in the case of
pure self-weight loading, by removing all the material. In this sense, the regularized version of
the standard compliance minimization problem under volume constraint from Novotny et al.
(2021) aims to avoid such trivial solutions and, therefore, allows for imposing any feasible vol-
ume constraint. Roughly speaking, the introduction of the so-called regularizing term to the
problem formulation allows for characterizing a non-trivial local minimizer. In addition, the
parasitic effects associated with low densities designs reported in Bruyneel and Duysinx (2005)
are naturally avoided in Novotny et al. (2021) by the use of the topological derivative concept
combined with a level-set domain representation method. In fact, the topological derivative
method has been originally designed to deal with structural topology optimization (Soko lowski

and Żochowski, 1999; Garreau et al., 2001), by giving a precise and quantitative information on
the sensitivity of structural responses with respect to topological domain perturbations, such as
nucleation of small holes. Hence, no intermediate densities (grey-scale) approach is necessary.

Therefore, our main purpose in this paper is to extend the work by Novotny et al. (2021) to
the topology optimization of self-weight loading structures into three spatial dimensions. We
stress however that this extension is non-trivial since the associated topological derivative of the
structural compliance accounting for body forces is not fully available in the literature and thus
has to be deduced. In particular, the contribution of the body force itself has not been considered
yet in the case of three-dimensional elasticity. Hence, the topological derivative with respect
to the nucleation of spherical inclusions endowed with different material properties from the
background governed by a contrast parameter is rigorously derived. The asymptotic formulas
are justified by a priori estimates of the remainders with the help of the compound asymptotic
analysis method fully developed in the book by Maz’ya et al. (2000). See also the books by
Dalla Riva et al. (2021), Ammari and Kang (2004) and Ammari et al. (2013a). In addition, the
obtained results are presented in their limit cases with respect to the contrast parameter, leading
to closed “plug-and-play” formulae that are easy to interpret and implement, which represents
the main theoretical contribution of the paper. Actually, the obtained formulae are useful not
only for solving the problem we are dealing with, but also to many other relevant applications
governed by energy-like shape functional, such as structural eigen-value problems, imaging of
structural defects, synthesis of elastic microstructures and design of compliant mechanisms, for
instance. Finally, in order to show the effectiveness of the proposed approach, some benchmark
examples into three spatial dimensions are presented, which are: (1) a bridge structure under
pure self-weight loading; (2) a truss-like structure subject to both, self-weight loading and ex-
ternal forces acting co-linearly and in orthogonal directions and (3) a tower structure under
external loads and dominant self-weight loading.

The paper is organized as follows. In Section 2 the optimization problem we are dealing with
is introduced. The topological derivative method is presented in Section 3. The topological
asymptotic analysis of the compliance shape functional with respect to nucleation of spherical
inclusions is relegated to the Appendix A. The topology optimization algorithm based on the
resulting topological derivative and a level-set domain representation method is explained in
details through Section 3.1. In Section 3.2, relevant computational aspects of the FreeFEM
implementation are discussed. Some numerical experiments are presented in Section 4, showing
the effectiveness of the proposed approach. Finally, the paper ends with some concluding remarks
in Section 5.
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2. Problem Formulation

Let us consider an open and bounded domain D ⊂ R3 with Lipschitz boundary denoted as
Γ := ∂D. The boundary Γ is the union of two given non-overlapping subsets ΓD and ΓN , that
is Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅, where ΓD and ΓN are Dirichlet and Neumann boundaries,
respectively. See sketch in Figure 1.

0

Figure 1. The elasticity problem.

We are interested in the minimum compliance problem of self-weight loading structures under
volume constraint. Since this problem leads to the trivial solution as the self-weight becomes
dominant, the regularized formulation proposed in Novotny et al. (2021) is adopted, which enjoys
two important features: (a) it allows for imposing any feasible volume constraint and (b) the
standard (original) formulation is recovered once the regularizing parameter vanishes. Such a
problem consists in finding a subdomain Ω ⊂ D that solves the following minimization problem:{

Minimize
Ω⊂D

Fα
Ω(u) := C(u) + α|Ω|−1 ,

Subject to |Ω| ≤M,
(2.1)

where the quantity M > 0 is the volume constraint, 0 ≤ α < ∞ is the so-called regularizing
parameter and C(u) is the structural compliance, given by

C(u) =

∫
ΓN

q · u+

∫
D
b · u , (2.2)

with q the prescribed traction on ΓN . The vector displacement field u is the solution of the
following variational problem: Find u ∈ U , such that:∫

D
σ(u) · (∇η)s =

∫
D
b · η +

∫
ΓN

q · η , ∀η ∈ V , (2.3)

where the stress tensor σ(u) and the self-weight b are, respectively, given by

σ(u) = δC(∇u)s and b = δb0 , (2.4)

with the constant vector b0 representing a reference body force. The spaces U and V are defined
as

U = V = {φ ∈ H1(D) : φ|ΓD
= 0} . (2.5)

The statement of the problem is complemented with the definition of the following piece-wise
constant functions

δ(x) :=

{
1, if x ∈ Ω ,
δ0, if x ∈ D \ Ω ,

(2.6)

with 0 < δ0 ≪ 1 representing a very weak/light phase used to mimic voids. Finally, the strong
system associated with the variational problem (2.3) can be stated as: Find u, such that

divσ(u) = b in D ,
σ(u) = δC(∇u)s

u = 0 on ΓD ,
σ(u)n = q on ΓN .

(2.7)

In this paper, the topological derivative method is used for solving the optimization problem
(2.1), which is presented in the next section.
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3. Topological derivative method

The topological derivative is defined as the first term of the asymptotic expansion of a given
shape functional with respect to a small parameter that measures the size of singular domain
perturbations, such as holes, inclusions, source-terms and cracks. In other words, the topo-
logical derivative measures the sensitivity of the associated shape functional with respect to
the nucleation of a singular domain perturbation. This concept can naturally be used as a
steepest-descent direction in an optimization process like in any method based on the gradient
of the cost functional. Thus, the topological derivative method has applications in many dif-
ferent fields. For a complete review of the topological derivative method and the most recent
developments in this area, see the special issue on the topological derivative method and its
applications in computational engineering recently published in the Engineering Computations
Journal (Novotny et al., 2022), covering various topics ranging from new theoretical develop-
ments (Amstutz, 2022; Baumann and Sturm, 2022; Delfour, 2022) to applications in structural
and fluid dynamics topology optimization (Kliewe et al., 2022; Romero, 2022; Santos and Lopes,
2022), geometrical inverse problems (Bonnet, 2022; Canelas and Roche, 2022; Fernandez and
Prakash, 2022; Louër and Rapún, 2022a,b), synthesis and optimal design of metamaterials (Fer-
rer and Giusti, 2022; Yera et al., 2022), fracture mechanics modelling (Xavier and Van Goethem,
2022), up to industrial applications (Rakotondrainibe et al., 2022) and experimental validation
of the topological derivative method (Barros et al., 2022).

