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Abstract. In this work, a new micro-seismic opening model for the fault reconstruction in
Reissner-Mindlin plates is proposed. The description of micro-seismic faults is given by a
combination of dipoles specified in terms of the seismic moment tensor. In particular, we are
interested in the spatial reconstruction and characterization of micro-seismic events in plate
structures via joint source location and moment tensor inversion from pointwise measurements
of the plate displacement field. The basic idea consists in minimizing a functional measuring
the misfit between observed and predicted data with respect to a set of admissible solutions,
leading to a non-iterative second order reconstruction algorithm. As a result, the reconstruction
process becomes very robust with respect to noisy data and independent of any initial guess.
Finally, a set of numerical experiments is presented, showing the efficiency of the methodology
in the reconstruction of four simultaneous faults, by considering varying configurations of three
as well as uni-axial sensors in the presence and absence of noisy data.

1. Introduction

Faults identification process in their initial stage has great importance in many physical and
engineering problems. The available methods for fault identification based on dynamic tests are
usually classified into four categories: time-domain methods, frequency-domain methods, meth-
ods based on impedance, and modal analysis. Important contributions to the faults detection
procedure have been reported in the literature [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Besides,
in [15] the methods for fault identification are classified in the following levels: detection of the
presence of damage in the structure (level 1), location of the region affected by the fault (level
2), quantitative information (size) of the faults (level 3) and indication about the safety of the
structure and the prediction of its remaining lifetime (level 4). See, for instance, the paper
[16] dealing with detection and location of damages in plate structures (level 1 and level 2) by
using the topological derivative method. See also the paper [17] in which a novel full-waveform
technique is proposed for the spatial reconstruction and characterization of micro-faults events
via joint source location and moment tensor inversion (levels 1-3). Inspired on the topological
derivative method, in the present work we propose a new micro-seismic opening model for the
fault reconstruction in Reissner-Mindlin plates.

The topological derivative has been specifically conceived to provide a precise information
on the sensitivity of a given shape functional with respect to topological domain perturbations
[18]. The origin of the topological derivative method in optimal design can be dated to the
work by Schumacher [19] on the optimal location of holes within elastic structures. The first
mathematical justifications for topological derivatives in the framework of partial differential
equations are due to Soko lowski and Żochowski [20] and Garreau at al. [21], in the context of
the Poisson equation and the Navier system for Neumann and Dirichlet holes. Therefore, this
relatively new concept in shape optimization has applications in many different fields such as
shape and topology optimization, geometrical inverse problems, image processing, multi-scale
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material design and mechanical modelling, including damage and fracture evolution phenomena.
See, for instance, the special issue on the topological derivative method and its applications in
computational engineering recently published in the Engineering Computations Journal [22],
covering various topics ranging from new theoretical developments [23, 24, 25] to applications in
structural and fluid dynamics topology optimization [26, 27, 28], geometrical inverse problems
[29, 30, 31, 32, 33] synthesis and optimal design of metamaterials [34, 35], fracture mechanics
modelling [36], up to industrial applications [37] and experimental validation of the topological
derivative method [38].

Seismic and micro-seismic source characterization is an important area of research in geo-
physics, engineering, and materials science due to its central role in the understanding of
earthquake and faulting processes [39], for instance. Small sudden material failures can be
represented by a linear combination of force dipoles describing micro-seismic sources [40]. In
this setting, the nature of the micro-fault is completely characterized by the seismic moment
tensor [41]. This theory is therefore helpful for investigating the failure of brittle materials in
general, with applications in the monitoring of mines, highway bridges, offshore platforms and
fracking process.

In this paper, we are interested in the delamination process represented by a micro-fault lying
in the middle plane of a plate structure, orthogonal to its cross-section. The forward problem
is governed by the elastodynamic Reissner-Mindlin plate bending problem in the frequency
domain. The description of micro-seismic faults is given by a combination of dipoles specified
in terms of the seismic moment tensor. The basic idea consists in minimizing a functional
measuring the misfit between observed and predicted data with respect to a set of admissible
micro-seismic sources by using the topological derivative method. In order to test the efficiency
of the proposed methodology, a set of numerical experiments dealing with the reconstruction
of four simultaneous faults are presented by considering varying configurations of three as well
as uni-axial sensors in the presence and absence of noisy data.

The paper is organized as follows. In Section 2, a novel micro-fault opening model for
Reissner-Mindlin plate model is derived. The seismic moment tensor inversion theory is in-
troduced in Section 3. In Section 4, the sensitivity analysis of the tracking-type functional
with respect to source perturbations living in the set of admissible solutions is presented. The
resulting initial-guess free and non-iterative reconstruction algorithm is described in Section
5. Some numerical experiments are presented in Section 6, showing different features of the
reconstruction algorithm. Finally, the paper ends with some concluding remarks in Section 7.