In this work, the parameter δ from (2.6) induces a very weak/light phase for mimicking voids,
which allows for working in a fixed computational domain. Therefore, the topological derivative
associated with the shape functional Fα

Ω(u) from (2.1) is here stated in its limit cases versions
when a small portion of material is either removed or added to the design domain, namely:

Theorem 1. The topological derivative of the shape functional Fα
Ω(u) from (2.1), with respect

to the nucleation of a small spherical inclusion endowed with different material property from
the background, may be written as the sum of the topological derivative of the compliance shape
functional and the topological derivative associated with the regularizing term, namely

DTFα
Ω(x) = DTC(x) − α|Ω|−2DT |Ω|(x) . (3.1)

Case A. Let us consider x ∈ Ω. In this case, a small portion of material is removed from Ω.
Then the topological derivative DTC reads

DTC = P0σ(u) · (∇u)s − 2b0 · u , (3.2)

with the polarization tensor P0 written as

P0 =
3

2

1 − ν

7 − 5ν

(
10I− 1 − 5ν

1 − 2ν
I ⊗ I

)
. (3.3)

In addition, the topological derivative DT |Ω| is simply given by

DT |Ω| = −1 . (3.4)

Case B. Let us consider x ∈ D \ Ω. In this case, a small portion of material is added within
D \ Ω. Then the topological derivative DTC is given by

DTC = P∞σ(u) · (∇u)s + 2b0 · u , (3.5)

with the polarization tensor P∞ written as

P∞ = −3

2

1 − ν

4 − 5ν

(
5I +

1 − 5ν

1 + ν
I ⊗ I

)
. (3.6)

Finally, the topological derivative DT |Ω| is given by

DT |Ω| = +1 . (3.7)

Proof. Since the regularizing term does not depend on the state u, its topological derivative is
trivially obtained. In contrast, the topological derivative calculation of the compliance shape
functional is much more involved and will be rigorously presented in the Appendix A. □
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3.1. Topology optimization algorithm. In this section, we provide a brief description of
the topology optimization algorithm based on the topological derivative combined with a level-
set domain representation method as proposed by Amstutz and Andrä (2006). The topology
optimization problem (2.1) is conveniently rewritten as Minimize

Ω⊂D
Jα(Ω) :=

J(Ω)

J(D)
+ α

(
|Ω|
|D|

)−1

,

Subject to |Ω| ≤M,

(3.8)

where J(Ω) = C(u) and J(D) = C(u0), with u and u0 solutions to (2.3) for Ω ⊂ D and Ω ≡ D,
respectively. The quantities J(Ω)/J(D) and |Ω|/|D| are referred to as relative compliance and
volume fraction, respectively. The idea consists in achieving a local optimality condition for the
minimization problem (3.8), given in terms of the topological derivative and a level-set function.
Furthermore, the domain Ω ⊂ D and the complement D \ Ω are characterized by a level-set
function Ψ of the form

Ω = {x ∈ D : Ψ(x) < 0} and D \ Ω = {x ∈ D : Ψ(x) > 0} , (3.9)

where Ψ vanishes on the interface between Ω and D\Ω. A local sufficient optimality condition for
problem (3.8), under the considered class of domain perturbation given by spherical inclusions,
can be stated as (Amstutz, 2011)

DTJ
α(x) > 0 ∀x ∈ D . (3.10)

In this sense, let us define the quantity

g(x) :=

{
−DTJ

α, if Ψ(x) < 0 ,
+DTJ

α, if Ψ(x) > 0 ,
(3.11)

which allows for rewriting the condition (3.10) as follows{
g(x) < 0, if Ψ(x) < 0 ,
g(x) > 0, if Ψ(x) > 0 .

(3.12)

Note that (3.12) is satisfied, where the quantity g coincides with the level-set function Ψ up to
a strictly positive factor, namely ∃ τ > 0 : g = τΨ, or equivalently

θ := arccos

[
⟨g,Ψ⟩L2(D)

∥g∥L2(D)∥Ψ∥L2(D)

]
= 0 , (3.13)

which shall be used as the optimality condition in the topology design algorithm, where θ is the
angle between the functions g and Ψ in L2(D).

Now, with all the elements presented so far, we are in condition to explain the algorithm.
We start by choosing an initial level-set function Ψ0. In a generic iteration i, we compute the
function gi associated with the level-set function Ψi. Then, the new level-set function Ψi+1 is
updated according to the following linear combination of the functions gi and Ψi

Ψ0 : ∥Ψ0∥L2(D) = 1 , (3.14)

Ψi+1 =
1

sinθi

[
sin((1 − w)θi) + sin(wθi)

gi
∥gi∥L2(D)

]
∀i ∈ N , (3.15)

where θi is the angle between gi and Ψi, and w is a step size determined by a linear search
performed to decrease the value of the objective function Jα