2. Micro-fault opening model

Let us consider an open and bounded domain D ⊂ R3, such that one dimension is much
smaller than the other two dimensions. The flat domain D is described as follows

D = {(x, z)⊤ ∈ R2 ×R : −h/2 < z < +h/2}, (2.1)

where h is the plate thickness. The middle plane of the plate is then represented by Ω ⊂ R2,
such that D = Ω× (−h/2,+h/2). We assume that there is a micro-fault Ξ lying in the middle
plane Ω of the plate structure, as sketch in Figure 1.

According to [40], the micro-fault can be characterized by a dipole of the form

F (ξ) = M∇ξ∗δ(ξ − ξ∗), (2.2)
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where δ(ξ − ξ∗) is the three-dimensional Dirac function with pole at ξ∗, with ξ = (ξ1, ξ2, ξ3)
⊤.

Its gradient with respect to ξ∗ has to be understood in the following sense

∇ξ∗δ(ξ − ξ∗) =
∂

∂ξ∗1
δ(ξ1 − ξ∗1)δ(ξ2 − ξ∗2)δ(ξ3 − ξ∗3)e1

+ δ(ξ1 − ξ∗1)
∂

∂ξ∗2
δ(ξ2 − ξ∗2)δ(ξ3 − ξ∗3)e2

+ δ(ξ1 − ξ∗1)δ(ξ2 − ξ∗2)
∂

∂ξ∗3
δ(ξ3 − ξ∗3)e3, (2.3)

with ei, i = 1, 2, 3, used to denote the canonical basis of the three-dimensional Euclidean space
R3. By introducing the notation ξ = (x, z)⊤, with x = (ξ1, ξ2)

⊤ and z = ξ3, we have

∇ξ∗δ(ξ − ξ∗) =

(
∇x∗δ(x− x∗)δ(z − z∗)
δ(x− x∗) ∂

∂z∗
δ(z − z∗)

)
. (2.4)

The seismic moment tensor M is defined as

M = aΞλ[[u]] · n I3 + aΞµ(n⊗ [[u]] + [[u]]⊗ n), (2.5)

where aΞ is the area of a newly created micro-fault Ξ giving rise to the acoustic emission, n is
the unit normal vector to the micro-fault surface, [[u]] is the average displacement jump across
the micro-fault, (µ, λ) are the Lamé coefficients and I3 is the three dimensional identity tensor.

Figure 1. Flat domain D with a micro-fault Ξ surface lying in the middle
plane Ω of the plate structure with thickness h. The unit normal vector n is
perpendicular to the micro-fault surface Ξ. The three-dimensional Cartesian
coordinate system is denoted by ξ1, ξ2 and ξ3.

The Reissner-Mindlin plate bending problem, we are dealing with, is based on the kinematic
assumption that the normal fibers to the middle plane of the plate remain straight during the
deformation process and do not suffer variations in their length, but they do not necessarily
remain normal to the middle plane. Consequently, the transverse shear deformation are not
negligible and the normal deformation is null. Therefore, the plate displacement u : D → C3

can be decomposed as u(x, z) = (−zθ(x), w(x))⊤, where θ : Ω→ C2 is the rotation vector field
and w : Ω→ C is the transverse displacement.

In this paper, we are interested in the delamination process represented by the micro-fault
Ξ lying in the middle plane Ω, orthogonal to the plate cross section, which is one of the most
important fail mechanism of composite plate structures1. Therefore, the normal in (2.5) is
given by n = (0, 1)⊤ ∈ R2 × R and the pole z∗ = 0, as shown in Figure 1. We assume that

1Note however that fault mechanisms in plates are much more complicated phenomena usually occurring far
from the middle plane of the plate where the stresses are higher.
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the micro-fault may open in traction, so that [[u]] = (0, [[w]])⊤. From these elements, in our
simplified setting the seismic moment tensor is given by

M =

(
α I 0
0 β

)
, (2.6)

where I is the two-dimensional identity tensor. The entries α and β are defined as

α = aΞ[[w]]λ and β = aΞ[[w]](2µ + λ). (2.7)

By setting z∗ = 0, integration over the plate thickness yields∫ +h
2

−h
2

(
α I 0
0 β

)(
∇x∗δ(x− x∗)δ(z − z∗)
δ(x− x∗) ∂

∂z∗
δ(z − z∗)

)
|z∗=0

dz =

(
α∇x∗δ(x− x∗)

0

)
, (2.8)

where we have used the following identities∫ h
2

−h
2

δ(z − z∗)|z∗=0
dz = 1,

∫ h
2

−h
2

∂

∂z∗
δ(z − z∗)|z∗=0

dz = 0. (2.9)

Note that this result would be expected in the context of Reissner-Mindlin plate theory since
the normal deformation is null. In addition, the normal to the micro-fault surface is fixed
(assumed to be known) and points toward the orthogonal direction to the middle plane Ω of
the plate. In this way, the traction mode is completely characterized by α. In particular, once
α is found, parameter β can be promptly obtained as

β = α
2µ + λ

λ
. (2.10)

Therefore, we have to keep in mind that our model is able to handle micro-faults lying in the
middle plane of the plate under opening mechanism in traction, only. On the other hand, it
is also worth to stress that delamination process in plates is a three-dimensional phenomenon
occurring not only in traction and not necessarily in the middle plane of the plate, as postulated
here. However, we believe that these more complicated phenomena can be better modelled by
considering higher-order plate theory following similar reasoning as presented in this section.

3. Seismic moment tensor inversion

The transverse displacement and rotations of the plate in the time harmonic regime written
in the frequency domain is governed by the following system of partial differential equations:
Find (θ, w), such that  −divM(θ) +Q(θ, w)− k2

bθ = f,

divQ(θ, w)− k2
sw = 0,

(3.1)

where kb ∈ R and ks ∈ R are the bending and shear wave numbers given by

k2
b =

h3

12
ρω2 and k2

s = hρω2, (3.2)

with ρ the density and ω the frequency of wave motion. The source term f ∈ Cδ(Ω) is given
by a superposition of a number N of dipoles characterized by the two-dimensional Dirac delta
function δ(x − xi) and by the seismic moment tensor with entries αi ∈ C, for i = 1, · · · , N .
Therefore, the set of admissible micro-seismic sources Cδ(Ω) is defined as

Cδ(Ω) := {f : Ω→ C2 | f(x) =
N∑
i=1

αi∇xi
δ(x− xi)}. (3.3)
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The system (3.1) is endowed with the essential boundary condition w = 0 on ∂Ω, so that the
plate is assumed to be simply supported, but without loss of generality. In addition, M(θ) is
the generalized bending moment tensor given by

M(θ) =
Eh3

12(1− ν2)
[(1− ν)I + νI⊗ I](∇θ)s

=
Eh3

12(1− ν2)
[(1− ν)(∇θ)s + νdiv(θ)I] (3.4)

and Q(θ, w) is the generalized shear tensor, namely

Q(θ, w) =
5Eh

12(1 + ν)
(θ −∇w), (3.5)

with I and I used to denote the second and fourth order identity tensors, respectively, whereas
E is the Young modulus and ν is the Poisson ratio. Some terms in the above equations still
require explanation. Using the Einstein summation convention over repeated indices i, j, k, l,
we specifically have I = δijei ⊗ ej and I = 1

2
(δikδjl + δilδjk)ei ⊗ ej ⊗ ek ⊗ el, where δij is the

Kronecker delta. In addition, (∇θ)s is used to denote the symmetric part of the gradient of the
vector function θ, namely (∇θ)s = 1

2
(∇θ + (∇θ)⊤). Finally, div(θ) = I · ∇θ = trace(∇θ).

The seismic moment tensor inversion, we are dealing with, consists in reconstructing the
source f ∗ ∈ Cδ(Ω) from pointwise domain measurement of the plate displacement field (θ∗, w∗).
More precisely, we want to minimize in the set of admissible micro-seismic sources Cδ(Ω) a
functional measuring the misfit between the available data (measurement) and the solution
computed from the model problem, namely

Minimize
f∈Cδ(Ω)

J (w, θ). (3.6)

The misfit functional J (w, θ) is defined as

J (w, θ) =
1

2

Ns∑
ℓ=1

∫
Ω

(|w − w∗|2 + ∥θ − θ∗∥2)δ(x− xℓ) dx, (3.7)

where (w, θ) is the solution to (3.1), (w∗, θ∗) is the pointwise measurement of the plate dis-
placement and xℓ, ℓ = 1, · · · , Ns, represent the locations of the sensors (accelerometers), with
Ns the number of sensors. Finally, ∥φ∥ =

√
φ · φ for vector φ ∈ C2 and |v| =

√
vv for scalar

v ∈ C quantities, respectively, where (·) represents the complex conjugate of (·).
Since we have no available experimental data, the measurement (w∗, θ∗) is obtained as the

restriction at the points xℓ ∈ Ω, ℓ = 1, · · · , Ns, of the solution to (3.1) for f(x) = f ∗(x), where
f ∗ ∈ Cδ(Ω) is the south source defined as

f ∗(x) =
N∗∑
i=1

α∗
i∇x∗

i
δ(x− x∗

i ), (3.8)

with the quantities N∗, x∗
i and α∗

i forming the set of unknowns characterizing the micro-faults
to be reconstructed.