i associated with Ψi. The process
ends when the condition θi ≤ ϵθ is satisfied at some iteration, where ϵθ is a given small numerical
tolerance. If at some iteration the line-search step size w is found to be smaller than a given
numerical tolerance ϵw > 0 and the local optimality condition is not satisfied, that is θi > ϵθ,
then an adaptive mesh refinement is performed and the iterative process is carried on.
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3.2. Computational implementation aspects. The topology optimization algorithm pre-
sented in Section 3.1 is implemented in FreeFEM, an open-source program written in C++ for
solving partial differential equations by the finite element method (Hecht). In fact, FreeFEM was
developed to easily handle the complex processes required for finite element analysis with a few
commands, and it is compatible with many external libraries, such as ARPACK, Gmsh, Mmg,
Paraview, and PETSc, for instance. Thus, FreeFEM presents many interesting and useful fea-
tures, such as a remarkable resemblance of the mathematical and computational languages and
an almost straightforward extension to three spatial dimensions of implementations originally
written for two dimensional problems. Thanks to this last feature, the FreeFEM implementa-
tion for the topology design optimization of structures into two spatial dimensions submitted
to external loads, recently reported in the educational paper by Filho et al. (2023), can be eas-
ily extended, from a computational perspective, to the topology optimization problem of three
dimensional structures subject to self-weight loading we are dealing with. Although FreeFEM
offers a parallel version based on the domain decomposition method and PETSc library for the
linear algebra backend, the present implementation is completely analogous to the one provided
in Filho et al. (2023) and relies on the use of direct solvers. In this sense, we present some sample
codes with the main changes necessary to extend the referred code to three spatial dimensions
and to include the self-weight loading contribution. More precisely, these sample codes focus
mainly in generating and discretizing the initial design domain, solving the elasticity system,
computing the topological derivative field and performing the adaptive mesh refinement. Those
sample codes represent the major changes to be done in the reference code provided in Filho
et al. (2023). In fact, only small changes are required in the optimization process in order to
adapt it to the present case, such as computing the compliance shape functional and the volume
as well as the associated topological derivative at each iteration. Regarding the construction
of the initial design domain, FreeFEM provides simple mesh generation functions such as the
command cube. In this step, characterizing the mesh boundaries with the appropriate labels is
crucial for correctly imposing the boundary conditions and later solving the elasticity system.
In this sense, Table 1 presents the labels associated with different boundary condition types
adopted herein.

Table 1. Boundary labels

Label Corresponding boundary condition

1 Dirichlet homogeneous
2 Neumann non-homogeneous (surface traction)
3 symmetry in the x1 direction
4 symmetry in the x2 direction

The topology optimization implementation provided in Filho et al. (2023) explores the pow-
erful feature of macros, specially for computing the topological derivative field and for solving
the elasticity problem. Macros not only make names shorter but also avoid runtime over-
heads. In simple terms, a macro is a piece of code in a program that is replaced by the
value of the macro. Whenever a macro name is encountered by the compiler, it replaces
the name with the definition of the macro. In this sense, the topological derivative of the
compliance shape functional at the bulk (3.2) and weak (3.5) phases is respectively given
by the macros dte(u) and dti(u) with the self-weight contribution given in macro bb(u).
Moreover, in Listing 1 psi and chi are, respectively, the level-set and characteristic func-
tion of the bulk phase, chigamma represents the material distribution, E is the Young’s mod-
ulus, nu the Poisson ratio and la and mu are the Lamé’s coefficients. Therefore, the de-
scent direction g(x) given by expression (3.11) is translated to FreeFEM language as g =

-chi*dte(u) + (1-chi)*dti(u), as shown in the last line of the following sample code.

Listing 1. The use of macros for computing the topological derivative field.
// Coefficients to compute the topological derivative

real coef0E = (3.0/2.0)*((1.0 - nu)/(7.0 - 5.0*nu)), coef1E = coef0E*10.0, coef2E = coef0E*((5.0*nu - 1.0)

↪→ /(1.0 - 2.0*nu));
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real coef0I = (3.0/2.0)*((1.0 - nu)/(4.0 - 5.0*nu)), coef1I = -5.0*coef0I, coef2I = coef0I*((5.0*nu - 1.0)

↪→ /(1.0 + nu));

// Macros

macro def(i)[i,i#y,i#z] //EOM

macro init(i)[i, i, i] //EOM

macro div(u) (dx(u) + dy(u#y) + dz(u#z)) // EOM

macro e11(u) (dx(u)) // EOM

macro e22(u) (dy(u#y)) // EOM

macro e33(u) (dz(u#z)) // EOM

macro e12(u) ((dy(u)+dx(u#y))/2.0) // EOM

macro e13(u) ((dz(u)+dx(u#z))/2.0) // EOM

macro e23(u) ((dy(u#z)+dz(u#y))/2.0) // EOM

macro s11(u) (chigamma*(la*div(u) + 2.0*mu*e11(u))) // EOM

macro s22(u) (chigamma*(la*div(u) + 2.0*mu*e22(u))) // EOM

macro s33(u) (chigamma*(la*div(u) + 2.0*mu*e33(u))) // EOM

macro s12(u) (chigamma*(2.0*mu*e12(u))) // EOM

macro s13(u) (chigamma*(2.0*mu*e13(u))) // EOM

macro s23(u) (chigamma*(2.0*mu*e23(u))) // EOM

macro trs(u) (s11(u) + s22(u) + s33(u)) // EOM

macro se(u) (s11(u)*e11(u) + s22(u)*e22(u) + s33(u)*e33(u) + 2.0*(s12(u)*e12(u) + s13(u)*e13(u) + s23(u)*

↪→ e23(u))) //

macro bb(u) (-2.0*rho*gravity*uz) // EOM

macro dte (u) (coef1E*se(u) + coef2E*trs(u)*div(u) - bb(u))// EOM

macro dti (u) (coef1I*se(u) + coef2I*trs(u)*div(u) + bb(u))// EOM

// Computing function g (descent direction)

chi = (psi < 0);

g = -chi*dte(u) + (1 - chi)*dti(u);

For solving the elasticity system into three spatial dimensions in FreeFEM, only a few changes
are necessary when compared to the two-dimensional case provided in Filho et al. (2023). One
should notice that the boundary labels described in Table 1 are also adopted in Listing 2 to
solve elasticity system. In addition, the weak formulation given in (2.3) is easily translated to
FreeFEM language as shown in Listing 2, highlighting the similarities between the mathematical
and FreeFEM computational language. Finally, the elasticity problem is solved with the direct
solver UMFPACK64.