4. Sensitivity analysis

The next step is to minimize the misfit functional (3.7) in the set of admissible source densities
(3.3). The idea is to perturb the trial source term f ∈ Cδ(Ω) in (3.1) by a fixed number N of
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additional point sources, namely

fδ(x) = f(x) +
N∑
i=1

αi∇xi
δ(x− xi), (4.1)

where fδ ∈ Cδ(Ω) is the perturbed counterpart of the source term. On the basis of (3.1) and
(4.1), we can introduce the forward solution (θδ, wδ) as that solving: Find (θδ, wδ), such that −divM(θδ) +Q(θδ, wδ)− k2

bθδ = fδ,

divQ(θδ, wδ)− k2
swδ = 0,

(4.2)

endowed with the essential boundary condition wδ = 0 on ∂Ω. The associated perturbed
counterpart of the cost functional is then given by

J (wδ, θδ) =
1

2

Ns∑
ℓ=1

∫
Ω

(|wδ − w∗|2 + ∥θδ − θ∗∥2)δ(x− xℓ) dx. (4.3)

Let us decompose the component αi into its real and imaginary parts as

αi = ai + ibi, (4.4)

with i =
√
−1 and ai, bi ∈ R. Equations (4.1) and (4.4) induce the following ansätze for the

solution (θδ, wδ) to the system (4.2)

θδ(x) = θ(x) +
N∑
i=1

(ai + ibi)θi(x), (4.5)

for the rotation vector displacement field and

wδ(x) = w(x) +
N∑
i=1

(ai + ibi)wi(x), (4.6)

for the transverse displacement field. After replacing (4.5) and (4.6) into (4.2), the following
set of canonical problems can be identified: Find (θi, wi), such that −divM(θi) +Q(θi, wi)− k2

bθi = ∇xi
δ(x− xi),

divQ(θi, wi)− k2
swi = 0,

(4.7)

endowed with the essential boundary condition wi = 0 on ∂Ω.
Here it is useful to note that canonical problems (4.7) are independent of the components ai

and bi. By replacing (4.5) and (4.6) in (4.3), we obtain
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J (wδ, θδ) = J (w, θ) +
Ns∑
ℓ=1

∫
Ω

N∑
i=1

ai(ℜ{w − w∗}wi + ℜ{θ − θ∗} · θi)δ(x− xℓ) dx

+
Ns∑
ℓ=1

∫
Ω

N∑
i=1

bi(ℑ{w − w∗}wi + ℑ{θ − θ∗} · θi)δ(x− xℓ) dx

+
1

2

Ns∑
ℓ=1

∫
Ω

N∑
i=1

N∑
j=1

aiaj(wiwj + θi · θj)δ(x− xℓ) dx

+
1

2

Ns∑
ℓ=1

∫
Ω

N∑
i=1

N∑
j=1

bibj(wiwj + θi · θj)δ(x− xℓ) dx. (4.8)

For a systematic treatment of (4.8), we next introduce the vectors

a = (a1, a2, · · · , aN)⊤ ∈ RN , (4.9)

b = (b1, b2, · · · , bN)⊤ ∈ RN , (4.10)

With such definitions, the expansion in (4.8) can be rewritten more compactly as

ΨN(a, b) = J (wδ, θδ)− J (w, θ)

= p · a + q · b +
1

2
Ha · a +

1

2
Hb · b. (4.11)

Here, the vectors p, q ∈ RN and matrix H ∈ RN × RN are respectively defined as

p =


p1
p2
...
pN

 , q =


q1
q2
...
qN

 and H =


H11 H12 . . . H1N

H21 H22 . . . H2N
...

...
. . .

...
HN1 HN2 . . . HNN

 , (4.12)

whose entries are given by

pi =
Ns∑
ℓ=1

∫
Ω

(ℜ{w − w∗}wi + ℜ{θ − θ∗} · θi)δ(x− xℓ) dx, (4.13)

qi =
Ns∑
ℓ=1

∫
Ω

(ℑ{w − w∗}wi + ℑ{θ − θ∗} · θi)δ(x− xℓ) dx, (4.14)

and

Hij =
Ns∑
ℓ=1

∫
Ω

(wiwj + θi · θj)δ(x− xℓ) dx. (4.15)

5. Reconstruction algorithm

Let us define the vector of trial source locations as

η = (x1, x2, · · · , xN) ∈ RN . (5.1)

By applying the first-order optimality condition to the quadratic form ΨN with respect to a
and b, we obtain

DaΨN(a, b) · δa = 0, ∀δa ∈ RN , (5.2)

DbΨN(a, b) · δb = 0, ∀δb ∈ RN . (5.3)



8

This leads to the following linear systems

Ha = −p and Hb = −q. (5.4)

Note that we have a = a(η) and b = b(η) because of the implicit dependence between the
solutions of the linear systems (5.4) with (5.1). Furthermore, after replacing (5.4) into (4.11),
the vector of optimal locations η⋆ can be obtained as solution to the following minimization
problem:

η⋆ = argmin
η⊂X

{
ΨN(a(η), b(η)) =

1

2
(p · a(η) + q · b(η))

}
, (5.5)

with X used to denote the set of trial sources localization. Finally, the optimal moment tensor
components are given by a⋆ = a(η⋆) and b⋆ = b(η⋆).

The resulting second order reconstruction algorithm is now introduced. Its entries are given
by the number of point sources N , the grid forming the set of source locations X and the
vectors p, q and the matrix H. The algorithm returns the optimal set of source localization
η⋆ and the respective moment tensor components (a⋆, b⋆), together with the optimal value of
the objective functional Ψ⋆

N . The above procedure is conveniently presented in a pseudo-code
format through Algorithm 1. Therein, Π maps the vector of source indices I = (i1, i2, · · · , iN)
to the corresponding vector of source locations η ⊂ X.

Algorithm 1: Micro-seismic fault reconstruction

1: input : N , X, H, p, q;
2: output: the optimal solution η⋆, (a⋆, b⋆), Ψ⋆

N ;
3: initialization: η⋆ ← 0, (a⋆, b⋆)← (0, 0), Ψ⋆

N ←∞;
4: for i1 ← 1 to card{X} do
5: for i2 ← i1 + 1 to card{X} do

6:
...

7: for iN ← iN−1 + 1 to card{X} do

p←


p(i1)
p(i2)

...
p(iN )

 , q ←


q(i1)
q(i2)

...
q(iN )

 , H ←


H(i1,i1) H(i1,i2) · · · H(i1,iN )

H(i2,i1) H(i2,i2) · · · H(i2,iN )
...

...
. . .

...
H(iN ,i1) H(iN ,i2) · · · H(iN ,iN )

 ;

8: a← −H−1p, b← −H−1q, ΨN ← 1
2
(p · a + q · b);

9: I ← (i1, i2, · · · , iN), η ← Π(I);
10: if ΨN < Ψ⋆

N then
11: η⋆ ← η, (a⋆, b⋆)← (a, b), Ψ⋆

N ← ΨN ;
12: end if
13: end for
14: end for
15: end for

6. Numerical results

In this section, we present some numerical experiments. We consider a simply supported
square-shaped plate of dimensions Ω = (0, 1)× (0, 1) m2 and thickness h = 10−2m (1 cm). The
area aΞ and the jump [[w]] of the micro-fault are of order 10−4m2 (1 cm2) and 10−3m (1 mm),
respectively, which will be specified later on according to the experiment we are dealing with.
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The frequency of wave motion ω = 2π × 200 rad/s. The physical material properties of the
plate made with steel are Young Modulus E = 210 GPa, Poisson ratio ν = 0.3 and density
ρ = 7800 kg/m3. The parameter αi ∈ C from (3.3) is the complex valued fault apertures, with
i = 1, · · · , N . The direct (3.1) and canonical (4.7) problems are solved numerically by using
the Finite Element Method according to [42]. Specifically, the square-shaped plate is split into
100 uniform squares. Thus, each smaller square is divided into 4 identical triangles. The set of
admissible source locations X is formed by the resulting vertices after disregarding the ones over
the boundary, leading to card{X} = 181. In order to fulfill the Ihlenburg-Babuška condition
[43], each triangle is divided into 4 more triangles in such a way that the initial pattern is
preserved. This procedure is repeated two times, leading to 6400 triangles. The resulting mesh
is then used to discretize the boundary value problems. The proposed method was coded in
MATLAB [44]. The numerical experiments were performed in a Windows machine endowed
with dual Intel Core i5 10210U processor with a clock frequency of 1.60GHz, having 4 cores
and 8GB of RAM.

The true (target) and the reconstructed micro-faults are represented graphically by blue and
red circles, respectively. The radii of such circles are proportional to the associated micro-faults
amplitudes. In all the numerical experiments to be presented, we consider the reconstruction
of four simultaneous faults by using varying configurations of sensors. The locations x∗

i ∈ X
and fault apertures α∗

i to be reconstructed are summarised in Table 1.