Listing 2. The elasticity system.
load "UMFPACK64"

real sqrt2 = sqrt(2.0);

macro epsilon (u) [

dx(u), dy(u#y), dz(u#z),

(dz(u#y)+dy(u#z))/sqrt2,

(dz(u)+dx(u#z))/sqrt2,

(dy(u)+dx(u#y))/sqrt2] // EOM

problem elasticity(def(u), def(v), solver = "UMFPACK64")

= int3d(Th)(la*chigamma*(div(u)*div(v)) + 2.0*mu*chigamma*(epsilon(u)’*epsilon(v)))

- int3d(Th)(-chigamma*rho*gravity*vz) - int2d(Th, 2)(qx*v + qy*vy + qz*vz)

+ on(1, u = 0, uy = 0, uz = 0) + on(3, u = 0) + on(4, uy = 0);

The use of adaptive mesh refinement aims not only reducing the computational cost when
compared to a structured mesh refinement over the whole hold-all domain, but also to achieve a
final solution with an enhanced resolution. Whenever the optimality condition or the stopping
criterion are fulfilled, an adaptive mesh refinement can be performed, as explained in Section
3.1. The basic idea consists in refining the mesh only in the region adjacent to the design domain
Ω obtained in the previous iteration, while the region D\Ω filled with weak/light material phase
remains with coarse elements. For such, we rely on the open-source library Mmg, which can be
called from within FreeFEM. First mshmet saves the metric for the mesh Th and characteristic
function chi. Then Mmg3d is called to read the metric and generating the new adapted mesh,
as shown in the following Listing:

Listing 3. Adaptive mesh refinement.
load "mmg"

load "mshmet"

real[int] met=mshmet(Th, chi, hmin = Hmin, hmax = Hmax, err = Err);

Th=mmg3d(Th, metric=met, hausd = Hausd, hgrad = Hgrad);

The input parameters are listed as follows:
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• metric: array to set or get metric data information;
• hmin, hmax: minimum and maximum edge size, respectively;
• err: interpolation error level, set as 0.01 by default;
• hausd: Hausdorff parameter to control boundary approximation, set as 0.01 by default;
• hgrad: parameter to set the gradation level, which controls the ratio between two ad-

jacent edges. With a gradation of h, two adjacent edges l1 and l2 must respect that
1/h ≤ l1/l2 ≤ h.

4. Numerical Experiments

In this section, three numerical experiments are presented to show the effectiveness of the
proposed methodology. The minimization problem (3.8) is solved by using the topology opti-
mization algorithm described in Section 3.1. In all numerical examples, the stopping criterion
and the optimality threshold are set as ϵκ = 1.0 × 10−3 and ϵθ = 1◦, respectively, and the
parameter eps is set as the smallest edge of the mesh. In addition, the following material prop-
erties are assumed: Young’s modulus E = 210 GPa and Poisson ratio ν = 1/3. The body force
b = δb0, with δ given in (2.6) and b0 = −ρ0ge3, where ρ0 = 7.85 × 103 kg/m3, g = 10 m/s2

and ei denotes the canonical basis of R3, with i = 1, 2, 3. In addition, since parameter δ0 has
been introduced to mimic voids, then it has to be set as small as possible. After performing an
exhaustive numerical study, the material threshold was fixed as δ0 = 10−6, which represents a
good compromise in the sense that it does not contribute significantly neither to the stiffness nor
to the weight of the resulting structure, but at the same time this value allows for keeping the
stiffness matrix well conditioned. The surface traction q has intensity κq0, where q0 = ρ0g |D|
and 0 ≤ κ ≤ 1 is a rate parameter relating the surface traction intensity with the total weight of
the hold-all structure. Moreover, the mechanical problem is discretized into linear tetrahedral
finite elements. Finally, all numerical experiments were performed in a Windows Workstation
with dual Intel Xeon Silver 4216 processor with a clock frequency of 2.10 GHz, having 16 cores
in total and 96 GB of memory.

4.1. Example 1. In this example, the hold-all domain D is given by a prismatic block of
20 × 5 × 10 m3, subject only to self-weight loading and fixed (clamped) in a small area of
5 × 0.25 m2 at the bottom of the two opposite sides, as shown in Figure 2.

Figure 2. Example 1: Initial domain and boundary conditions.

For symmetry reasons, only one fourth of the domain is discretized in a structured mesh with
96,000 tetrahedral elements and 18,491 nodes. As previously mentioned, FreeFEM offers simple
mesh generation functions, such as the command cube. For the sake of completeness, Listing
4 provides a simple implementation for generating and discretizing the initial design domain
and also for imposing the labels associated with the desired boundary conditions regarding the
elasticity problem.

Listing 4. Generating the initial discretized design domain.
include "cube.idp"

int n = 1; // mesh generation parameter

int[int] Nxyz1 = [10*n, 40*n, 1*n];

real [int, int] Bxyz1 = [[0.0, 02.5], [0., 10.0], [0., 0.25]];

int [int, int] Lxyz1 = [[4, 3], [1,3], [3,3]];
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int[int] Nxyz2 = [10*n, 40*n, 39*n];

real [int, int] Bxyz2 = [[0.0, 2.5], [0.0, 1.0], [0.25, 1.0]];

int [int, int] Lxyz2 = [[4, 3], [3,5], [3,3]];

In this particular case, in which the structure is submitted only to self-weight loading, if we
set α = 0 the volume fraction converges to zero (that is, the standard compliance formulation
is recovered). On the other hand, the volume fraction tends to increase for higher values of
the parameter α. In fact, by setting α = 2.4, the volume fraction goes to 100% for the present
example. In this sense, in order to observe the role of the regularizing parameter α for the
case of pure self-weight loading (κ = 0), we take it in the interval 0 ≤ α ≤ 2.4 to compute the
associated volume fraction and relative compliance with respect of α. The obtained results are
reported in the graph from Figure 3. As expected, in the interval 0 < α < 2.4, a family of non-
trivial volume unconstrained solutions can be obtained, showing that the regularizing parameter
α plays a fundamental role in the present context for imposing feasible volume fractions.

Figure 3. Example 1: Volume fraction and relative compliance for different
values of the regularizing parameter α.

Figure 4. Example 1: Perspective view of the final topology.

Let us now select α = 0.45, which leads to a volume fraction of 30%. The optimal solution is
obtained after only 41 iterations and four adaptive mesh refinements. The final adapted mesh
contains 3.224.566 elements and 547.147 nodes. Finally, the optimality condition is fulfilled with
θ41 ≈ 0◦. As previously mentioned, the use of adaptive mesh refinement aims to perform the
topology optimization with a reduced computational cost and also to enhance the resolution of
the optimal topology. In fact, for this particular example, the final topology is obtained after
approximately 4 hours. Figure 5 illustrates how the mesh refinements increase the computational
time for each iteration of optimization process, as the blue line becomes steeper after the adaptive
mesh refinement procedures.
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Figure 5. Example 2: Computational time during the iterative process.