Table 1. Parameters associated with the four anomalies to be reconstructed.

i x∗
i α∗

i (×104)
1 (0.7, 0.6) 0.6923 + 0.6923i
2 (0.3, 0.4) 0.6923 + 1.3846i
3 (0.6, 0.2) 1.3846 + 0.6923i
4 (0.2, 0.7) 1.3846 + 1.3846i

The elapsed time need for solving the auxiliary problems is 4.1 seconds, whereas the re-
construction Algorithm 1 expend 260.7 seconds for N = 4 trial sources, which represents the
main time consuming of the proposed approach, as expected. For a detailed discussion on the
complexity of Algorithm 1, the reader may refer to [45].

6.1. Example 1. Different external factors may generate significant changes in the dynamic
response of the pointwise sensors used to measure (w∗, θ∗) at xℓ ∈ Ω, with ℓ = 1, · · · , Ns, such
as acoustic noise, temperature variations and humidity. Therefore, the measurement (w∗, θ∗)
is corrupted with White Gaussian Noise (WGN) of varying levels, so that the noise represents
uncertainties in the device measuring the displacement field. In all cases, the level of noise is
fixed just below to the threshold for which the reconstruction becomes completely degraded,
leading to spurious results.

We start by considering four three-axial pointwise sensors distributed along the boundary of
the plate as shown in Figure 2. In this case, since the plate is simply supported, we have 8
degrees of freedom as available data. The results are presented in Figures 3 and 4 for 0% and
23% of WGN, respectively. For completeness, we present the values of α⋆

i obtained for 0% and
23% of WGN as detailed in Table 2.
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Figure 2. Example 1: Four three-axial sensors (Ns = 4) distributed on the
boundary ∂Ω of the plate Ω, which are represented by black dots.

(a) real part (b) imaginary part

Figure 3. Example 1: Obtained result free of noise by considering four three-
axial sensors as in Figure 2. The target and the reconstructed micro-faults are
represented by blue and red circles, respectively. The radii of such circles are
proportional to the associated micro-faults amplitudes.

(a) real part (b) imaginary part

Figure 4. Example 1: Obtained result with 23% of WGN by considering four
three-axial sensors as in Figure 2. The target and the reconstructed micro-faults
are represented by blue and red circles, respectively. The radii of such circles are
proportional to the associated micro-faults amplitudes.
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Table 2. Example 1: Reconstructed values α⋆
i (×104) for 0% and 23% of WGN

by considering four three-axial sensors as in Figure 2.

i 0% of WGN 23% of WGN
1 0.6923 + 0.6923i 0.6968 + 0.6830i
2 0.6923 + 1.3846i 0.6592 + 1.3733i
3 1.3846 + 0.6923i 1.3867 + 0.6933i
4 1.3846 + 1.3846i 1.3710 + 1.3729i

Now, we consider again four three-axial pointwise sensors, but localized within the plate as
shown in Figure 5. In this case we have 12 degrees of freedom as available data. The results are
presented in Figures 6 and 7 for 0% and 76% of WGN, respectively. The values of α⋆

i obtained
for 0% and 76% of WGN are reported in Table 3.

Figure 5. Example 1: Four three-axial sensors (Ns = 4) distributed on the
boundary ∂Ω of the plate Ω, which are represented by black dots.

(a) real part (b) imaginary part

Figure 6. Example 1: Obtained result free of noise by considering four three-
axial sensors as in Figure 5. The target and the reconstructed micro-faults are
represented by blue and red circles, respectively. The radii of such circles are
proportional to the associated micro-faults amplitudes.
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(a) real part (b) imaginary part

Figure 7. Example 1: Obtained result with 76% of WGN by considering four
three-axial sensors as in Figure 5. The target and the reconstructed micro-faults
are represented by blue and red circles, respectively. The radii of such circles are
proportional to the associated micro-faults amplitudes.

Table 3. Example 1: Reconstructed values α⋆
i (×104) for 0% and 76% of WGN

by considering four three-axial sensors as in Figure 5.

i 0% of WGN 76% of WGN
1 0.6923 + 0.6923i 0.7145 + 0.7493i
2 0.6923 + 1.3846i 0.7613 + 1.2260i
3 1.3846 + 0.6923i 1.4598 + 0.5927i
4 1.3846 + 1.3846i 1.3703 + 1.4478i

Finally, we consider eight three-axial pontwise sensors as shown is Figure 8, where four
sensors are localized on the boundary and four into the plate. Therefore, in this case we have
20 degrees of freedom as available data. The results are presented in Figures 9 and 10 with 0%
and 86% of WGN, respectively. In Table 4 we present the values obtained for α⋆

i with 0% and
86% of WGN.

Figure 8. Example 1: Eight three-axial sensors (Ns = 8) distributed on the
boundary ∂Ω of the plate Ω, which are represented by black dots.
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(a) real part (b) imaginary part

Figure 9. Example 1: Obtained result free of noise by considering eight three-
axial sensors as in Figure 8. The target and the reconstructed micro-faults are
represented by blue and red circles, respectively. The radii of such circles are
proportional to the associated micro-faults amplitudes.