Finally, the computational time for generating the new adapted meshes (see Listing 3) rep-
resents only a small fraction of the total computational time, as shown in Table 2. Therefore,
the most expensive computational task of the FreeFEM implementation consists in solving the
elasticity system, as expected.

Table 2. Computational time for generating the adapted meshes.

Mesh Refinement Computational Time (s)

1st 4.9
2nd 18.2
3rd 65.4
4th 204.2

4.2. Example 2. Now, let us consider a hold-all domain given by a cube of dimensions 5× 5×
5 m3 with hinge supports at the bottom, as shown in Figure 6. The cube is also subject to a
surface traction q = (κq0, 0, 0) N distributed in a small square region of dimensions 0.5×0.5 m2

at the center of the top face and acting in the horizontal direction, with the loading factor
κ = 0.4. The hinge supports are also squares of dimension 0.25 × 0.25 m2 with their centers at
0.375 m from the edges of the cube.

Figure 6. Example 2: Initial domain and boundary conditions.

In this example, two distinct cases are considered in the absence of regularizing parameter
(α = 0). The first one, referred to as Case 1, is free of self-weight loading whereas the second
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case, named Case 2, takes into account the body force. In both cases, a volume fraction of 9% is
imposed by linear penalization. For symmetry reasons, only one half of the domain is discretized
in a structured mesh with 192,000 tetrahedral elements. At the end of the iterative process (in
which three adaptive mesh refinements were performed for both cases), the final adapted mesh
contains 2,793,143 elements and 472,570 nodes in Case 1 and 2,603,079 elements and 441,681
nodes in Case 2. Figure 7 shows the optimal topology obtained after 34 iterations for the case
free of self-weight loading, in which the optimality condition is fulfilled with θ34 ≈ 0.6◦. The
final topology reported in Figure 8 for the scenario in which the body force is taken into account
is obtained after 84 iterations, with the optimality condition also fulfilled, namely θ84 ≈ 0.1◦.

Figure 7. Example 2, Case 1: Top, bottom, side 1 and side 2 views of the final topology.

Figure 8. Example 2, Case 2: Top, bottom, side 1, side 2 and side 3 views of
the final topology.

4.3. Example 3. Finally, let us consider the design of a tower by taking into account both
external and body forces. The hold-all domain D is given by a prismatic block of dimensions
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120× 120× 300 m3 fixed in small square areas of 3× 3 m2 at the bottom of each side, as shown
in Figure 9. The block is subject to a surface traction q = (0, 0,−κq0) N distributed in a small
square region of dimensions 0.6 × 0.6 m2 at the center of the top face and acting in the vertical
direction, with the loading factor κ = 0.02.

Figure 9. Example 3: Initial domain and boundary conditions.

Once more, only one fourth of the domain is discretized for symmetry reasons. The initial
mesh contains 266.408 tetrahedral elements and 44.541 nodes, whereas at the end of the iterative
process the final adapted mesh contains 1.983.117 elements and 335.129 nodes. In this particular
example, the regularizing parameter is set as α = 0.06, which leads to a volume fraction of
approximately 9%. The optimality condition is fulfilled after five mesh refinements and 84
iterations, with θ84 ≈ 0◦. The final topology is shown in Figures 10 and 11.

Figure 10. Example 3: Top, bottom and diagonal cut views of the final topology.
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Figure 11. Example 3: Perspective view of the final topology.

5. Conclusions

We have considered the challenging problem regarding topology optimization of structures
subject to self-weight loading. The main issue of such problem lies on the fact that the use of
standard compliance minimization under volume constraint formulation leads to several diffi-
culties already reported in the literature, such as non-monotonic behaviour of the compliance,
possible unconstrained character of the optimum and parasitic effects for low densities in density-
based approaches. Therefore, a regularized formulation of the classical compliance minimization
problem which allows for imposing any feasible volume constraint has been adopted in order to
overcome the first two difficulties. Besides, this regularized formulation also enjoys the impor-
tant feature of recovering the standard (original) formulation once the regularizing parameter
vanishes. In addition, the regularizing term is very simple and can be adopted in any other topol-
ogy optimization method like the ones based on density models, including SIMP, for instance.
The resulting topology optimization problem has been solved with the help of the topological
derivative method, leading to a 0-1 topology optimization algorithm which naturally overcomes
the last difficulty as no intermediate densities approach is necessary. Finally, in order to high-
light the effectiveness of the proposed approach, a set of benchmark examples into three spatial
dimensions has been presented, which are: a Roman-like bridge structure under pure self-weight
loading (Example 1), a truss-like structure subject to both, self-weight loading and external
forces acting co-linearly and in orthogonal directions (Example 2) and an Eiffel-like tower struc-
ture under external loads and dominant self-weight loading (Example 3). As a future work, we
are interested in the multimaterial topology optimization of structures subject to self-weight
loading, following the original ideas by Onco and Giusti (2020) and Gangl (2020), for instance.

Appendix A. Topological derivative of the compliance shape functional

Let us consider an open and bounded domain D ∈ Rd, with d ≥ 2, which is subject to a
non-smooth perturbation confined in a small ball-shaped region Bε(x̂) of radius ε and centre
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at an arbitrary point x̂ of D, such that Bε(x̂) ⊂ D. We introduce the characteristic function
x 7→ χ(x), x ∈ Rd, associated with the unperturbed domain, namely χ := 1D, such that

|D| =

∫
Rd

χ , (A.1)

where |D| is the Lebesgue measure of D. Now, we define a characteristic function associated
with the topologically perturbed domain of the form x 7→ χε(x̂; x), x ∈ Rd. In the case of a
perforation, for instance, χε(x̂) := 1D−1Bε(x̂). Finally, we assume that the functional ψ(χε(x̂)),
associated with the topologically perturbed domain, admits a topological asymptotic expansion
of the form

ψ(χε(x̂)) = ψ(χ) + f(ε)DT (x̂) + o(f(ε)) , (A.2)

where ψ(χ) is the shape functional associated with the unperturbed domain, f(ε) is a pos-
itive function such that f(ε) → 0 when ε → 0, and o(f(ε)) is the remainder term, that is
o(f(ε))/f(ε) → 0 when ε → 0. Function x̂ 7→ DTψ(x̂) is called the topological derivative of
ψ at x̂. Therefore, the product f(ε)DTψ(x̂) represents a first order correction over ψ(χ) to
approximate ψ(χε(x̂)). In addition, after rearranging (A.2), we have

ψ(χε(x̂)) − ψ(χ)

f(ε)
= DTψ(x̂) +

o(f(ε))

f(ε)
. (A.3)

The limit passage ε→ 0 in the above expression leads to the general definition for the topological
derivative, namely

DTψ(x̂) :=
ψ(χε(x̂)) − ψ(χ)

f(ε)
. (A.4)

Therefore, in order to evaluate the topological derivative of the compliance shape functional
defined in (2.2), it is necessary to introduce the topologically perturbed counterpart of the
problem. The idea consists in nucleating a spherical inclusion Bε(x̂) endowed with different
material property from the background. In this case, χε(x̂) is defined as χε(x̂) = 1D − (1 −
γ)1Bε(x̂), with the contrast γ defined as

γ = γ(x) :=

{
δ0, if x ∈ Ω ,
δ−1
0 , if x ∈ D \ Ω ,

(A.5)

which allows us to induce a level-set domain representation method as presented in Section 3.1.
From these elements, the following piece-wise constant function is introduced

γε = γε(x) :=

{
1, if x ∈ D \Bε(x̂) ,
γ, if x ∈ Bε(x̂) .

(A.6)

Then, the compliance shape functional associated with the perturbed problem, denoted by
Cε(uε), is defined as

Cε(uε) =

∫
D
bε · uε +

∫
ΓN

q · uε , (A.7)

where the vector function uε is the solution of the following variational problem: Find uε ∈ U ,
such that ∫

D
σε(uε) · (∇η)s =

∫
D
bε · η +

∫
ΓN

q · η , ∀η ∈ V , (A.8)

with σε = γεσ(uε), bε = γεb and γε given by (A.6). The strong system associated with the
variational problem (A.8) can be written as: Find uε, such that

divσε(uε) = bε in D ,
σε(uε) = γεδC(∇uε)s

uε = 0 on ΓD ,
σ(uε)n = q on ΓN .

JuεK
Jσε(uε)Kn

=
=

0
0

}
on ∂Bε ,

(A.9)

where the operator JφK denotes the jump of function φ on the boundary of the inclusion ∂Bε,
i.e., JφK := φ|D\Bε

−φ|Bε
on ∂Bε, see Figure 12. The transmission conditions on the interface ∂Bε

comes out naturally from the variational formulation (A.8), namely JuεK = 0 and Jσε(uε)Kn = 0.
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0

Figure 12. The elasticity problem defined in the perturbed domain.

In order to simplify further analysis, let us introduce an auxiliary vector function v, which is
the solution of the following adjoint variational problem: Find v ∈ V, such that∫

D
σ(v) · (∇η)s = −

∫
D
b · η −

∫
ΓN

q · η ∀η ∈ V , (A.10)

with σ(v) = δC(∇v)s. Note that, in this particular case, the problem is self-adjoint in the sense
that, by comparing the adjoint equation (A.10) with the state equation (2.3), we conclude that
v = −u, provided that U = V according to (2.5).

A.1. Existence of the topological derivative. The existence of the associated topological
derivative is ensured by the following result:

Lemma 2. Let u and uε be the solutions of the original (2.3) and perturbed (A.8) problems,
respectively. Then, the following estimates holds true:

∥uε − u∥H1(D) ≤ Cε3/2 , (A.11)

where C is a constant independent of the small parameter ε.

Proof. From the definition of the contrast γε given by (A.6), we may rewrite (2.3) as∫
D\Bε

σ(u) · (∇η)s +

∫
Bε

σ(u) · (∇η)s ±
∫
Bε

γσ(u) · (∇η)s =∫
D\Bε

b · η +

∫
Bε

b · η ±
∫
Bε

γb · η +

∫
ΓN

q · η . (A.12)

or even as∫
D
σε(u) · (∇η)s + (1 − γ)

∫
Bε

σ(u) · (∇η)s =

∫
D
bε · η + (1 − γ)

∫
Bε

b · η +

∫
ΓN

q · η . (A.13)

Now, by taking η = vε := uε − u as a test function in the above equation and also in (A.8), it
follows that ∫

D
σε(u) · (∇vε)s =

∫
D
bε · vε +

∫
ΓN

q · vε

+ (1 − γ)

∫
Bε

b · vε − (1 − γ)

∫
Bε

σ(u) · (∇vε)s , (A.14)∫
D
σε(uε) · (∇vε)s =

∫
D
bε · vε +

∫
ΓN

q · vε , (A.15)

After subtracting the first equation from the second one, we obtain the following equality:∫
D
σε(vε) · (∇vε)s = (1 − γ)

∫
Bε

(σ(u) · (∇vε)s − b · vε) . (A.16)



16

From the Cauchy-Schwarz inequality, there is∫
D
σε(vε) · (∇vε)s ≤ C1∥σ(u)∥L2(Bε)∥(∇vε)s∥L2(Bε) + C2∥b∥L2(Bε)∥vε∥L2(Bε)

≤ C3ε
3/2∥vε∥H1(D) , (A.17)

where we have used the interior elliptic regularity of u and the continuity of function b at the
point x̂. In addition, from the coercivity of the bilinear form of the left-hand side of (A.17),
namely

c∥vε∥2H1(D ≤
∫
D
σε(vε) · (∇vε)s , (A.18)

we have

∥vε∥2H1(D) ≤ Cε3/2∥vε∥H1(D) , (A.19)

which leads to the result with C = C3/c and vε = uε − u. □

A.2. Topological asymptotic analysis. Now, with the aid of the adjoint equation (A.10) and
some manipulation, it is possible to write variation of the shape functional in terms of an integral
concentrated in the ball Bε. In fact, by subtracting (2.2) from (A.7) and from the definition of
the contrast γε in (A.6), it follows that

Cε(uε) − C(u) =

∫
D

(bε · uε − b · u) +

∫
ΓN

q · (uε − u)

= −(1 − γ)

∫
Bε

b · uε +

∫
D
b · (uε − u) +

∫
ΓN

q · (uε − u) . (A.20)