(a) real part (b) imaginary part

Figure 10. Example 1: Obtained result with 86% of WGN by considering eight
three-axial sensors as in Figure 8. The target and the reconstructed micro-faults
are represented by blue and red circles, respectively. The radii of such circles are
proportional to the associated micro-faults amplitudes.

Table 4. Example 1: Reconstructed values α⋆
i (×104) for 0% and 86% of WGN

by considering eight three-axial sensors as in Figure 8.

i 0% of WGN 86% of WGN
1 0.6923 + 0.6923i 0.6931 + 0.6190i
2 0.6923 + 1.3846i 0.5922 + 1.4125i
3 1.3846 + 0.6923i 1.2818 + 0.7268i
4 1.3846 + 1.3846i 1.3355 + 1.2671i

6.2. Example 2. In this example, the material properties from the background are corrupted
with White Gaussian Noise. More precisely, the corrupted material parameters are computed
in the finite element mesh used to generate the set X, with 400 triangles. For consistency, such
material distribution is then projected onto a finer mesh with 6400 triangular elements used to
solve the boundary value problems. Therefore, in this case, the noisy represents random mod-
eling uncertainties. For completeness, the noisy data is plotted in Figure 11. As in the former
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example, the level of noise is fixed just below to the threshold for which the reconstruction
becomes completely degraded, leading to spurious results.

Figure 11. Example 2: Young modulus distribution within the plate Ω cor-
rupted with White Gaussian Noise.

In the first case, we aim to reconstruct four simultaneous faults using four three-axial point-
wise sensors as shown in Figure 2. The result is presented in Figure 12 for 20% of WGN. In
Table 5, the values obtained for α⋆

i with 20% of WGN are presented.

(a) real part (b) imaginary part

Figure 12. Example 2: Obtained result with 20% of WGN by considering four
three-axial sensors as in Figure 2. The target and the reconstructed micro-faults
are represented by blue and red circles, respectively. The radii of such circles are
proportional to the associated micro-faults amplitudes.

Table 5. Example 2: Reconstructed values α⋆
i (×104) for 20% of WGN by

considering four three-axial sensors as in Figure 2.

i 20% of WGN
1 0.6927 + 0.6615i
2 0.7017 + 1.4379i
3 1.3633 + 0.7152i
4 1.4037 + 1.3815i

Now, we reconstruct four faults using four three-axial pointwise sensors as shown in Figure
5. The result is presented in Figure 13 for 49% of WGN. In Table 6, we present the values
obtained for α⋆

i with 49% of WGN.



15

(a) real part (b) imaginary part

Figure 13. Example 2: Obtained result with 49% of WGN by considering four
three-axial sensors as in Figure 5. The target and the reconstructed micro-faults
are represented by blue and red circles, respectively. The radii of such circles are
proportional to the associated micro-faults amplitudes.

Table 6. Example 2: Reconstructed values α⋆
i (×104) for 49% of WGN by

considering four three-axial sensors as in Figure 5.

i 49% of WGN
1 0.6640 + 0.7393i
2 0.6599 + 1.4635i
3 1.3583 + 0.6519i
4 1.4001 + 1.3756i

Finally, we consider eight three-axial pointwise sensors as shown in Figure 8. The result is
presented in Figure 14 for 69% of WGN. In Table 7, the values obtained for α⋆

i with 69% of
WGN are reported.

(a) real part (b) imaginary part

Figure 14. Example 2: Obtained result with 69% of WGN by considering eight
three-axial sensors as in Figure 8. The target and the reconstructed micro-faults
are represented by blue and red circles, respectively. The radii of such circles are
proportional to the associated micro-faults amplitudes.
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Table 7. Example 2: Reconstructed values α⋆
i (×104) for 69% of WGN by

considering eight three-axial sensors as in Figure 8.

i 69% of WGN
1 0.6287 + 0.8050i
2 0.5915 + 1.5674i
3 1.3069 + 0.6896i
4 1.3383 + 1.4889i

6.3. Example 3. In this third example, we consider twenty four uni-axial sensors as shown in
Figure 15, in which only the transverse degree of freedom is available. As in the fist example,
the measurements are corrupted with White Gaussian Noise (WGN). The reconstruction for 0%
of WGN is exact, as expected. The results for 48% of WGN are presented in Figures 16, which
fit quite well the target even in the presence of such a high level of noise. The reconstruction
for 49% of WGN or higher becomes completely degraded, leading to spurious results.

Figure 15. Example 3: Twenty four uni-axial sensors (Ns = 24) distributed on
the boundary ∂Ω of the plate Ω, which are represented by black dots.