The state equation associated with the topologically perturbed problem (A.8) may be rewritten
as ∫

D\Bε

σ(uε) · (∇η)s +

∫
Bε

γσ(uε) · (∇η)s ±
∫
Bε

σ(uε) · (∇η)s =∫
D\Bε

b · η
∫
Bε

γb · η ±
∫
Bε

b · η
∫
ΓN

q · η , (A.21)

where we have used the definition of the contrast γε given in (A.6). Then, we have that∫
D
σ(uε) · (∇η)s =

∫
D
b · η + (1 − γ)

∫
Bε

σ(uε) · (∇η)s − (1 − γ)

∫
Bε

b · η +

∫
ΓN

q · η . (A.22)

Now, by subtracting the state equation associated with the unperturbed problem (2.2) from the
above result, it follows that∫

D
σ(uε − u) · (∇η)s = (1 − γ)

∫
Bε

σ(uε) · (∇η)s − (1 − γ)

∫
Bε

b · η . (A.23)

By taking η = v as a test function in the above equation, where v is the solution of the adjoint
problem (A.10), we have∫

D
σ(uε − u) · (∇v)s = (1 − γ)

∫
Bε

σ(uε) · (∇v)s − (1 − γ)

∫
Bε

b · v . (A.24)

On the other hand, by setting η = uε−u as a test function in the adjoint equation (A.10), there
is ∫

D
σ(v) · ∇(uε − u)s = −

∫
D
b · (uε − u) −

∫
ΓN

q · (uε − u) . (A.25)

Since the bilinear forms on the left-hand side of the above two last equations are symmetric, we
obtain:∫

D
b · (uε − u) +

∫
ΓN

q · (uε − u) = (1 − γ)

∫
Bε

σ(uε) · (∇v)s + (1 − γ)

∫
Bε

b · v . (A.26)

By adding the term

−(1 − γ)

∫
Bε

b · uε (A.27)
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on both sides of the above expression, there is∫
D
b · (uε − u) − (1 − γ)

∫
Bε

b · uε +

∫
ΓN

q · (uε − u) = (1 − γ)

∫
Bε

σ(uε) · (∇v)s

− (1 − γ)

∫
Bε

b · uε + (1 − γ)

∫
Bε

b · v , (A.28)

and then comparing it with (A.20), we conclude that

Cε(uε) − C(u) =
1 − γ

γ

∫
Bε

σε(uε) · (∇u)s − (1 − γ)

∫
Bε

b · (uε + u) , (A.29)

where we have used the fact that v = −u for the particular case associated with the compliance
shape functional (see comment just after (A.10)).

The variation of the compliance shape functional has been written exclusively in terms of
integrals concentrated in the ball Bε, as shown through (A.29). In order to obtain the associated
topological asymptotic expansion in the form of (A.2), we need to know the asymptotic behaviour
of the solution uε with respect to ε in the neighborhood of the ball Bε. In this sense, let us
propose an ansatz for uε in the form

uε(x) = u(x) + wε(x) + ũε(x) , (A.30)

where u is the solution of the unperturbed problem (2.3), wε is the solution of an exterior
problem yet to be defined and ũε is a remainder. After applying the operator σε = γεσ on the
ansatz (A.30), we have

σε(uε(x)) = σε(u(x)) + σε(wε(x)) + σε(ũε(x))

= γεσ(u(x̂)) + γε(σ(u(x)) − σ(u(x̂))) + σε(wε(x)) + σε(ũε(x)) . (A.31)

On the boundary of the inclusion ∂Bε there is

Jσε(uε)Kn = 0 ⇒ (σ(uε)|D\Bε
− γσ(uε)|Bε

)n = 0 , (A.32)

so that the above expansion evaluated on ∂Bε yields

(1 − γ)σ(u(x̂))n+ (1 − γ)(σ(u(x)) − σ(u(x̂)))n+ Jσε(wε(x))Kn+ Jσε(ũε(x))Kn = 0 , (A.33)

which allows us for choosing the jump Jσε(wε(x))Kn on ∂Bε as

Jσε(wε(x))Kn = −(1 − γ)σ(u(x̂))n . (A.34)

Now, the following exterior problem is formally defined with ε→ 0: Find σε(wε), such that divσε(wε) = 0 in R3 ,
σε(wε) → 0 at ∞ ,

Jσε(wε)Kn = φ̂ on ∂Bε ,
(A.35)

where φ̂ = −(1−γ)σ(u(x̂))n. The above boundary value problem admits an explicit solution. In
addition, once the solution of the exterior problem (A.35) is uniform inside the inclusion Bε(x̂),
it means that the stress acting in the inclusion embedded in the whole three-dimensional space
R3 may be written in the following compact form:

σε(wε(x))|Bε(x̂)
= γTσ(u(x̂)) , (A.36)

where T is a fourth order uniform (constant) tensor given by

T = (3α2 − 1)I + (α1 − α2)I ⊗ I , (A.37)

in which the constants α1 and α2 are given by

α1 =
1 − ν

3(1 − ν) − (1 + ν)(1 − γ)
and α2 =

5(1 − ν)

15(1 − ν) − (8 − 10ν)(1 − γ)
. (A.38)

Now, we proceed with the construction of the remainder ũε in such a way that it compensates
for the discrepancies introduced by the higher order terms in ε as well as by the boundary layer
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wε on the exterior boundary ∂D. Thus, the remainder ũε has to be the solution of the following
boundary value problem: Find ũε, such that

divσε(ũε) = 0 in D ,
σε(ũε) = γεδC(∇ũε)s

ũε = fε on ΓD ,
σ(ũε)n = gε on ΓN .

JũεK
Jσε(ũε)Kn

=
=

0
hε

}
on ∂Bε ,

(A.39)

where fε = −wε|ΓD
, gε = −σ(wε)n|ΓN

and hε = σ̃n with the second order tensor field σ̃(x) =

−(1 − γ)[σ(u(x)) − σ(u(x̂))]. The remainder ũε enjoys the asymptotic behaviour of the form
∥ũε∥H1(D) = O(ε3). The proof is completely analogous to the one obtained in the two spatial
dimensions case in (Novotny and Soko lowski, 2020, Chapter 5).