(a) real part (b) imaginary part

Figure 16. Example 3: Obtained results for 48% of WGN by considering twenty
four uni-axial sensors as in Figure 15. The target and the reconstructed micro-
faults are represented by blue and red circles, respectively. The radii of such
circles are proportional to the associated micro-faults amplitudes.

7. Conclusions

In this paper, a new micro-seismic fault reconstruction method in Reissner-Mindlin plates
model has been proposed. The micro-seismic faults are modeled by a combination of dipoles
written in terms of the seismic moment tensor. A functional measuring the misfit between
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observed and predicted data has been minimized with respect to a set of admissible micro-
seismic sources by using the topological derivative method. The obtained theoretical result has
been used to devise a non-iterative and initial-guess free second order reconstruction algorithm
proved to be very resilient with respect to noisy data. In fact, a set of numerical experiments
dealing with the reconstruction of four simultaneous faults has been presented by considering
varying configurations of three as well as uni-axial pointwise sensors in the presence and absence
of noisy data. In particular, either the measurements or the material properties of the back-
ground have been corrupted with White Gaussian Noise (WGN) of varying levels. In Examples
1 and 2 we have considered different configurations of three-axial pointwise sensors. On the
other hand, in Example 3 a set of uni-axial pointwise sensors has been considered, in which only
the transverse degree of freedom is assumed to be available. In all cases, the reconstructions
were shown to be exact (up to a small numerical threshold) in the absence of noise and of
good quality even in the presence of high level of noise. Therefore, the main contributions of
the paper consist of two folds. The first one is related to the micro-seismic faults modeling in
plate structures itself. More precisely, the model problem (3.1) is new, so that up to now there
is no any available theoretical results to compare with our finds. On the other hand, it has
been rigorously derived from a well-established theory posed into three spatial dimensions fully
developed in the book by Aki and Richards [40], which has been particularized to the kinematic
assumptions of Reissner-Mindlin plates. The second one consists in the micro-seismic faults re-
construction Algorithm 1 from pointwise measurements of the plate displacement field, which
can naturally be used for monitoring sudden appearance of small faults in plate structures.
However, in the proposed model we have considered micro-faults lying in the middle plane
of the plate under opening mechanism in traction, only. Therefore, further developments are
necessary to deal with more realistic scenario, including opening mechanisms in shear mode
and micro-seismic fault reconstruction in layered plates, for instance. These extensions will be
subject of future research.

Acknowledgements

This research was partly supported by CNPq (Brazilian Research Council), CAPES (Brazil-
ian Higher Education Staff Training Agency) and FAPERJ (Research Foundation of the State
of Rio de Janeiro). These financial support are gratefully acknowledged. We would like to
thanks Professor Bojan Guzina for many fruitful discussions.

References

[1] G. Gomes, S. da Cunha Jr, and A. Jr, “A sunflower optimization (sfo) algorithm applied to damage
identification on laminated composite plates,” Engineering with Computers, 2018.

[2] J. Lee, J. W. Lee, J. Yi, C. Yun, and H. Jung, “Neural networks-based damage detection for bridges
considering errors in baseline finite element models,” Journal of Sound and Vibration, vol. 280, pp. 555–
578, 2005.

[3] U. Lee and J. Shin, “A structural damage identification method for plate structures,” Engineering Struc-
tures, vol. 24, pp. 1177–1188, 2002.

[4] A. Pandey and M. Biswas, “Damage detection in structures using changes in flexibility,” Journal and Sound
and Vibration, vol. 169, pp. 3–17, 1994.

[5] A. Pandey, M. Biswas, and M. Samman, “Damage detection from changes in curvature mode shapes,”
Journal and Sound and Vibration, vol. 145, pp. 321–332, 1991.

[6] M. Rao, J. Srinivas, and B. Murthy, “Damage detection in vibrating bodies using genetic algorithms,”
Computers and Structures, vol. 82, pp. 963––968, 2004.

[7] O. Salawu and C. Williams, “Bridge assessment using forced-vibration testing,” Journal of Structural
Engineering, vol. 121, pp. 161–173, 1995.



18

[8] S. Sandesh and K. Shankarb, “Damage identification of a thin plate in the time domain with substructuring-
an application of inverse problem,” International Journal of Applied Science and Engineering, vol. 7,
pp. 79–93, 2009.

[9] J. Santos, C. Soares, C. Soares, and H. Pina, “Development of a numerical model for the damage identifi-
cation on composite plate structures,” Composite Structures, vol. 48, pp. 59–65, 2000.

[10] L. Stutz, D. Castello, and F. Rochinha, “A flexibility-based continuum damage identification approach,”
Journal of Sound and Vibration, vol. 279, pp. 641–667, 2005.
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