We may now proceed to the topological derivative evaluation. From the contrast (A.6) and
the ansatz (A.30), the first integral of the right-hand side of (A.29) may be rewritten as∫

Bε

σε(uε) · (∇u)s =

∫
Bε

σε(u) · (∇u)s︸ ︷︷ ︸
(a)

+

∫
Bε

σε(wε) · (∇u)s︸ ︷︷ ︸
(b)

+E1(ε) . (A.40)

The remainder E1(ε) is defined as

E1(ε) =

∫
Bε

σε(ũε) · (∇u)s ,

|E1(ε)| ≤ ∥σε(ũε)∥L2(Bε)∥(∇u)s∥L2(Bε)

≤ C1ε
3/2∥ũε∥H1(D) ≤ C2ε

9/2 = O(ε9/2) , (A.41)

where we have used the Cauchy-Schwarz inequality together with the already known estimate
for ũε. Now, from the term (a) in (A.40), there is∫

Bε

σε(u(x)) · (∇u(x))s =

∫
Bε

γ(σ(u(x)) · (∇u(x))s ± σ(u(x̂)) · (∇u(x̂))s)

=
4

3
πε3γσ(u(x̂)) · (∇u(x̂))s + E2(ε) , (A.42)

where the remainder E2(ε) is given by

E2(ε) =

∫
Bε

(h(x) − h(x̂)) ,

|E2(ε)| ≤ C3∥h(x) − h(x̂)∥L2(Bε)∥1∥L2(Bε)

≤ C4ε
3/2∥x− x̂∥L2(Bε) ≤ C5ε

4 = O(ε4) , (A.43)

with h(x)−h(x̂) = γ(σ(u(x)) · (∇u(x))s−σ(u(x̂)) · (∇u(x̂))s). Once again, the Cauchy-Schwarz
inequality was applied together with the interior elliptic regularity of u. Since the exact solution
of the exterior problem (A.35) is explicitly known, the term (b) from (A.40) can be written as∫

Bε

σε(wε) · (∇u)s =

∫
Bε

(σ(wε) · (∇u(x))s ± σε(wε) · (∇u(x̂))s)

= (∇u(x̂))s ·
∫
Bε

σε(wε) +

∫
Bε

σε(wε) · ((∇u(x))s − (∇u(x̂))s)

=
4

3
πε3γTσ(u(x̂)) · (∇u(x̂))s + E3(ε) , (A.44)

where the remainder E3(ε) is defined as

E3(ε) =

∫
Bε

σε(wε) · ((∇u(x))s − (∇u(x̂))s) ,

|E3(ε)| ≤ ∥σε(wε)∥L2(Bε)∥(∇u(x))s − (∇u(x̂))s∥L2(Bε) ≤ C6ε
4 = O(ε4) , (A.45)

where we have used the interior elliptic regularity of function u once again and the fact that
σε(wε) is uniform in Bε(x̂).
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Now, after replacing the expansion (A.30) in the second term on the right-hand side of (A.29),
it follows that ∫

Bε

b · (uε + u) = 2

∫
Bε

b · u︸ ︷︷ ︸
(a)

+

∫
Bε

b · (uε − u)︸ ︷︷ ︸
(b)

, (A.46)

For the term (a) in (A.46), there is∫
Bε

b(x) · u(x) =

∫
Bε

(b(x) · u(x) ± b(x̂) · u(x̂))

=
4

3
πε3b(x̂) · u(x̂) + E4(ε) , (A.47)

with the remainder E4(ε) defined as

E4(ε) =

∫
Bε

(b(x) · u(x) − b(x̂) · u(x̂)) ,

|E4(ε)| ≤ ∥b(x) · u(x) − b(x̂) · u(x̂)∥L2(Bε)∥1∥L2(Bε)

≤ C7ε
3/2∥x− x̂∥L2(Bε) ≤ C8ε

4 = O(ε4) , (A.48)

where we have used the Cauchy-Schwarz inequality together with the interior elliptic regularity
of function u. The term (b) in (A.46) can be estimated by using the Cauchy-Schwarz inequality
and Lemma 2 as follows

E5(ε) =

∫
Bε

b · (uε − u) ,

|E5(ε)| ≤ ∥b∥L2(Bε)∥uε − u∥L2(Bε)

≤ C9ε
3/2+δ∥uε − u∥H1(D) ≤ C10ε

3+δ = o(ε3) , (A.49)

with 0 < δ < 1, where we have used the Hölder inequality together with the Sobolev embedding
theorem. For more details, see (Novotny and Soko lowski, 2020, Section 1.2.2).

Now, let us come back to the expansion (A.29), which from all the above elements may be
rewritten as

Cε(uε) − C(u) =
4

3
πε3[Pγσ(u(x̂)) · (∇u(x̂))s − 2(1 − γ)b(x̂) · u(x̂)] +

5∑
i=1

Ei(ε) , (A.50)

where Pγ = (1 − γ)(I + T) is a fourth order isotropic tensor obtained from Bonnet and Delgado
(2013), namely

Pγ = (1 − γ)[3α2I + (α1 − α2)I ⊗ I] . (A.51)

For more details, see also Ammari and Kang (2007); Ammari et al. (2013b). From the expansion
(A.50), we may promptly identify the function f(ε) = 4

3πε
3, which allows us to obtain the

following topological derivative formula for the compliance shape functional

DTC(x̂) = Pγσ(u(x̂)) · (∇u(x̂))s − 2(1 − γ)b(x̂) · u(x̂) . (A.52)

Finally, the results reported in Theorem 1 are obtained after replacing γ by δ0 according to
(A.5) and then taking the limit δ0 → 0.
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J. Soko lowski and A. Żochowski. On the topological derivative in shape optimization. SIAM
Journal on Control and Optimization, 37(4):1251–1272, 1999.

M. Xavier and N. Van Goethem. Brittle fracture on plates governed by topological derivatives.
Engineering Computations, 39(1):421–437, 2022.

H. Xu, L. Guan, X. Chen, and L. Wang. Guide-weight method for topology optimization of
continuum structures including body forces. Finite Elements in Analysis and Design, 75:
38–49, 2013.

R. Yera, L. Forzani, C.G. Méndez, and A.E. Huespe. A topology optimization algorithm based
on topological derivative and level-set function for designing phononic crystals. Engineering
Computations, 39(1):354–379, 2022.
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